JPS62291978A - Semiconductor photodetector - Google Patents
Semiconductor photodetectorInfo
- Publication number
- JPS62291978A JPS62291978A JP61134905A JP13490586A JPS62291978A JP S62291978 A JPS62291978 A JP S62291978A JP 61134905 A JP61134905 A JP 61134905A JP 13490586 A JP13490586 A JP 13490586A JP S62291978 A JPS62291978 A JP S62291978A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- light
- semiconductor region
- amorphous semiconductor
- photodiode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 45
- 239000000758 substrate Substances 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/223—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PIN barrier
- H10F30/2235—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PIN barrier the devices comprising Group IV amorphous materials
Landscapes
- Light Receiving Elements (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔産業上の利用分野〕
本発明は半導体受光装置に係シ、特に可視光を吸収し、
近赤外光を透過させる半導体受光装置に関する。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor light receiving device, in particular, a device that absorbs visible light,
The present invention relates to a semiconductor light receiving device that transmits near-infrared light.
従来、1つの光束から可視光強度と近赤外光強度とを測
定するには、次のような2つの方法がありた・
すなわち、光束をハーフミラ−等の光分割部材によって
分割し、それぞれの波長領域において感度の高い可視光
センサ及び近赤外光センナに分割し九光束を導くことに
よシ測定する方法、″または、受光センサとして単結晶
シリコンフォトダイオード等の分光感度分布が可視領域
から近赤外領域まで広がっている受光センサを用い、こ
の受光センサの前に、可視光測定の場合は近赤外光カッ
トフィルターを、近赤外光測定の場合は可視光カットフ
ィルターを設けることによシ測定する方法である。Conventionally, there have been two methods for measuring visible light intensity and near-infrared light intensity from one light beam. In other words, the light beam is divided by a light splitting member such as a half mirror, and each A method of measuring by dividing into a visible light sensor and a near-infrared light sensor that are highly sensitive in the wavelength range and guiding nine light beams, or a method in which the spectral sensitivity distribution of a single-crystal silicon photodiode, etc. is used as a light receiving sensor in the visible range A light receiving sensor that extends into the near-infrared region is used, and in front of this light receiving sensor, a near-infrared cut filter is installed for visible light measurement, and a visible light cut filter is installed for near-infrared light measurement. This is a good way to measure it.
しかしながら、上記従来の方法においては、前者の方法
では可視光センサと近赤外光センサの池に光分割部材を
必要とし、後者の方法では受光センサの前に光学フィル
ターを設ける必要がちυ、また可視光強度と近赤外光強
度を同時に測定することができないという問題点を有し
ていた。However, in the above conventional methods, the former method requires a light splitting member between the visible light sensor and the near-infrared light sensor, and the latter method requires an optical filter to be provided in front of the light receiving sensor. This method had a problem in that visible light intensity and near-infrared light intensity could not be measured simultaneously.
本発明は上記問題点に鑑み、可視光を吸収し、近赤外光
を透過させる可視光センナを提供することによシ、光学
部品数を削減し、コンパクトな光学装置を提供すること
を目的とする・
〔問題点を解決するための手段〕
上記の問題点は、透明基体上に形成された第1の透明電
極と、この第1の透明電極上に形成された、−導電型の
第1の非晶質半導体領域と、この第1の非晶質半導体領
域上に形成された第2の非晶質半導体領域と、この第2
の非晶質半導体領域上に形成された前記第1の非晶質半
導体領域と反対導電型の第3の非晶質半導体領域と、こ
の第3の非晶質半導体領域上に形成された第2の透明電
極とを有する本発明の半導体受光装置によって解決され
る。In view of the above problems, an object of the present invention is to provide a visible light sensor that absorbs visible light and transmits near-infrared light, thereby reducing the number of optical components and providing a compact optical device. [Means for solving the problem] The above problem consists of a first transparent electrode formed on a transparent substrate, and a - conductivity type second electrode formed on the first transparent electrode. a first amorphous semiconductor region, a second amorphous semiconductor region formed on the first amorphous semiconductor region, and a second amorphous semiconductor region formed on the first amorphous semiconductor region;
a third amorphous semiconductor region of opposite conductivity type to the first amorphous semiconductor region formed on the amorphous semiconductor region; and a third amorphous semiconductor region formed on the third amorphous semiconductor region. This problem is solved by the semiconductor light receiving device of the present invention having two transparent electrodes.
本発明の半導体受光装置は、透明基体上に透明電極を形
成し、この透明電愼に形成可能な非晶質半導体を用いて
pin型のフォトダイオードを前記透明1!!、夕上に
形成し、さらにこのフォトダイオード上に透明電極を形
成してなり、入射光を一方の透明電極を通して前記フォ
ト、ダイオードに照射し、このフォトダイオードにより
入射光の可視領域を吸収し、近赤外領域の入射光を透過
さぞ、この近赤外光を他方の透明電極から透過させるも
のである。In the semiconductor light receiving device of the present invention, a transparent electrode is formed on a transparent substrate, and a pin type photodiode is formed using an amorphous semiconductor that can be formed on the transparent electrode. ! , formed in the evening sky, further forming a transparent electrode on this photodiode, irradiating the incident light to the photodiode through one of the transparent electrodes, and absorbing the visible region of the incident light by this photodiode, When incident light in the near-infrared region is transmitted, this near-infrared light is transmitted through the other transparent electrode.
以下、本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図は本発明の半導体受光装置の一構成例を示す縦断
面図である。FIG. 1 is a longitudinal sectional view showing an example of the configuration of a semiconductor light receiving device of the present invention.
第1図において、1は透明基体たるガラス等の透明基板
であ#)2は透明基板1上に形成された透明電極であり
、ITOt 5n02等である。3は透明電極2上に形
成されたp型非晶質領域たるp型非晶質層(以下p層と
記す)で、B等の2m不純物を添加した水素化アモルフ
ァスシリコン(以下a−8t:Hと記す)、水素化アモ
ルフガスシリコンカーバイド、7ツ累系アモルファスシ
リコン(以下a−8I :H:Fと記す) p 7 、
素糸アモルファスシリコンカーバイド等である。4は2
層3上に形成された非晶質領域たる非晶質層(以下1層
と記す)で、真性半導体特性を示すa−8t:H、a−
81:H:F 、不純物を添加しないa−81:H、a
−8t:H:F、 40 ppm以下のB等のp型不純
物を添加したa−81:H、a−8l:H:F等である
。なお通常a −8i :H、a−8i :H:F l
d P fin不純物を添加しない場合は弱いn型半導
体特性を示し、必要に応じてp型不純物を添加して真性
半導体に近づける。In FIG. 1, 1 is a transparent substrate such as glass, which is a transparent substrate; 2 is a transparent electrode formed on the transparent substrate 1, and is made of ITOt 5n02 or the like. 3 is a p-type amorphous layer (hereinafter referred to as p layer) which is a p-type amorphous region formed on the transparent electrode 2, and is made of hydrogenated amorphous silicon doped with 2m impurities such as B (hereinafter referred to as a-8t: H), hydrogenated amorphous gas silicon carbide, heptad system amorphous silicon (hereinafter referred to as a-8I:H:F) p 7,
Such as amorphous silicon carbide. 4 is 2
The amorphous layer (hereinafter referred to as 1 layer), which is an amorphous region formed on layer 3, exhibits intrinsic semiconductor characteristics, a-8t:H, a-
81:H:F, a-81:H, a without adding impurities
-8t:H:F, a-81:H, a-8l:H:F, etc. to which a p-type impurity such as B of 40 ppm or less is added. Note that usually a-8i:H, a-8i:H:F l
When no dP fin impurity is added, it exhibits weak n-type semiconductor characteristics, and if necessary, p-type impurities are added to make it closer to an intrinsic semiconductor.
なお40 ppmを超えた場合はp型半導体特性を示す
ようになる。5は1層4上に形成されたn型非晶質領域
たるh型非晶質層(以下n層と記す)で、P等のn型不
純物を添加したa−8i :H+ a−8i :H:F
、あるいはH,F等を含まない非晶質シリコン等である
。6は1層5上に形成された透明’c極で、 ITO。Note that if it exceeds 40 ppm, it will exhibit p-type semiconductor characteristics. 5 is an h-type amorphous layer (hereinafter referred to as n-layer) which is an n-type amorphous region formed on layer 4, and is doped with an n-type impurity such as P: a-8i:H+ a-8i: H:F
, or amorphous silicon that does not contain H, F, or the like. 6 is a transparent 'c' electrode formed on one layer 5 of ITO.
S n 02等である。Sn02 etc.
以下上記本発明の半導体受光装置の実施例について祝明
する。Hereinafter, the embodiments of the semiconductor light receiving device of the present invention will be congratulated.
透明基板1としてガラス基板を用い、このガラス基板上
にITOを100OXの厚さに形成しその上にSnO□
を200Xの厚さに形成し、透明電極2を設けた。さら
に透明電極2上にBを添加したp型半導体特性を示す2
00Xの厚さのa−81:H層の2層3を設け、この2
層3上に不純物を添加しない6000芙の厚さのa−8
l:H層の1層4を設け、この1層4上に、Pを添加し
たn型半導体特性を示す500Xの厚さのa−8i:H
層のn層5を設けた。さらに、1層5上に1000Xの
厚さのITOの透明電極6を設けた。A glass substrate is used as the transparent substrate 1. ITO is formed on this glass substrate to a thickness of 100OX, and SnO□
was formed to have a thickness of 200X, and a transparent electrode 2 was provided. Furthermore, 2 exhibiting p-type semiconductor characteristics with B added on the transparent electrode 2
Provide two layers 3 of a-81:H layer with a thickness of 00X, and
6000mm thick a-8 without doping on layer 3
One layer 4 of l:H layer is provided, and on this one layer 4, a-8i:H with a thickness of 500X exhibiting n-type semiconductor characteristics with P added.
An n-layer 5 of layers was provided. Furthermore, a transparent electrode 6 of ITO with a thickness of 1000× was provided on the layer 5.
前記p層3.i層4.n層5はプラズマcyp法によシ
、また前記透明電極2,6はスパッタ法により堆積させ
た。Said p layer 3. i-layer 4. The n-layer 5 was deposited by the plasma cyp method, and the transparent electrodes 2 and 6 were deposited by the sputtering method.
2層3,1層4.n層5はpin型のフォトダイオード
を構成し、透明基板1側から光を入射した場合、次のよ
うな特性を示す。2 layers 3, 1 layer 4. The n-layer 5 constitutes a pin-type photodiode, and when light is incident from the transparent substrate 1 side, it exhibits the following characteristics.
第2図は上記フォトダイオードの電圧−電流特性を示す
特性図である。FIG. 2 is a characteristic diagram showing the voltage-current characteristics of the photodiode.
第2図において、7は光を入射しない場合の袴性、8は
緑色光を照射(1001[IX)l、た場合の特性図で
おり、良好なフォトダイオードの特性を示す。In FIG. 2, 7 is a characteristic diagram when no light is incident, and 8 is a characteristic diagram when green light is irradiated (1001[IX)l], showing good photodiode characteristics.
第3図は上記フォトダイオードの分光、多度特性を示す
特性図である。FIG. 3 is a characteristic diagram showing the spectral and multiplicity characteristics of the photodiode.
第3図に示すように1本実施例のフォトダイオードは比
視窓曲線に近く、良好な可視光センサであることを示し
ている。As shown in FIG. 3, the photodiode of this example is close to the ratio window curve, indicating that it is a good visible light sensor.
第4図は上記フォトダイオードの分光透過率を示す特性
図である。FIG. 4 is a characteristic diagram showing the spectral transmittance of the photodiode.
第4図に示したように、a−8i:Hのバンドギャップ
のエネルギーより大きいエネルギーを持つ可視領域の光
はほとんど透過せず、本実施例のフォトダイオードは良
好な可視カットフィルターとなっていることがわかる。As shown in Figure 4, almost no light in the visible region with energy greater than the energy of the a-8i:H bandgap is transmitted, and the photodiode of this example serves as a good visible cut filter. I understand that.
赤外領域では多重干渉による、透過率の変動が見られ、
透過しにくい波長があるが、逆にこれを利用し、各非晶
質半導体層の層厚を変えることによって特定波長の透過
率の制御が可能である。In the infrared region, fluctuations in transmittance due to multiple interference can be seen.
Although there are wavelengths that are difficult to transmit, it is possible to use this to control the transmittance of specific wavelengths by changing the layer thickness of each amorphous semiconductor layer.
上記実施例において各非晶質半導体層の層厚はフォトダ
イオードの光!、%性及び可視光カットフィルターとし
ての吸光特性の許容範囲内で任意に設定してよい。さら
に、第1図においては2層3゜1層4.a層5の順に積
層させたが、n層5と2層3とを入れかえて積層させて
も良い。また入射光は透明電極6側から照射させても良
い。In the above embodiment, the thickness of each amorphous semiconductor layer is equal to the light of the photodiode! , and may be arbitrarily set within the permissible range of the absorption characteristics as a visible light cut filter. Furthermore, in FIG. 1, 2 layers 3 degrees, 1 layer 4 degrees. Although the a-layer 5 is laminated in this order, the n-layer 5 and the two-layer 3 may be alternately laminated. Further, the incident light may be irradiated from the transparent electrode 6 side.
次に本発明の半導体受光装置の応用例を示す。Next, an application example of the semiconductor light receiving device of the present invention will be shown.
第5図は本発明の半導体受光装置を用いたカメラの測距
光学系と測光光学系を説明する概略図である。FIG. 5 is a schematic diagram illustrating a distance measuring optical system and a photometric optical system of a camera using the semiconductor light receiving device of the present invention.
第5図において、カメラボディ9の内部に設けられたI
JD 10から放出される近赤外光、例えば860 a
mの近赤外光t、Fi投光光学系11を通して、被写体
12に照射される。被写体12によって反射された近赤
外光t1は受光光学系13及び本発明の半導体受光装置
である可視光力、トフィルターの機能を有するフォトダ
イオード14を透過し、測距用センサ15に入射する。In FIG. 5, an I provided inside the camera body 9
Near-infrared light emitted from JD 10, e.g. 860 a
The near-infrared light t of m is irradiated onto the subject 12 through the Fi projection optical system 11 . The near-infrared light t1 reflected by the subject 12 passes through the light-receiving optical system 13 and the photodiode 14, which is a semiconductor light-receiving device of the present invention, and has a visible light filter function, and enters the ranging sensor 15. .
被写体12とカメラブディ9との間の距離は、LED
10と投光光学系11の一方又は両方を動かして、近赤
外光t1の出射角を変えて、前記測距用センサ15に近
赤外光t、が入射する時の出射角を求めることによって
計測される。The distance between the subject 12 and the camera body 9 is determined by the LED
10 and the projection optical system 11 to change the emission angle of the near-infrared light t1, and find the emission angle when the near-infrared light t is incident on the distance measuring sensor 15. It is measured by
一方被写体12から反射される可視光t2は受光光学系
13を通ってフォトダイオード14に照射され、測光が
行われ、露光量制御に必要な情報が得られる。On the other hand, visible light t2 reflected from the subject 12 passes through the light receiving optical system 13 and is irradiated onto the photodiode 14, where photometry is performed and information necessary for controlling the exposure amount is obtained.
測距信号のノイズともなる可視光t2はフォトダイオー
ド14で吸収され、測距用センサ15には入射しない。The visible light t2, which also becomes noise in the ranging signal, is absorbed by the photodiode 14 and does not enter the ranging sensor 15.
すなわち本発明の半導体受光装置を用いれば、測距用セ
ンサと測光センサたる7オトダイオードとを受光光学系
の光軸上に並設することができ、光分割部材等の光学部
品を必要とせず、またコンパクトに光学装置を設計する
ことができる。That is, by using the semiconductor light receiving device of the present invention, the distance measuring sensor and the seven photodiodes serving as the photometric sensor can be arranged side by side on the optical axis of the light receiving optical system, without the need for optical components such as a light splitting member. Moreover, the optical device can be designed compactly.
以上、詳細に説明したように、本発明の半導体受光装置
によれば、透明基体上に透明電極を形成し、この透明電
極上に非晶質半導体領域を形成してフォトダイオードを
構成し、かつこのフォトダイオード上に透明1砥を形成
したことにより、可視光カットフィルターの機能を肩す
る可視光センサを提供することができる。本発明は、可
視光強度と近赤外光強度を同時に測定する光学装置に好
適に用いられる。As described in detail above, according to the semiconductor light receiving device of the present invention, a transparent electrode is formed on a transparent substrate, an amorphous semiconductor region is formed on this transparent electrode to constitute a photodiode, and By forming a transparent layer on this photodiode, it is possible to provide a visible light sensor that functions as a visible light cut filter. INDUSTRIAL APPLICATION This invention is suitably used for the optical device which measures visible light intensity and near-infrared light intensity simultaneously.
第1図は本発明の半導体受光装置の一構成例を示す縦断
面図である。
第2図はフォトダイオードの電圧−電流特性を示す特性
図である。
第3図は上記フォトダイオードの分光感度特性を示す特
性図である。
第4図は上記フォトダイオードの分光透過率を示す特性
図である。
第5図は本発明の半導体受光装置を用いたカメラの測距
光学系と測光光学系を説明する概略図である。
1・・・透明基板、2.6・・・透明電極、3・・・p
型非晶質層、4・・・非晶質層、5・・・n型非晶質層
。
代理人 弁理士 山 下 穣 平
第3図
ン力(表(nmン
第4図
第5図FIG. 1 is a longitudinal sectional view showing an example of the configuration of a semiconductor light receiving device of the present invention. FIG. 2 is a characteristic diagram showing voltage-current characteristics of a photodiode. FIG. 3 is a characteristic diagram showing the spectral sensitivity characteristics of the photodiode. FIG. 4 is a characteristic diagram showing the spectral transmittance of the photodiode. FIG. 5 is a schematic diagram illustrating a distance measuring optical system and a photometric optical system of a camera using the semiconductor light receiving device of the present invention. 1...Transparent substrate, 2.6...Transparent electrode, 3...p
type amorphous layer, 4... amorphous layer, 5... n-type amorphous layer. Agent Patent Attorney Minoru Yamashita
Claims (1)
の透明電極上に形成された一導電型の第1の非晶質半導
体領域と、この第1の非晶質半導体領域上に形成された
第2の非晶質半導体領域と、この第2の非晶質半導体領
域上に形成され、前記第1の非晶質半導体領域と反対導
電型の第3の非晶質半導体領域と、この第3の非晶質半
導体領域上に形成された第2の透明電極とを有する半導
体受光装置。a first transparent electrode formed on a transparent substrate;
a first amorphous semiconductor region of one conductivity type formed on a transparent electrode, a second amorphous semiconductor region formed on this first amorphous semiconductor region, and a second amorphous semiconductor region formed on this first amorphous semiconductor region; a third amorphous semiconductor region formed on the amorphous semiconductor region and having a conductivity type opposite to that of the first amorphous semiconductor region; and a second amorphous semiconductor region formed on the third amorphous semiconductor region. A semiconductor light receiving device having a transparent electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61134905A JPS62291978A (en) | 1986-06-12 | 1986-06-12 | Semiconductor photodetector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61134905A JPS62291978A (en) | 1986-06-12 | 1986-06-12 | Semiconductor photodetector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62291978A true JPS62291978A (en) | 1987-12-18 |
Family
ID=15139268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61134905A Pending JPS62291978A (en) | 1986-06-12 | 1986-06-12 | Semiconductor photodetector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62291978A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08306709A (en) * | 1996-02-13 | 1996-11-22 | Matsushita Electric Ind Co Ltd | High frequency semiconductor device |
CN101997054A (en) * | 2009-08-24 | 2011-03-30 | 夏普株式会社 | Semiconductor photodetector element and semiconductor device |
-
1986
- 1986-06-12 JP JP61134905A patent/JPS62291978A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08306709A (en) * | 1996-02-13 | 1996-11-22 | Matsushita Electric Ind Co Ltd | High frequency semiconductor device |
CN101997054A (en) * | 2009-08-24 | 2011-03-30 | 夏普株式会社 | Semiconductor photodetector element and semiconductor device |
JP2011071484A (en) * | 2009-08-24 | 2011-04-07 | Sharp Corp | Semiconductor light detecting element and semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8975645B2 (en) | Optical filter | |
US6655675B2 (en) | X-ray detector offering an improved light yield | |
CN217822825U (en) | SPAD sensor | |
WO2022062696A1 (en) | Ray detector substrate and ray detector | |
CN109524486B (en) | Electric reading optical sensor | |
JPS62291978A (en) | Semiconductor photodetector | |
JPS6173033A (en) | color photosensitive device | |
WO1989003593A1 (en) | Low noise photodetection and photodetector therefor | |
CN213601884U (en) | Photoelectric detector with wavelength selective response | |
JPH0738138A (en) | Ultraviolet sensor | |
JPH0534463A (en) | X-ray image sensor | |
JPS6193678A (en) | Photoelectric conversion device | |
JP2003057111A (en) | Flame sensor | |
JPH03202732A (en) | Color sensor | |
TWI802032B (en) | Photodiode | |
DE4017201A1 (en) | Transparent photoelectric light detector - has partial absorption of light by thin sensitive layer, and substantial transmission | |
JPH03268369A (en) | Color sensor | |
JPH03284883A (en) | Photodetector | |
JPS58125867A (en) | color sensor | |
KR100275863B1 (en) | Structure of filter for infrared sensor | |
JPH0294670A (en) | Photosensor | |
CN115706176A (en) | Photodetector, device, and storage medium | |
JPH04196491A (en) | Photosensor | |
JPS62184423A (en) | Distance measuring device | |
JPS594184A (en) | Color detecting system |