JPS62293248A - Method for exposing both-face of flexible substrate - Google Patents
Method for exposing both-face of flexible substrateInfo
- Publication number
- JPS62293248A JPS62293248A JP61136094A JP13609486A JPS62293248A JP S62293248 A JPS62293248 A JP S62293248A JP 61136094 A JP61136094 A JP 61136094A JP 13609486 A JP13609486 A JP 13609486A JP S62293248 A JPS62293248 A JP S62293248A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- sides
- flexible substrate
- projection optical
- reticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔産業上の利用分野〕
この発明は、フレキシブル基板の両面に配線パターンを
形成したレチクルを投影して露光するフレキシブル基板
の両面露光方法に関する。Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a double-sided exposure method for a flexible substrate in which a reticle having a wiring pattern formed on both sides of the flexible substrate is projected and exposed.
近時電子機器の高密度実装化に伴い、フレキシブル基板
の配線密度も著しく増大しつつある。特に、ディジタル
回路等の極めて複雑な回路では、表裏両面に配線パター
ンを設けた両面プリン1一基板が多用されるようになり
、その両面の配線パターンの整合にも例えば0.1mm
というような高精度が要求されている。With the recent trend toward high-density packaging of electronic devices, the wiring density of flexible substrates is also increasing significantly. In particular, in extremely complex circuits such as digital circuits, double-sided printed circuit boards with wiring patterns on both the front and back sides are increasingly used, and the matching of the wiring patterns on both sides requires, for example, 0.1 mm.
High precision is required.
一般にプリント基板は、フェノールペーパ、エポキシペ
ーパ、エポキシガラス等の絶縁性板状基材の表面に極め
て薄い銅箔を均一に接着し、その上に感光性レジスト層
を形成した後、所要の配線パターンを露光して焼付け、
エツチングによって未露光部分の銅箔を除去してプリン
ト配線を形成し、その上に残ったレジストを溶剤又はア
ルカリ液で剥離して作られる。Generally, printed circuit boards are made by uniformly bonding extremely thin copper foil to the surface of an insulating plate-like base material such as phenol paper, epoxy paper, or epoxy glass, and then forming a photosensitive resist layer on top of it, and then forming the desired wiring pattern. exposed and printed,
It is made by removing the unexposed portions of the copper foil by etching to form printed wiring, and then peeling off the remaining resist with a solvent or alkaline solution.
そして、配線パターンの露光には、配線パターンを形成
したレチクルをプリント基板の表面に直接密着させて露
光する密着露光法と、レチクルを投影によりプリント基
板の表面に投影して露光する投影露光法とがある。For exposing wiring patterns, there are two methods: a contact exposure method in which a reticle with a wiring pattern formed thereon is brought into direct contact with the surface of the printed circuit board, and a projection exposure method in which the reticle is projected onto the surface of the printed circuit board for exposure. There is.
しかしながら、このようなプリント基板のn先方法にあ
っては、前者は露光装置が簡単でレチクルの密着性を良
好に保つことができるため、特にフレキシブル基板のよ
うに平面性の保持が困難な場合に多用されているが、レ
チクルに基板が摺接して擦傷が生じやすいという重大な
問題があった。However, in this type of printed circuit board method, the former uses a simple exposure device and can maintain good adhesion of the reticle, so it is especially suitable for cases where flatness is difficult to maintain, such as with flexible circuit boards. However, there is a serious problem in that the substrate slides on the reticle and is prone to scratches.
一方、後者はレチクルが基板から離れた位置にあるので
擦傷発生の恐れはないが、露光装置が複雑化すると共に
、フレキシブル基板のように平面性の保持が困難な場合
には、レチクルと基板との距離を所定の値に保つことが
難かしく、この距離変動によって基板上に投影される像
の大きさが異なるという問題点があった。On the other hand, with the latter, there is no risk of scratches because the reticle is located far away from the substrate, but the exposure equipment becomes more complex, and when it is difficult to maintain flatness such as with a flexible substrate, the reticle and substrate may There is a problem in that it is difficult to maintain the distance at a predetermined value, and the size of the image projected onto the substrate varies due to variations in this distance.
そのため、平面性の保持がそれ程困難でないごく小形の
もの以外には利用されておらず、特に両面プリント基板
のように、基板に位置が僅かでもずれると表裏両面の像
の大きさの誤差が倍加する場合には適用することができ
なかった。For this reason, it is not used for anything other than very small devices for which maintaining flatness is not so difficult, especially in double-sided printed circuit boards, where even a slight deviation in the position of the board doubles the error in the size of the images on both the front and back sides. It could not be applied in such cases.
また、投影による両面露光の場合、フレキシブル基板を
片面霧光時と同様に水平方向に給送し、−上下方向から
レチクルを投影しようとすると、投影用の光源である水
銀灯を水平に置いて反射鏡により上下方向に光路を変換
するか、または上下逆方向に置いて直接投光することに
なる。In addition, in the case of double-sided exposure by projection, the flexible substrate is fed horizontally as in the case of single-sided fog light, and if you try to project the reticle from above and below, the mercury lamp, which is the light source for projection, is placed horizontally and the light is reflected. The optical path can be changed vertically using a mirror, or the beam can be placed upside down and emitted directly.
ところが、元来水銀灯には配光特性に方向性があると共
に、その設置条件も垂直の上向きに限られているので、
上下方向の配置はどの方法も好ましくないという問題点
があった。However, mercury lamps originally have directional light distribution characteristics, and their installation conditions are limited to vertical upward orientation.
There is a problem in that none of the methods of vertical arrangement is preferable.
この発明は、このような従来の問題点を解決し得るフレ
キシブル基板の両面露光方法を提供することを目的とす
る。An object of the present invention is to provide a double-sided exposure method for a flexible substrate that can solve these conventional problems.
そのため、この発明によるフレキシブル基板の両面露光
方法は、フレキシブル基板を上下方向に給送し、その両
側から像面側がテレセントリックな投影光学系により配
線パターンを形成したレチクルを投影して露光する。Therefore, in the double-sided exposure method for a flexible substrate according to the present invention, the flexible substrate is fed in the vertical direction, and a reticle on which a wiring pattern is formed is projected from both sides of the flexible substrate using a projection optical system that is telecentric on the image plane side for exposure.
このような方法により、フレキシブル基板の投光源であ
る水銀灯をいずれも垂直の正方向に配することができ、
反射鏡で光路を変えるだけで基板両面を同等に露出する
ことができる。With this method, the mercury lamps, which are the light sources for the flexible substrate, can be placed in the vertical direction.
By simply changing the optical path using a reflector, both sides of the board can be exposed equally.
=3−
さらに、像面側がテレセントリックな光学系を設けるこ
とにより、フレキシブル基板の位置が僅かにずれても、
両面の投影像を常に所定の位置及び大きさに保つことが
可能となる。=3- Furthermore, by providing an optical system that is telecentric on the image plane side, even if the position of the flexible substrate shifts slightly,
It becomes possible to always maintain the projected images on both sides at a predetermined position and size.
以下、添付図面を参照してこの発明の詳細な説明するが
、まず最初にこの発明の原理を第2図及び第3図を参照
して説明する。The present invention will be described in detail below with reference to the accompanying drawings, but first the principle of the invention will be explained with reference to FIGS. 2 and 3.
第2図は従来の投影光学系による光路図であり、複数の
レンズからなる非テレセントリックな通常の投影光学系
1によりレチクル2をフレキシブル基板(以下「基板J
という)3−ヒに投影する場合を示しており、Elは入
射光線の光束を制限する入射瞳、A1は射出光線の光束
を制限する射出瞳である。FIG. 2 is an optical path diagram using a conventional projection optical system.
In this case, El is an entrance pupil that limits the luminous flux of the incident light ray, and A1 is an exit pupil that limits the luminous flux of the exiting ray.
いま、基板3が投影光学系1の結像面にあるときにはレ
チクル2の像の大きてはQoであるが、基板3がレチク
ル1に距離dだけ近付いて基板3aの位置になると像の
大きさはQl、距離dだけ離れて基板3bの位置になる
とQ2になり、焦4一
点がずれると共に像の大きさが異なる。Now, when the substrate 3 is on the imaging plane of the projection optical system 1, the size of the image of the reticle 2 is Qo, but when the substrate 3 approaches the reticle 1 by a distance d and reaches the position of the substrate 3a, the image size becomes Qo. is Ql, and when it is at the position of the substrate 3b separated by a distance d, it becomes Q2, and the focal point 4 is shifted and the size of the image is different.
これを基板乙の両側対称位置に投影光学系を有する場合
に当てはめて考えると、一方の投影光学系に距離dだけ
近付いた基板3は、他方の投影光学系からは距離dだけ
離れることになるので、基板面が光軸方向に距離dだけ
移動すると、基板乙の両面に投影される同大のレチクル
2の像の大きさの差はQ2−u、になる。Applying this to the case where the projection optical systems are located symmetrically on both sides of the substrate 3, the substrate 3 that approaches one projection optical system by a distance d will be separated from the other projection optical system by a distance d. Therefore, when the substrate surface moves by a distance d in the optical axis direction, the difference in size between the images of the reticle 2 of the same size projected on both sides of the substrate B becomes Q2-u.
一方、第3図に示す像面側がテレセントリックな投影光
学系では、入射瞳の位置が無限遠に、射出瞳A2の位置
が後側焦点の位置に一致するので、レチクル2を見る眼
を無限遠においた平行透視の状態となる。On the other hand, in the projection optical system in which the image plane side is telecentric as shown in FIG. It becomes a state of parallel perspective.
入射瞳位置を無限遠に移すには、投影レンズ群の前方に
レンズを設けて瞳位置に焦点がくるようにする方法が一
般的であるが、そのほかにも諸種の方法が考えられる。To move the entrance pupil position to infinity, a common method is to provide a lens in front of the projection lens group so that the focus is at the pupil position, but various other methods can be considered.
このような像面側がテレセントリックな投影光学系によ
れば、基板3の位置が焦点位置から距離dだけ前後して
基板3a、’)bの位置となっても、焦点は僅かに外れ
るがその像の大きさは焦点位置の像の大きさQ。と同等
に保たれる。According to such a projection optical system in which the image plane side is telecentric, even if the position of the substrate 3 moves back and forth by a distance d from the focal position to the position of the substrates 3a,')b, the image will be slightly out of focus. The size of is the size Q of the image at the focal position. is kept equal to.
すなわち、基板3の両側に像面側がテレセントリックか
投影光学系を設けた場合には、基板3の位置が光軸方向
に距離dだけ移動しても、投影される同大のレチクル2
の像の大きさは不変である。In other words, if projection optical systems with telecentric image plane sides are provided on both sides of the substrate 3, even if the position of the substrate 3 moves by a distance d in the optical axis direction, the reticle 2 of the same size will be projected.
The size of the image remains unchanged.
次に、この原理を利用したこの発明の実施例を第1図に
示す。図において、絶縁性帯状基材の両面に導電体層と
それを覆う感光性レジスト層を形成したフレキシブル基
板3を供給軸4と巻取軸5の間に張装してローラ4a、
5aによって上下方向に給送し、これを挾んで左右対称
位置に設けた像面側がテレセントリックな投影光学系1
a。Next, an embodiment of the present invention utilizing this principle is shown in FIG. In the figure, a flexible substrate 3 having a conductive layer and a photosensitive resist layer covering it formed on both sides of an insulating strip base material is stretched between a supply shaft 4 and a take-up shaft 5, and a roller 4a,
5a, and a projection optical system 1 whose image plane side is telecentric, which is placed in a symmetrical position sandwiching the projection optical system 1.
a.
1bの結像面に導く。1b to the imaging plane.
各投影光学系la、lbの基板6と反対側には、配線パ
ターンを形成したレチクル2a、 2bを配設し、レチ
クル2a、2bを垂直−h向きに設けた一対の水銀灯か
らなる光源f3 a 、 (3hから発して反射鏡7a
、7bによって水平に方向転換した後、インテグレータ
8a、 8bを通りコンデンサレンズ9a、9hによっ
て光軸Cに用行に入射する全面均等な光線によって照射
する。On the side opposite to the substrate 6 of each projection optical system la, lb, reticles 2a, 2b on which a wiring pattern is formed are arranged, and a light source f3a consisting of a pair of mercury lamps with the reticles 2a, 2b oriented vertically -h. , (Emitted from 3h and reflecting mirror 7a
, 7b, the entire surface is irradiated with an even beam of light that passes through integrators 8a, 8b and enters the optical axis C through condenser lenses 9a, 9h.
それによって、各レチクル2a、2bの配線パターンを
像面側がテレセントリックな投影光学系la、lhによ
って基板乙の両面の感光性レジスト層に投影して露光す
る。Thereby, the wiring patterns of each reticle 2a, 2b are projected and exposed onto the photosensitive resist layers on both sides of the substrate B by the projection optical systems la and lh whose image plane side is telecentric.
この実施例によれば、投影光学系1a、lbが共に像面
側がテレセントリツな光学系であるので、基板乙の面が
光軸Cの方向に移動してもレチクル2a、2bの像の大
きさは不変である。According to this embodiment, since the projection optical systems 1a and lb are both optical systems that are telecentric on the image plane side, even if the surface of the substrate B moves in the direction of the optical axis C, the size of the images of the reticles 2a and 2b remains unchanged. remains unchanged.
また、基板3の移動により、投影像の解像度は僅かに劣
化するはずであるが、テレセン1−リンク光学系はもと
もと口径比が小さく、叶つ基板6の平面移動量も大きく
ないので、投影像の解像度低下は全く無視し得る程度に
留まる。Furthermore, the resolution of the projected image should be slightly degraded due to the movement of the substrate 3, but since the aperture ratio of the telecenter 1-link optical system is originally small and the amount of plane movement of the substrate 6 is not large, the projected image The reduction in resolution remains to a completely negligible extent.
また、基板乙の両面に投影される投影像の相対位置の整
合度補正はレチクル2a、 2bの位置を微細に調整す
ることにより行うが、レチクルの微動により投影像の大
きさが変化しないので、その調整は極めて容易である。In addition, the consistency of the relative positions of the projected images projected on both sides of the substrate B is corrected by finely adjusting the positions of the reticles 2a and 2b, but since the size of the projected images does not change due to slight movement of the reticles, Adjustment is extremely easy.
なお、この発明に用いられる像面側がテレセントリック
な投影光学系は、基板乙の移動量が小さいので、必ずし
も完全にテレセントリックである必要はなく、これに近
いものであれば差支えない。Note that the projection optical system that is telecentric on the image plane side used in the present invention does not necessarily have to be completely telecentric because the amount of movement of the substrate B is small, and may be anything close to this.
以上述べたように、この発明によるフレキシブル基板の
両面露光方法は、フレキシブル基板を上下方向に給送す
るようしたので、光源である水銀灯を正規の使用状態で
基板両側の対称位置に方向性を等しくして配することが
でき、水銀灯の性能を最大に発揮し得ると共に基板両面
への投影光線の強度を等しくすることが可能となり、露
光量差のため投影像の大きさが表裏不同になるという不
具合も皆無となる。As described above, in the double-sided exposure method for a flexible substrate according to the present invention, the flexible substrate is fed in the vertical direction, so that the mercury lamp, which is the light source, is placed at symmetrical positions on both sides of the substrate with equal directionality under normal usage conditions. This makes it possible to maximize the performance of the mercury lamp and equalize the intensity of the projected light beam on both sides of the substrate, which eliminates the difference in the size of the projected image on both sides due to the difference in exposure amount. There will be no problems at all.
また、基板には両側から像面側がテレセントリックな投
影光学系によりレチクルの像を投影するので、柔軟性の
あるフレキシブル基板の位置が光軸方向に若干移動して
も投影像の位置や大きさには誤差を生ずることなく、基
板両面の配線パターン投影像の高精度な整合が可能にな
る。In addition, since the reticle image is projected onto the substrate from both sides by a projection optical system that is telecentric on the image plane side, even if the position of the flexible substrate moves slightly in the optical axis direction, the position and size of the projected image will not change. This makes it possible to align the wiring pattern projection images on both sides of the board with high precision without causing any errors.
4、図面のn1ltか説明
第1図はこの発明の一実施例を示す光路図、第2図は従
来のプリント基板投影露光法の原理をを示す光路図、
第3図はこの発明によるプリント基板投影露光法の原理
を示す光路図である。4. Description of the drawings Figure 1 is an optical path diagram showing an embodiment of the present invention, Figure 2 is an optical path diagram showing the principle of the conventional printed circuit board projection exposure method, and Figure 3 is a printed circuit board according to the present invention. FIG. 2 is an optical path diagram showing the principle of projection exposure method.
la、1b・・・像面側がテレセントリックな投影光学
系la, 1b...projection optical system telecentric on the image plane side
Claims (1)
性レジスト層を形成したフレキシブル基板を上下方向に
給送し、該フレキシブル基板を挾んで両側から、それぞ
れ像面側がテレセントリックな投影光学系により配線パ
ターンを形成したレチクルを投影して露光することを特
徴とするフレキシブル基板の両面露光方法。1. A flexible substrate in which a conductive layer and a photosensitive resist layer covering it are formed on both sides of an insulating strip base material is fed in the vertical direction, and the flexible substrate is sandwiched and projected from both sides using projection optics whose image plane side is telecentric. A double-sided exposure method for a flexible substrate, characterized in that a reticle on which a wiring pattern is formed by a system is projected and exposed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61136094A JPS62293248A (en) | 1986-06-13 | 1986-06-13 | Method for exposing both-face of flexible substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61136094A JPS62293248A (en) | 1986-06-13 | 1986-06-13 | Method for exposing both-face of flexible substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62293248A true JPS62293248A (en) | 1987-12-19 |
Family
ID=15167120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61136094A Pending JPS62293248A (en) | 1986-06-13 | 1986-06-13 | Method for exposing both-face of flexible substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62293248A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02141760A (en) * | 1988-11-24 | 1990-05-31 | Ushio Inc | film exposure equipment |
JP2007314347A (en) * | 2006-04-27 | 2007-12-06 | Orc Mfg Co Ltd | Conveying device |
US8023105B2 (en) | 2007-11-19 | 2011-09-20 | Orc Manufacturing Co., Ltd. | Compact projection exposure device and associated exposure process performed by the device for exposing film-shaped tape to form circuit patterns |
CN107450276A (en) * | 2016-06-01 | 2017-12-08 | 株式会社Orc制作所 | Exposure device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60168147A (en) * | 1984-02-10 | 1985-08-31 | Oak Seisakusho:Kk | Exposing device |
-
1986
- 1986-06-13 JP JP61136094A patent/JPS62293248A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60168147A (en) * | 1984-02-10 | 1985-08-31 | Oak Seisakusho:Kk | Exposing device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02141760A (en) * | 1988-11-24 | 1990-05-31 | Ushio Inc | film exposure equipment |
JP2007314347A (en) * | 2006-04-27 | 2007-12-06 | Orc Mfg Co Ltd | Conveying device |
US8023105B2 (en) | 2007-11-19 | 2011-09-20 | Orc Manufacturing Co., Ltd. | Compact projection exposure device and associated exposure process performed by the device for exposing film-shaped tape to form circuit patterns |
CN107450276A (en) * | 2016-06-01 | 2017-12-08 | 株式会社Orc制作所 | Exposure device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8994916B2 (en) | Double-sided maskless exposure system and method | |
US5715037A (en) | Scanning exposure apparatus | |
KR102333949B1 (en) | Lithography apparatus | |
JPS6045252A (en) | Illuminating system of projecting and exposing device | |
US6927854B2 (en) | Projection exposure device and position alignment device and position alignment method | |
JPS62293248A (en) | Method for exposing both-face of flexible substrate | |
KR100371729B1 (en) | Method of manufacturing a device, by irradiating some parts of the surface of the device directly through a mask, and other parts indirectly through the mask and via a reflecting surface, thereby producing a pattern | |
US20080197294A1 (en) | Manufacturing method of circuit board | |
JP7353894B2 (en) | Light source device, illumination device, exposure device, and method for manufacturing articles | |
JP2013247304A (en) | Substrate holding device, exposure device and device manufacturing method | |
JPH07147218A (en) | Three-dimensional image formation system and method | |
JPS62122126A (en) | Exposure method | |
JP2759890B2 (en) | Exposure equipment | |
JP2000267294A (en) | Aligner | |
KR960015093A (en) | Exposure Method, Manufacturing Method of Exposure Device and Semiconductor Integrated Circuit Device | |
JP2593823B2 (en) | Exposure method for printed circuit board production | |
JP2593824B2 (en) | Exposure method and apparatus for manufacturing printed circuit boards | |
JP2593822B2 (en) | Exposure equipment | |
JPS636540A (en) | Integrator | |
JP2555970Y2 (en) | Imaging monitor for projection type exposure machine | |
US6741333B2 (en) | Multiple image photolithography system and method | |
KR100263325B1 (en) | Exposure method using a virtual optical axis | |
JPS6329930A (en) | Reduction stepper | |
US5973767A (en) | Off-axis illuminator lens mask for photolithographic projection system | |
JP2588860B2 (en) | Exposure method for printed circuit board production |