[go: up one dir, main page]

JPS62290873A - Laser cvd apparatus - Google Patents

Laser cvd apparatus

Info

Publication number
JPS62290873A
JPS62290873A JP13514386A JP13514386A JPS62290873A JP S62290873 A JPS62290873 A JP S62290873A JP 13514386 A JP13514386 A JP 13514386A JP 13514386 A JP13514386 A JP 13514386A JP S62290873 A JPS62290873 A JP S62290873A
Authority
JP
Japan
Prior art keywords
substrate
film
forming gas
laser beam
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13514386A
Other languages
Japanese (ja)
Inventor
Toru Takahama
高浜 亨
Susumu Hoshinouchi
星之内 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13514386A priority Critical patent/JPS62290873A/en
Publication of JPS62290873A publication Critical patent/JPS62290873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin film of high reliability on a substrate kept at room temp. by ionizing a film forming gas with laser light having a short wavelength and by drifting the resulting ions toward the substrate with an electric field. CONSTITUTION:A film forming gas fed into a reaction chamber 5 is photodissociated with ultraviolet laser light 2 and ionized with laser light 9 having a short wavelength and high photon energy. Voltage is then applied to an electrode 10 for forming an electric field to drift the resulting ions toward a substrate 6. The migration of a reaction product deposited on the surface of the substrate 6 can be accelerated by regulating the voltage applied to the electrode 10, so the adhesion of a thin film is improved and a dense thin film can be formed.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分身〕 この発明はレーザCVD装置に関し、例えば、高密文集
積回路の絶橡嘆、半導体膜、金属摸、乃びマグネットコ
イル用の超電導薄膜等を基板の平均温度をほぼ室温に維
持したまま、基板上に密着力良く、しかも緻密に形成す
る装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Industrial Application] This invention relates to a laser CVD device, for example, the ultimate development of high-density integrated circuits, semiconductor films, metal panels, and magnetic coils. The present invention relates to an apparatus for forming a superconducting thin film etc. on a substrate with good adhesion and density while maintaining the average temperature of the substrate at approximately room temperature.

〔従来の技術〕[Conventional technology]

高密文集積回路を実現するためには、熱による素子への
悪影響を避けるため薄膜形成プロセスの低温化が強く望
まれている。またNbNやNbGe等の超電導薄膜を形
成する場合も高温相を凍結する必要性から低温下での薄
膜合成を試みることが考えられている。
In order to realize high-density integrated circuits, it is strongly desired to reduce the temperature of the thin film formation process in order to avoid adverse effects of heat on the elements. Furthermore, when forming a superconducting thin film of NbN, NbGe, or the like, attempts are being made to synthesize thin films at low temperatures because of the need to freeze the high-temperature phase.

これに応える新技術として紫外レーザ光のもつ高光子エ
ネルギーにより成膜用ガスを光解離し、薄膜を形ヴする
いわゆるレーザCVD技術が提¥されている。この技術
では高光子エネルギーのみによってガスを解離できるた
め低温で反応生成物を某板上に堆積できるという優れた
特長を備iているが、基板と反応生成物との相互作用が
乏しいため基板と反応生成物との密着力が得られなかっ
た。
As a new technology to meet this demand, a so-called laser CVD technology has been proposed, which uses the high photon energy of ultraviolet laser light to photodissociate a film-forming gas to form a thin film. This technology has the excellent feature of being able to dissociate gases using only high photon energy, allowing the reaction products to be deposited on a certain plate at low temperatures; however, because the interaction between the substrate and the reaction products is poor, Adhesion to the reaction product could not be obtained.

第2図は例丸ば論文(1<、5olanki et a
l、 (7)AppliedPhysics Lett
er第43巻第5号第454頁〜456頁)に示された
レーザを利用した従来のレーザCVD装置を示す断面構
成図である。
Figure 2 shows an example of Maruba's paper (1 <, 5 olanki et a
l, (7) Applied Physics Lett
43, No. 5, pp. 454-456).

図において、(1)は紫外レーザ発振器、(2)は紫外
レーザ光、C3)は紫外レーザ発振器(1)から出射さ
れた紫外レーザ光(2)を成膜用ガスの解離に必要なエ
ネルギー書間に整形するためのシリンドリカルテレスコ
ープ、(4)は成膜用ガス雰囲気と大気とを遮断しつつ
紫外レーザ光を反応チャンバー(5)に導入するための
ウィンド、I!N+)は成膜用ガスの供給口、6りはそ
の排出口、(5)は基板、(7)は基板(6)を加熱す
るためのヒータ付サセプタである。
In the figure, (1) is an ultraviolet laser oscillator, (2) is an ultraviolet laser beam, and C3) is an energy record that uses the ultraviolet laser beam (2) emitted from the ultraviolet laser oscillator (1) to dissociate the film-forming gas. A cylindrical telescope (4) is used for shaping the film-forming gas atmosphere and the atmosphere, and a window (I!) is used to introduce ultraviolet laser light into the reaction chamber (5) while blocking the film-forming gas atmosphere from the atmosphere. N+) is a supply port for film-forming gas, 6 is its discharge port, (5) is a substrate, and (7) is a susceptor with a heater for heating the substrate (6).

紫外レーザ発振器(1)から出射された紫外レーザ光(
2)は、シリンドリカルテレスコープ(3)により成膜
用ガスの解離に適正なエネルギー密度に整決され、ウィ
ンド(4)を通して成膜用ガス雰囲気を形成する反応チ
ャンバー(5)に導入される。紫外レーザ光(2)は反
応チャンバー(5)に設置された基板(6)の牧%上を
基板(6)に平行に通過し、成膜用ガスを解離する。こ
の解離反応によって得られた反応生成物は拡散により基
板(6)上に堆憤する。ところが、前述したように反応
生成物は強力な運動エネルギーを保有していないため基
板(6)との相互作用が乏しく、密着力のよい膜を得る
ことができなかった。そのため、第2図に示す従来の装
置では、基板(6)表面での反応生成物のマイグレーシ
町ン効果を期待して、ヒータ付サセプタ(7)により基
板46j %数100’Cに加熱するという手1″史を
とっていた。
Ultraviolet laser light (
2) is adjusted to an energy density appropriate for dissociation of the film-forming gas by a cylindrical telescope (3), and introduced into a reaction chamber (5) through a window (4) to form a film-forming gas atmosphere. The ultraviolet laser beam (2) passes over the substrate (6) placed in the reaction chamber (5) in parallel to the substrate (6) to dissociate the film-forming gas. The reaction product obtained by this dissociation reaction is deposited on the substrate (6) by diffusion. However, as mentioned above, since the reaction product does not possess strong kinetic energy, it has poor interaction with the substrate (6), making it impossible to obtain a film with good adhesion. Therefore, in the conventional apparatus shown in Fig. 2, the substrate 46j is heated to several 100'C by the heater-equipped susceptor (7) in anticipation of the migration effect of the reaction products on the surface of the substrate (6). I was taking 1″ history.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のレーザCVD装置は上記のように構成されていた
ので、密着力の良い膜を得るために基板(6)全体をヒ
ータで加熱することが必要とされ、半導体製造プロセス
等で要求される室温下で信頼性の高い膜を得ることがで
きないという問題点があった。
Conventional laser CVD equipment was configured as described above, so in order to obtain a film with good adhesion, it was necessary to heat the entire substrate (6) with a heater, which required heating at room temperature required in semiconductor manufacturing processes, etc. There was a problem in that it was not possible to obtain a highly reliable film under the conditions.

この発明は上記のような問題点を解消するためになされ
たもので、基板の平均温度を室温に維持した状態で、信
頼性の窩い薄膜を得ることができるレーザCVD装置を
提供することを目的としている。
This invention was made to solve the above-mentioned problems, and aims to provide a laser CVD apparatus that can obtain a reliable thin film while maintaining the average temperature of the substrate at room temperature. The purpose is

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るレーザCVD装置は、成膜用ガス雰囲気
を形成し、内部に基板が設置される反応チャンバー、こ
の反応チャンバー内に照射され、成膜用ガスを解離する
紫外レーザ光、上記基板に平行に照射され、上記紫外レ
ーザ光によって解離した上記成膜用ガスの一部をイオン
化する短波長レーザ光、及びイオン化した上記成膜用ガ
スを上記基板上へ移動させる電界形成用電極を備えたも
のである。
The laser CVD apparatus according to the present invention includes a reaction chamber that forms a film-forming gas atmosphere and a substrate is installed therein, an ultraviolet laser beam that is irradiated into the reaction chamber and dissociates the film-forming gas, and an ultraviolet laser beam that is applied to the substrate. A short wavelength laser beam that is irradiated in parallel and ionizes a part of the film-forming gas dissociated by the ultraviolet laser light, and an electric field forming electrode that moves the ionized film-forming gas onto the substrate. It is something.

〔作用] この発明においては、成膜用ガスあるいは解離したガス
の一部を窩光子エネルギーを有する短波長レーザ光でイ
オン化し、これzi界で基板方向へ移動させることによ
り、基板平均温四を室温に維持した状態でイオンの運動
エネルギーfl!使って反応生成物のマイグレーション
効采を促進させ、密着性がよく緻密な信頼性の高い薄膜
を得るものである。
[Operation] In this invention, a part of the film-forming gas or dissociated gas is ionized with a short wavelength laser beam having photon energy, and this is moved toward the substrate in the zi field, thereby increasing the average temperature of the substrate. The kinetic energy fl of an ion when maintained at room temperature! It is used to promote the migration effect of the reaction product and obtain a highly reliable thin film that has good adhesion and is dense.

〔実施例〕〔Example〕

以下、この発明の一実施例を、VLS Iの保護膜用窒
化珪素薄膜形成を対象として図に従って説明する。第1
図はこの発明の一実施例によるレーザCVD装置を示す
断面構成図である。図において、(1)は紫外レーザ発
振器、(2)は紫外レーザ光、(3)はシリンドリカル
テレスコープ、(4)はウィンド、(5)は反応チャン
バー、(6)はアルミ配線後のシリコン基板、(7)は
基板(6)を保持するサセプタ、(8)は短波長レーザ
発振器、(9)は短波長レーザ光、αqは基板(6)に
垂直な電界を形成する電界形成用電極である。成膜用ガ
ス供給口(51)から供給される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings, focusing on the formation of a silicon nitride thin film for a protective film of VLSI. 1st
The figure is a cross-sectional configuration diagram showing a laser CVD apparatus according to an embodiment of the present invention. In the figure, (1) is an ultraviolet laser oscillator, (2) is an ultraviolet laser beam, (3) is a cylindrical telescope, (4) is a window, (5) is a reaction chamber, and (6) is a silicon substrate after aluminum wiring. , (7) is a susceptor that holds the substrate (6), (8) is a short wavelength laser oscillator, (9) is a short wavelength laser beam, and αq is an electric field forming electrode that forms an electric field perpendicular to the substrate (6). be. It is supplied from the film-forming gas supply port (51).

反応チャンバー(5)内のジシラン(5i2H6) ド
ア :/モニア(NH3)の成膜用ガス(数Torr 
〜数+Torr)は、シリンドリカルテレスコープ(3
)により適正なエネルギー密度に整形されたArFエキ
シマレーザ光等の紫外レーザ光(2)によって効率よく
光解離される。ArFエキシマレーザ光の波長193−
は、アンモニアの吸収帯のピーク波長に当り、ジシラン
についても同様に吸収の起こる波長である。この成膜用
ガスの解離のエネルギーは吸収される光子のエネルギー
より低いことから光解離は容易に起こりうる。短パルス
レーザ発振器(8)から出射され、シリンドリカルテレ
スコーパ(3)により数+MW/ffl程度のレーザパ
ワー密度になる様に整形され、基板(6)に平行に照射
される高光子エネルギーを有すルF2エキシマレーザ光
等の短波長レーザ光(9)は、成膜用ガス、あるいは解
離したガスを一部イオン化する能力をもつ。例えばアン
モニアのイオン化エネルギーは10.5 ev程塵と言
われ、一方F2エキシマレーザの光子エネルギーは7.
 !1 eVである。F2エキシマレーザ光のパワー密
度を上げて2光子吸収を実現することにより、局所空間
的にイオンを形成することが可能となる。このイオン化
にとってレーザ光の光子のエネルギーは高い程好都合で
ある。電界形成用電極C1Oに″電圧を印加することに
より、できたイオンを基板(6)の方向にドリフトさせ
る。イオンが数ev以下の運動エネルギーをもつように
印加電圧を調整すると、基板表面上に堆積した反応生成
物のマイグレーション効果が促進でき、薄膜の基板に対
する密着性が上がり、緻密な薄膜を得ることができる。
Disilane (5i2H6) door in the reaction chamber (5): / Monia (NH3) film forming gas (several Torr
~ number + Torr) is the cylindrical telescope (3
) is efficiently photodissociated by ultraviolet laser light (2) such as ArF excimer laser light shaped to have an appropriate energy density. Wavelength of ArF excimer laser light: 193-
corresponds to the peak wavelength of the absorption band of ammonia, and is also the wavelength at which absorption occurs in disilane as well. Since the energy of dissociation of this film-forming gas is lower than the energy of absorbed photons, photodissociation can easily occur. A laser beam with high photon energy is emitted from a short pulse laser oscillator (8), shaped by a cylindrical telescope (3) to a laser power density of approximately several + MW/ffl, and irradiated parallel to the substrate (6). A short wavelength laser beam (9) such as F2 excimer laser beam has the ability to partially ionize the film-forming gas or the dissociated gas. For example, the ionization energy of ammonia is said to be about 10.5 ev, while the photon energy of F2 excimer laser is 7.5 ev.
! 1 eV. By increasing the power density of the F2 excimer laser beam and realizing two-photon absorption, it becomes possible to form ions locally and spatially. For this ionization, the higher the energy of the photon of the laser light is, the more convenient it is. By applying a voltage to the electric field forming electrode C1O, the formed ions are caused to drift in the direction of the substrate (6). When the applied voltage is adjusted so that the ions have a kinetic energy of several EV or less, the ions are caused to drift on the substrate surface. The migration effect of the deposited reaction products can be promoted, the adhesion of the thin film to the substrate can be improved, and a dense thin film can be obtained.

短波長レーザ光のパワー密度等によりイオンの数を調整
し、また電極への印加電圧等によりイオンの運動エネル
ギーを調整することにより、イオンによる基板への損傷
を極力少なくすることが可能である。
Damage to the substrate caused by ions can be minimized by adjusting the number of ions by adjusting the power density of the short wavelength laser beam, and adjusting the kinetic energy of the ions by adjusting the voltage applied to the electrodes.

このように、上記実施例では、熱影響を防止する必要の
ある基板(6)平均温度を室温に維持したまま、イオン
の運動エネルギーを使って反応生成物のマイグレーショ
ン効果を促進させることができるため、低温で密着性の
高い、緻密な薄膜の形成を実現できる。なお、上記実施
例では紫外レーザ光(2)を基板(6)に平行に照射す
るものを示したが、基板(6)上の成膜用ガスを解離で
きるような方向であ1ば、これに限ることはない。
In this way, in the above embodiment, the kinetic energy of the ions can be used to promote the migration effect of the reaction products while maintaining the average temperature of the substrate (6) at room temperature, which is necessary to prevent thermal effects. , it is possible to form a dense thin film with high adhesion at low temperatures. Note that in the above embodiment, the ultraviolet laser beam (2) is irradiated parallel to the substrate (6), but if the direction is such that the film forming gas on the substrate (6) can be dissociated, this can be used. It is not limited to.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、成膜用ガス雰囲気を
形成し、内部に基板が設置される反応チャンバー、この
反応チャンバー内に照射され、成膜用ガスを解離する紫
外レーザ光、上記基板に平行に照射され、上記紫外レー
ザ光によって解離した上記成膜用ガスの一部卒イオン化
する短波長レーザ光、及びイオン化した上記成膜用ガス
を上記基板上へ移動させる電界形成用電極により、レー
ザCVD装置を構成したので、基板平均湿層を室温に維
持した状態で、基板への熱的損傷を与えることなく信頼
性の高い薄膜を形成できる効用がある。
As described above, according to the present invention, there is provided a reaction chamber that forms a film-forming gas atmosphere and in which a substrate is placed, an ultraviolet laser beam that is irradiated into the reaction chamber and dissociates the film-forming gas, and A short wavelength laser beam that is irradiated parallel to the substrate and partially ionizes the film-forming gas dissociated by the ultraviolet laser light, and an electric field forming electrode that moves the ionized film-forming gas onto the substrate. Since the laser CVD apparatus is configured, a highly reliable thin film can be formed without causing thermal damage to the substrate while maintaining the average wet layer of the substrate at room temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実栴例によるレーザCVD装置を
示す断面構成図、第2図は従来のレーザCVD装置を示
す断面構成図である。 図において、(2)は紫外レーザ光、(5)は反応チャ
ンバー、6])は成膜用ガス供給口、イ6)はシリコン
基板、(9)は短波長レーザ光、00は電界形成用電極
である。 なお、図中、同一符号は同一は相当部分を示す。
FIG. 1 is a cross-sectional configuration diagram showing a laser CVD apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional configuration diagram showing a conventional laser CVD apparatus. In the figure, (2) is an ultraviolet laser beam, (5) is a reaction chamber, 6]) is a film-forming gas supply port, A6) is a silicon substrate, (9) is a short wavelength laser beam, and 00 is for electric field formation. It is an electrode. In the figures, the same reference numerals indicate corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)成膜用ガス雰囲気を形成し、内部に基板が設置さ
れる反応チャンバー、この反応チャンバー内に照射され
、成膜用ガスを解離する紫外レーザ光、上記基板に平行
に照射され、上記紫外レーザ光によって解離した上記成
膜用ガスの一部をイオン化する短波長レーザ光、及びイ
オン化した上記成膜用ガスを上記基板上へ移動させる電
界形成用電極を備えたレーザCVD装置。
(1) A reaction chamber that forms a film-forming gas atmosphere and in which a substrate is installed; an ultraviolet laser beam that is irradiated into the reaction chamber and dissociates the film-forming gas; A laser CVD apparatus comprising: a short wavelength laser beam that ionizes a portion of the film-forming gas dissociated by the ultraviolet laser light; and an electric field forming electrode that moves the ionized film-forming gas onto the substrate.
(2)紫外レーザ光は基板に平行に照射される特許請求
の範囲第1項記載のレーザCVD装置。
(2) The laser CVD apparatus according to claim 1, wherein the ultraviolet laser beam is irradiated parallel to the substrate.
(3)電界形成用電極は基板に垂直な電界を形成する特
許請求の範囲第1項記載のレーザCVD装置。
(3) The laser CVD apparatus according to claim 1, wherein the electric field forming electrode forms an electric field perpendicular to the substrate.
(4)基板は常温で保持されている特許請求の範囲第1
項ないし第3項のいずれかに記載のレーザCVD装置。
(4) The substrate is maintained at room temperature.
3. A laser CVD apparatus according to any one of Items 3 to 3.
JP13514386A 1986-06-10 1986-06-10 Laser cvd apparatus Pending JPS62290873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13514386A JPS62290873A (en) 1986-06-10 1986-06-10 Laser cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13514386A JPS62290873A (en) 1986-06-10 1986-06-10 Laser cvd apparatus

Publications (1)

Publication Number Publication Date
JPS62290873A true JPS62290873A (en) 1987-12-17

Family

ID=15144811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13514386A Pending JPS62290873A (en) 1986-06-10 1986-06-10 Laser cvd apparatus

Country Status (1)

Country Link
JP (1) JPS62290873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987855A (en) * 1989-11-09 1991-01-29 Santa Barbara Research Center Reactor for laser-assisted chemical vapor deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987855A (en) * 1989-11-09 1991-01-29 Santa Barbara Research Center Reactor for laser-assisted chemical vapor deposition

Similar Documents

Publication Publication Date Title
JPS61127121A (en) Formation of thin film
JP2001148380A (en) Method and apparatus for integrating a metal nitride film into a semiconductor device
KR19990045072A (en) Thermal Plasma Annealing System and Annealing Process
JPH0225577A (en) Thin film forming device
JPH01135529A (en) Surface modification of body using electromagnetic radiation
JPH0149004B2 (en)
JPS62290873A (en) Laser cvd apparatus
JP2758247B2 (en) Organic metal gas thin film forming equipment
KR20010052798A (en) A method and apparatus for forming a ti doped ta205 layer
JPS62183512A (en) Laser-induced thin film deposition apparatus
JPH0420985B2 (en)
JP2726149B2 (en) Thin film forming equipment
JP2608456B2 (en) Thin film forming equipment
JPH06333846A (en) Thin film forming device
JPS6028225A (en) Optical vapor growth method
JPH05326530A (en) Heat treatment of compound semiconductor substrate
JP3795423B2 (en) Thin film formation method by gas cluster ion beam
KR960036155A (en) P.L.T. Thin film manufacturing method
JPH02129376A (en) Thin film forming equipment
TW202240666A (en) Method of depositing layer on semiconductor workpiece
JPS61288431A (en) Manufacture of insulating layer
Sivaram Emerging CVD Techniques
CN117568748A (en) Aluminum nitride film and preparation method thereof
JPH0978245A (en) Formation of thin film
Hanabusa Laser-Induced deposition of thin films