JPS6228869B2 - - Google Patents
Info
- Publication number
- JPS6228869B2 JPS6228869B2 JP53049992A JP4999278A JPS6228869B2 JP S6228869 B2 JPS6228869 B2 JP S6228869B2 JP 53049992 A JP53049992 A JP 53049992A JP 4999278 A JP4999278 A JP 4999278A JP S6228869 B2 JPS6228869 B2 JP S6228869B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- transducer
- flaw detection
- electronic scanning
- detection method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
本発明は電子走査式超音波探傷方法に係り、特
に、被検体内の深さ方向の探傷に好適な超音波探
傷方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic scanning ultrasonic flaw detection method, and more particularly to an ultrasonic flaw detection method suitable for depthwise flaw detection inside a subject.
従来、被検体面に対して垂直に存在する欠陥を
探傷する場合は、被検体面において斜角探触子を
移動し、移動距離から深さを推定したり、移動ゲ
ートを設け、探触子の移動距離によりゲート位置
を補正して深さを推定したり、これとは逆に固定
ゲートと三角形状のシユーを設け、探触子をシユ
ー上で移動して深さを推定する方法等が行われて
いた。 Conventionally, when detecting defects that exist perpendicular to the surface of the specimen, the angle probe is moved on the surface of the specimen and the depth is estimated from the distance of movement, or a moving gate is installed and the probe The depth can be estimated by correcting the gate position based on the distance traveled by the probe, or alternatively, a fixed gate and a triangular shoe can be installed, and the depth can be estimated by moving the probe on the shoe. It was done.
しかし、これらの場合はすべて探触子を機械的
に移動する方式であり、これらの方式により遠隔
自動探傷を行う場合は検出部が大型になつたり、
検査能率が悪い等の欠点があつた。 However, all of these methods involve moving the probe mechanically, and when performing remote automatic flaw detection using these methods, the detection unit becomes large and
There were drawbacks such as poor inspection efficiency.
本発明の目的は、被検体の構造に制約されるこ
とが少なく、かさ、被検体の深さ方向に生じる亀
裂欠陥を簡単かつ高精度に評価することのできる
電子走査式超音波探傷方法を提供することにあ
る。 An object of the present invention is to provide an electronic scanning ultrasonic flaw detection method that is not limited by the structure of the test object and can easily and accurately evaluate crack defects that occur in the depth direction of the test object. It's about doing.
本発明の特徴は、傾斜面を有する超音波媒体を
利用し、超音波送波用振動子及び受波用振動子を
上記超音波媒体を介して被検体表面に設置するこ
とにより、両振動子を対向配置させると共に、こ
の送波用振動子のビーム領域と受波用振動子のビ
ーム領域を交叉させ、かつ、この両振動子を所定
順序で励振して上記交叉領域を深さ方向に走査す
るようにしたところにあります。 A feature of the present invention is that an ultrasonic wave transmitting transducer and a wave receiving transducer are installed on the surface of a subject via the ultrasonic medium, using an ultrasonic medium having an inclined surface. are arranged facing each other, the beam area of the transmitting transducer and the beam area of the receiving transducer are made to intersect, and both transducers are excited in a predetermined order to scan the intersecting area in the depth direction. This is where I decided to do it.
本発明の実施例について詳細に説明する。 Examples of the present invention will be described in detail.
第1図ならびに第2図は本発明の前提をなす電
子走査式超音波探傷法の説明図である。同図で、
10は超音波振動子で#1〜#nまでn個配列さ
れている。11,17は超音波媒体、12は被検
体である。 FIGS. 1 and 2 are explanatory diagrams of the electronic scanning ultrasonic flaw detection method that forms the premise of the present invention. In the same figure,
Reference numeral 10 denotes ultrasonic transducers, and n ultrasonic transducers #1 to #n are arranged. 11 and 17 are ultrasound media, and 12 is a subject.
いま、第1図においてk個(k<n)の振動子
群を縦波モード波面がA―Bとなるような時間差
で励振すると超音波ビームは13の方向に伝ぱん
していく。この励振する振動子群を順次矢印14
の方向に電子的に移動していくとY―Y′軸上の
超音波ビーム13は16の方向に移動する。 Now, in FIG. 1, when a group of k transducers (k<n) is excited with a time difference such that the longitudinal mode wavefront becomes AB, the ultrasonic beam propagates in 13 directions. This excited group of oscillators is sequentially moved by the arrow 14.
When the ultrasonic beam 13 on the YY' axis moves in the direction 16, the ultrasonic beam 13 moves in the direction 16.
第2図の場合も第1図と同様になり、Y―
Y′軸上の超音波ビーム18は20の方向に移動
する。 The case of Fig. 2 is the same as Fig. 1, and Y-
The ultrasound beam 18 on the Y' axis moves in the direction 20.
これらの図で、特に超音波媒体11,17を用
いているのは被検体12の表層部の超音波探傷を
可能とすること、振動子の機械的損傷を防ぐこ
と、被検体の形状に応じて接触面を加工できるこ
と、振動子と被検体との音響的整合を図ること、
超音波の入射角を任意に選択できることなどで、
工業材料の超音波探傷を行うためには必須なもの
である。 In these figures, the ultrasonic media 11 and 17 are used to enable ultrasonic flaw detection of the surface layer of the object 12, to prevent mechanical damage to the transducer, and to suit the shape of the object. It is possible to process the contact surface by
By being able to arbitrarily select the incident angle of the ultrasonic waves,
This is essential for performing ultrasonic flaw detection on industrial materials.
超音波媒体の材質は金属、非金属、液体などが
用いられるが、常温の場合はアクリル樹脂材がよ
く用いられる。 The ultrasonic medium may be made of metal, non-metal, liquid, etc., but acrylic resin is often used at room temperature.
第3図ならびに第4図は超音波ビーム路程を幾
何学的形状から示した図である。 FIGS. 3 and 4 are diagrams showing the ultrasonic beam path in terms of geometric shapes.
第3図の場合は(1)式となり、第4図の場合は(2)
式となる。 In the case of Figure 3, formula (1) is used, and in the case of Figure 4, formula (2) is used.
The formula becomes
ただし、lR:超音波ビーム路程(点e,f,
g間の距離)
d:超音波媒体の厚み
θi:超音波媒体から被検体に入射す
る超音波ビームの入射角
x:欠陥からビーム入射点までの距離
θr:超音波ビームの屈折角
ただし、lT:超音波ビーム路程(点e,f,
g間の距離)
b:欠陥からの超音波媒体の長さ
一般に媒質11,17と媒質12では音速が異
なり、境界面で屈折を生ずるため超音波ビームの
路程は折れ線となる。 However, l R : Ultrasonic beam path (points e, f,
g) d: Thickness of the ultrasonic medium θ i : Incident angle of the ultrasonic beam entering the object from the ultrasonic medium x: Distance from the defect to the beam incidence point θ r : Refraction angle of the ultrasonic beam However, l T : Ultrasonic beam path (points e, f,
(distance between g) b: Length of the ultrasonic medium from the defect Generally, the sound speeds are different between the mediums 11 and 17 and the medium 12, and refraction occurs at the interface, so the path of the ultrasonic beam becomes a polygonal line.
第5図ならびに第6図は超音波ビームの集束の
関係を示す図である。超音波ビームは実線のよう
に屈折するが、被検体口の媒質における音速で補
正すれば同図の点線で示すように被検体中の超音
波ビーム路程の延長線上に振動子位置を仮定する
ことができる。 FIG. 5 and FIG. 6 are diagrams showing the relationship of focusing of ultrasonic beams. The ultrasound beam is refracted as shown by the solid line, but if it is corrected by the speed of sound in the medium at the mouth of the subject, the transducer position can be assumed to be on the extension of the ultrasound beam path in the subject, as shown by the dotted line in the figure. I can do it.
そして、超音波ビームをY―Y′軸上に集束さ
せるためには平面A′―B′の代わりに円筒面C―
Dを考えればよく、このA′―B′面とC―D面の
差分に相当する時間差を持たせて各振動子を順次
励振すればよい。 In order to focus the ultrasonic beam on the Y-Y' axis, instead of the plane A'-B', the cylindrical surface C-
It is only necessary to consider D, and it is sufficient to sequentially excite each vibrator with a time difference corresponding to the difference between the A'-B' plane and the CD plane.
第5図の場合の時間差は次式となる。 The time difference in the case of FIG. 5 is expressed by the following equation.
ただし、ΔtRj:ビーム中心線からajだけ離
れた振動子の位相時間
ΔlRj:ビーム中心線からajだけ離
れた振動子の平面A′―B′と曲
面C―D間の距離
c2:被検体12中の音速
aj:振動子面におけるビーム中心か
らの距離
c1:超音波媒体11中の音速
第6図の場合の時間差は次式となる。 However, Δt Rj : Phase time of the transducer separated by a j from the beam center line Δl Rj : Distance between the plane A'-B' and the curved surface C-D of the transducer separated by a j from the beam center line c 2 : Speed of sound in the object 12 a j : Distance from the beam center on the transducer surface c 1 : Speed of sound in the ultrasonic medium 11 The time difference in the case of FIG. 6 is expressed by the following equation.
ただし、ΔtTj:ビーム中心線からajだけ離
れた振動子の位相時間
ΔlTj:ビーム中心線からajだけ離
れた振動子の平面A′―B′と曲
面C―D間の距離
第(3)式の第2項目は超音波ビームをθiだけ傾
けるための時間差であり、ajがB側の場合
(+)となり、A側の場合は(−)となる。 However, Δt Tj : Phase time of the transducer separated by a j from the beam center line Δl Tj : Distance between the plane A'-B' and the curved surface C-D of the transducer separated by a j from the beam center line The second item in equation 3) is the time difference for tilting the ultrasonic beam by θ i , and when a j is on the B side, it is (+), and when it is on the A side, it is (−).
第(4)式の場合は超音波媒体17が三角形状をし
ているため、第(3)式の第2項目に相当する遅延時
間は必要なく、回路が簡便になり、演算に簡単に
なる利点を有している。 In the case of equation (4), since the ultrasonic medium 17 has a triangular shape, there is no need for a delay time corresponding to the second item in equation (3), which simplifies the circuit and makes calculations easier. It has advantages.
以上の説明で被検体内で縦波の超音波を用いる
場合には、C2として縦波音速を用いればよく、
一方、横波の超音波を用いる場合にはC2として
横波音速を用いて夫々遅延時間を設定すれば良
い。 In the above explanation, when longitudinal ultrasound is used inside the subject, the longitudinal sound velocity may be used as C 2 .
On the other hand, when using a transverse wave ultrasound, the delay time may be set using the transverse sound velocity as C2 .
このようにして、超音波ビームを送出すると第
7図ならびに第8図に示すようになり、超音波ビ
ームの集束領域は21,22,23と順次Y―
Y′軸の上の方向に移動できる。ただし、この場
合は集束ビーム領域を深さ方向とした場合であ
る。 In this way, when the ultrasonic beam is sent out, it becomes as shown in FIGS. 7 and 8, and the focusing area of the ultrasonic beam is sequentially Y-
It can be moved in the direction above the Y′ axis. However, in this case, the focused beam region is in the depth direction.
第9図は本発明に係る電子走査式超音波探傷法
により欠陥の割れ深さを測定する方法を示した図
である。同図の如く、遮音板24の両側に超音波
媒体17,17′を置き、17側の超音波媒体の
k個の超音波振動子から超音波ビーム26を送出
する。集束領域27で超音波ビームは散乱を生
じ、その一部分は28の超音波ビームのように1
7′側の#1からk個の超音波振動子に向い受信
される。しかし、#1を含むk個から#iを含む
k個に超音波振動子10の励振位置を移動する
と、超音波ビームは29のごとくなり、欠陥25
に当る。欠陥25は超音波を遮断するので、1
7′側の#iを含むk個の振動子は超音波を受信
できない。このようにして、超音波振動子10,
10′の励振ならびに受信位置を#1から#nの
方向に移動すると散乱エコーは途中で消えるが、
このエコーが消えた位置から欠陥深さを知ること
ができる。 FIG. 9 is a diagram showing a method for measuring the crack depth of a defect by the electronic scanning ultrasonic flaw detection method according to the present invention. As shown in the figure, ultrasonic media 17 and 17' are placed on both sides of the sound insulating plate 24, and an ultrasonic beam 26 is sent out from k ultrasonic transducers of the ultrasonic medium on the 17 side. In the focusing region 27, the ultrasound beam is scattered, and a portion of it is scattered like 28 ultrasound beams.
The signals are received by k ultrasonic transducers from #1 on the 7' side. However, when the excitation position of the ultrasonic transducer 10 is moved from k including #1 to k including #i, the ultrasonic beam becomes 29, and the defect 25
corresponds to Defect 25 blocks ultrasonic waves, so 1
The k transducers including #i on the 7' side cannot receive ultrasonic waves. In this way, the ultrasonic transducer 10,
When the excitation and reception positions of 10' are moved from #1 to #n, the scattered echoes disappear midway, but
The defect depth can be determined from the position where this echo disappears.
本法は超音波ビームの走査をリニア走査で行つ
ているため、他の扇形走査で問題になるような走
査角度による損失はなく、欠陥の深さ方向におい
て一様な強度で走査できる大きな利点がある。 Since this method uses a linear scanning method to scan the ultrasonic beam, there is no loss due to the scanning angle, which is a problem with other fan-shaped scanning methods, and it has the great advantage of being able to scan with uniform intensity in the depth direction of the defect. be.
第10図は電子走査式超音波探傷を行うための
回路のブロツク図である。31は主制御部で同期
信号39、振動子選択指令信号40、集束領域指
令信号41を発生する。送波制御部32はこれら
の信号を受けて、送波の順序を決定し、送波駆動
部33に伝える。送波駆動部33は各振動子10
にパルス状の電圧を加える。 FIG. 10 is a block diagram of a circuit for performing electronic scanning ultrasonic flaw detection. A main control section 31 generates a synchronization signal 39, a transducer selection command signal 40, and a focus area command signal 41. The wave transmission control unit 32 receives these signals, determines the order of wave transmission, and transmits the order to the wave transmission drive unit 33. The wave transmission drive section 33 is connected to each vibrator 10.
A pulsed voltage is applied to.
一方、各振動子10で受信された超音波エネル
ギーは受波増幅器34で増幅され、受波検波部3
5で加算・検波されて表示部36に送出される。 On the other hand, the ultrasonic energy received by each transducer 10 is amplified by the receiving amplifier 34, and the receiving detector 3
The signals are added and detected in step 5 and sent to the display section 36.
37は遅延回路で、超音波媒体11,17の往
復伝ぱん時間に相当する遅延時間を発生し、主制
御回路からの同期信号を遅延させて掃引信号発生
回路38に送出する。掃引信号発生回路は超音波
の径路に応じてX,Yの信号を送出し、表示部に
欠陥像を表示する。 A delay circuit 37 generates a delay time corresponding to the reciprocating propagation time of the ultrasonic media 11 and 17, and delays the synchronization signal from the main control circuit and sends it to the sweep signal generation circuit 38. The sweep signal generation circuit sends out X and Y signals according to the path of the ultrasonic waves, and displays a defect image on the display section.
第11図、第12図、第13図は第10図に示
した電子走査式超音波探傷法用回路ブロツク図の
タイムチヤートである。これらの図で39は同期
信号であり、S系列とT系列の信号を発生してい
る。Sはセツトを示し、Tはトリガーを示す。先
ず、第11図の送波時のタイムチヤートについて
考えると、S1で振動子選択指令40を発生し、た
とえば#1〜#kの振動子を選択する。また、集
束領域指令41を発生し、#1〜#kの振動子の
位相差を設定する。 11, 12, and 13 are time charts of the circuit block diagram for the electronic scanning ultrasonic flaw detection method shown in FIG. 10. In these figures, numeral 39 is a synchronization signal, which generates S-series and T-series signals. S indicates set and T indicates trigger. First, considering the time chart during wave transmission shown in FIG. 11, in S1 , a transducer selection command 40 is generated, and, for example, transducers #1 to #k are selected. Further, a focusing area command 41 is generated to set the phase difference of the vibrators #1 to #k.
次ぎに、T1でS1の設定通りに振動子を励振す
ると#1〜#kの振動子はそれぞれΔtTj位相差
をもつて励振され、深さD1に超音波が集束す
る。 Next, when the transducers are excited according to the settings of S 1 at T 1 , the transducers #1 to #k are each excited with a phase difference of Δt Tj , and the ultrasonic waves are focused at the depth D 1 .
S2はT2のための設定であり、#2〜#(k−
1)の振動子が選択され、集束領域は深さD2に
設定される。したがつて、T2では#2〜#(k
−1)の振動子が励振され、超音波は深さD2に
集束する。 S 2 is the setting for T 2 , #2 to #(k−
The transducer of 1) is selected and the focusing region is set at depth D 2 . Therefore, at T 2 , #2 to #(k
-1) The vibrator is excited and the ultrasonic waves are focused at depth D2 .
上述のようにk番目のSk、Tk、i番目のS
i、Ti、(n−k)番目のS(o-k)、T(o-k)と順次
励振していくと振動子は#〜k〜#(2k−1)、
#i〜#(i+k−1)、#(n−k)〜#nと
励振され、集束領域の深さはDk、Di、D(o-k)と
移動する。 As mentioned above, the k-th S k , T k , the i-th S
i , T i , (n-k)th S (ok) , and T (ok) , the oscillators #~k~#(2k-1),
It is excited from #i to #(i+k-1) and from #(n-k) to #n, and the depth of the focusing region moves from D k to D i to D (ok) .
第12図は受波時のタイムチヤートである。受
波の場合はS1で#1〜#kの振動子のアナログ遅
延時間を設定し、T1で受信を開始する。同図の
42はアナログ遅延素子で、その長さはたとえば
ΔtTjに相当している。S2は次ぎの設定を行うも
ので、#2〜#(k−1)のアナログ遅延時間を
設定し、T2で受信を開始する。このようにし
て、Sk、Tk、……Si、Ti、……S(o-k)、T(o-
k)と順次アナログ遅延を切換えながら受信してい
く。 FIG. 12 is a time chart during wave reception. In the case of wave reception, the analog delay time of the transducers # 1 to #k is set at S1, and reception is started at T1 . 42 in the figure is an analog delay element, the length of which corresponds to, for example, Δt Tj . S2 is for making the following settings, setting the analog delay times of #2 to #(k-1), and starting reception at T2 . In this way, S k , T k , ... S i , T i , ... S (ok) , T (o-
k) and reception while sequentially switching the analog delay.
第13図は探傷結果をモニターに画像表示を行
う場合のタイムチヤートである。39は同期信号
で、43は超音波媒体中の往復通過時間に相当す
る遅延パルスであり、たとえば同期信号から
2(b−x)/c1sinθi時間遅れて発生し、表示用の
X軸信
号44ならびにY軸信号45を発生する。X軸信
号は振幅方向にバイアスがかかつている。 FIG. 13 is a time chart when the flaw detection results are displayed as images on the monitor. 39 is a synchronization signal, and 43 is a delay pulse corresponding to the round trip time in the ultrasonic medium, which is generated, for example, with a 2(b-x)/c 1 sinθ i time delay from the synchronization signal, and is displayed on the X axis for display. A signal 44 as well as a Y-axis signal 45 are generated. The X-axis signal is biased in the amplitude direction.
第14図は電子走査式超音波探傷法のフローチ
ヤートである。 FIG. 14 is a flowchart of the electronic scanning ultrasonic flaw detection method.
以上述べたように、本発明によれば被検体表層
部付近の垂直状割れ欠陥について、その欠陥の所
望位置に電子的に超音波ビームを集束または走査
でき、欠陥像を高速で形成ならびに表示できるの
で、検出部の小形化、検査能率の向上など、工業
上大きな利益が期待できる。 As described above, according to the present invention, it is possible to electronically focus or scan an ultrasonic beam on a desired position of a vertical crack defect near the surface of a test object, and to form and display a defect image at high speed. Therefore, great industrial benefits can be expected, such as miniaturization of the detection unit and improvement in inspection efficiency.
本発明は特に、表面付近の欠陥を対象としてな
されたが、散乱波法においてその効果は顕著であ
る。 Although the present invention was made particularly targeting defects near the surface, its effects are remarkable in the scattered wave method.
また、本発明は矩形状ならびに三角形状の超音
波媒体について述べたが、この超音波媒体の形状
についてはこれにこだわることなく、曲線、折線
でも本発明に含まれる。 Furthermore, although the present invention has been described with respect to rectangular and triangular ultrasonic media, the present invention does not limit the shape of the ultrasonic medium to this, and curves and broken lines are also included in the present invention.
その他、超音波媒体の材質は金属、非金属、液
体などによつても本発明に含まれる。 In addition, the present invention also includes materials such as metals, non-metals, and liquids for the ultrasonic medium.
第1図〜第8図は本発明の前提ないし原理を説
明するための図であつて、第1図は電子走査式超
音波探傷法の説明図(矩形状超音波媒体)、第2
図は電子走査式超音波探傷法の説明図(三角形状
超音波媒体)、第3図は電子走査式超音波探傷法
の超音波ビーム路程の数値関係図(矩形状超音波
媒体)、第4図は電子走査式超音波探傷法の超音
波ビーム路程の数値関係図(三角形状超音波媒
体)、第5図は電子走査式超音波探傷法の超音波
ビームの集束状況説明図(矩形状超音波媒体)、
第6図は電子走査式超音波探傷法の超音波ビーム
の集束状況説明図(三角形状超音波媒体)、第7
図は電子走査式超音波探傷法の超音波ビーム集束
領域の移動説明図(矩形状超音波媒体)、第8図
は電子走査式超音波探傷法の超音波ビーム集束領
域の移動説明図(三角形状超音波媒体)である。
第9図〜第14図は本発明の一実施例を説明する
図であつて、第9図は電子走査式超音波探傷法の
割れ深さ評価説明図、第10図は電子走査超音波
探傷法のブロツク線図、第11図は電子走査式超
音波探傷法の送波時のタイムチヤート、第12図
は、電子走査式超音波探傷法の受波時のタイムチ
ヤート、第13図は電子走査式超音波探傷法の画
像表示時のタイムチヤート、第14図は電子走査
式超音波探傷法のフローチヤートである。
10…超音波振動子、13,15,18,1
9,26,28,29…超音波ビーム、12…被
検体、11,17,17′…超音波媒体、21,
22,23,27,30…集束領域、37…遅延
回路。
1 to 8 are diagrams for explaining the premise or principle of the present invention.
The figure is an explanatory diagram of the electronic scanning ultrasonic flaw detection method (triangular ultrasonic medium), Figure 3 is a numerical relationship diagram of the ultrasonic beam path of the electronic scanning ultrasonic flaw detection method (rectangular ultrasonic medium), and Figure 4 The figure is a numerical relationship diagram of the ultrasonic beam path length for electronic scanning ultrasonic flaw detection (triangular ultrasonic medium), and Figure 5 is an explanatory diagram of the focusing state of the ultrasonic beam for electronic scanning ultrasonic flaw detection (rectangular ultrasonic medium). sound wave medium),
Figure 6 is an explanatory diagram of the focusing state of the ultrasonic beam in the electronic scanning ultrasonic flaw detection method (triangular ultrasonic medium);
The figure is an explanatory diagram of the movement of the ultrasonic beam focusing area in the electronic scanning ultrasonic flaw detection method (rectangular ultrasonic medium), and Figure 8 is an explanatory diagram of the movement of the ultrasonic beam focusing area in the electronic scanning ultrasonic flaw detection method (triangular shape (ultrasonic medium).
Figures 9 to 14 are diagrams explaining one embodiment of the present invention, in which Figure 9 is an explanatory diagram of crack depth evaluation using electronic scanning ultrasonic flaw detection, and Figure 10 is an illustration of crack depth evaluation using electronic scanning ultrasonic flaw detection. Fig. 11 is a time chart when transmitting waves for electronic scanning ultrasonic flaw detection, Fig. 12 is a time chart when receiving waves for electronic scanning ultrasonic flaw detection, and Fig. 13 is a time chart for electronic scanning ultrasonic flaw detection. FIG. 14 is a time chart when displaying an image of the scanning ultrasonic flaw detection method. FIG. 14 is a flow chart of the electronic scanning ultrasonic flaw detection method. 10... Ultrasonic vibrator, 13, 15, 18, 1
9, 26, 28, 29... Ultrasonic beam, 12... Subject, 11, 17, 17'... Ultrasonic medium, 21,
22, 23, 27, 30... focus area, 37... delay circuit.
Claims (1)
列し、これらを順次励振して、被検体内の傷を探
傷する電子走査式超音波探傷法において、上記送
波用振動子及び受波用振動子を、夫々、両振動子
を対向させる方向に傾斜する斜面を有する超音波
媒体を介入して上記被検体表面に設置し、当該送
波用振動子のビーム領域と受波振動子のビーム領
域を交叉させ、かつ上記両振動子を順次励振して
上記交叉領域を被検体の深さ方向に走査すること
を特徴とする電子走査式超音波探傷方法。 2 特許請求の範囲第1項において、前記送波用
振動子のビーム領域及び受波用振動子のビーム領
域を集束させ、この両集束領域で交叉させたこと
を特徴とする電子走査式超音波探傷方法。[Claims] 1. In an electronic scanning ultrasonic flaw detection method in which a plurality of ultrasonic transducers for transmitting and receiving waves are arranged and sequentially excited to detect flaws inside a subject, A transducer for transmitting a wave and a transducer for receiving a wave are respectively installed on the surface of the object with an ultrasonic medium having a slope inclined in a direction in which both transducers face each other, and the transducer for transmitting a wave is placed on the surface of the object. An electronic scanning ultrasonic flaw detection method, characterized in that a beam region and a beam region of a receiving transducer intersect, and both of the transducers are sequentially excited to scan the intersecting region in the depth direction of the object. 2. The electronic scanning ultrasound according to claim 1, characterized in that the beam area of the transmitting transducer and the beam area of the receiving transducer are focused and intersect at both focusing areas. Flaw detection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4999278A JPS54143194A (en) | 1978-04-28 | 1978-04-28 | Electronic scanning type ultrasonic flaw detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4999278A JPS54143194A (en) | 1978-04-28 | 1978-04-28 | Electronic scanning type ultrasonic flaw detection |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54143194A JPS54143194A (en) | 1979-11-08 |
JPS6228869B2 true JPS6228869B2 (en) | 1987-06-23 |
Family
ID=12846497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4999278A Granted JPS54143194A (en) | 1978-04-28 | 1978-04-28 | Electronic scanning type ultrasonic flaw detection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54143194A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03285069A (en) * | 1990-03-30 | 1991-12-16 | Mitsubishi Heavy Ind Ltd | Vacuum seal roll device |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58132658A (en) * | 1982-02-02 | 1983-08-08 | Toshiba Corp | Ultrasonic flaw detecter |
JPS59210361A (en) * | 1983-05-16 | 1984-11-29 | Mitsubishi Heavy Ind Ltd | Ultrasonic flaw detector |
JPS60220857A (en) * | 1984-04-17 | 1985-11-05 | Toshiba Corp | Ultrasonic flaw detecting device |
EP1462799B1 (en) * | 2001-11-14 | 2011-01-19 | Kabushiki Kaisha Toshiba | Ultrasonograph with calculation of ultrasonic wave refraction |
JP4793636B2 (en) * | 2006-03-20 | 2011-10-12 | 株式会社日立エンジニアリング・アンド・サービス | Array probe device for water immersion |
CA2593893C (en) * | 2007-01-26 | 2016-11-08 | Roentgen Technische Dienst B.V. | Improved technique and phased array transducer for ultrasonic inspection of coarse grained, anisotropic welds |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5259974A (en) * | 1975-11-12 | 1977-05-17 | Hitachi Medical Corp | Method of controlling ultrasonic vibrator and device therefor |
-
1978
- 1978-04-28 JP JP4999278A patent/JPS54143194A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03285069A (en) * | 1990-03-30 | 1991-12-16 | Mitsubishi Heavy Ind Ltd | Vacuum seal roll device |
Also Published As
Publication number | Publication date |
---|---|
JPS54143194A (en) | 1979-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5279090B2 (en) | Ultrasonic flaw detection method and apparatus | |
JP5800667B2 (en) | Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus | |
EP1043584A1 (en) | Method and apparatus for ultrasonic flaw detection of weld portion | |
Osumi et al. | Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method | |
US4730494A (en) | Method for examining a surface of a sample by means of ultrasound | |
JPS6228869B2 (en) | ||
JP5994852B2 (en) | Steel quality evaluation method and quality evaluation apparatus | |
JP2014077708A (en) | Inspection device and inspection method | |
JP2001108661A (en) | Ultrasonic flaw detection method and apparatus | |
JP2004150875A (en) | Method and apparatus for imaging internal defect by ultrasonic wave | |
JP4633268B2 (en) | Ultrasonic flaw detector | |
JP4682921B2 (en) | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus | |
JP2008261889A (en) | Method and apparatus for imaging internal defect by ultrasonic wave | |
JP4419598B2 (en) | Ultrasonic flaw detection | |
JPH0334588B2 (en) | ||
JP4175762B2 (en) | Ultrasonic flaw detector | |
JPS597260A (en) | Method and device for ultrasonic flaw detection | |
JPS6228862B2 (en) | ||
JPH09257759A (en) | C-scan ultrasonic flaw detection method and apparatus | |
JPH06300740A (en) | Ultrasonic microscope | |
JPH09292371A (en) | Image processing method and apparatus for ultrasonic reflection source | |
JPS59109860A (en) | Ultrasonic flaw detector | |
JP2017075850A (en) | Ultrasonic inspection method and apparatus | |
JPS62192655A (en) | Ultrasonic flaw detection method | |
JPS6341422B2 (en) |