JPS622841B2 - - Google Patents
Info
- Publication number
- JPS622841B2 JPS622841B2 JP52004153A JP415377A JPS622841B2 JP S622841 B2 JPS622841 B2 JP S622841B2 JP 52004153 A JP52004153 A JP 52004153A JP 415377 A JP415377 A JP 415377A JP S622841 B2 JPS622841 B2 JP S622841B2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- fiber layer
- column
- hollow
- supported
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
【発明の詳細な説明】
本発明はその膜壁が流体に対して選択透過性を
有する中空繊維を用いた中空繊維組立体に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hollow fiber assembly using hollow fibers whose membrane walls are selectively permeable to fluids.
膜分離装置が用いられる操作としては気体分
離、液体透過、限外濾過、逆浸透法などがあり、
具体的な応用例としては海水の淡水化、かん水の
脱塩、各種廃水の浄化、蛋白の精製、果物ジユー
スの濃縮、油水分離、などを挙げることができ
る。 Operations in which membrane separation devices are used include gas separation, liquid permeation, ultrafiltration, and reverse osmosis.
Specific examples of applications include desalination of seawater, desalination of brine, purification of various wastewater, purification of proteins, concentration of fruit juice, and oil/water separation.
従来、中空繊維を用いた膜分離装置として多く
の提案があるが、心管のまわりに多数の中空繊維
を層状に配置した中空繊維組立体が代表的なもの
である。この場合心管としては、円筒状の管の壁
に多数の小孔を設けたものが知られており、その
代表例は特公昭47−11696、特開昭47−22387など
に示されている。 Conventionally, there have been many proposals for membrane separation devices using hollow fibers, but a typical example is a hollow fiber assembly in which a large number of hollow fibers are arranged in layers around the heart tube. In this case, the heart tube is known to be a cylindrical tube with many small holes in its wall, and representative examples are shown in Japanese Patent Publication No. 47-11696, Japanese Patent Publication No. 47-22387, etc. .
このように中空繊維層の中心部に配置される心
管は膜分離装置に供給された被処理流体の供給流
路あるいは既に中空繊維を通過した被処理流体の
排出流路としての役割をもつが、特に中空繊維層
における被処理流体の流れが均一になるように配
慮しなければならない。従来多数の小孔を有する
中空管が心管として提案されているが、心管の孔
のあいてない部分付近の中空繊維層がデツドスペ
ースになり、被処理流体との接触が十分でないた
め透過流量と分離効率が低下する欠点がある。デ
ツドスペースを少なくするには孔の数を増せばよ
いが、被処理流体の均一な分散流を得るためには
孔を通過する被処理流体の圧力損失をある限度以
上に保つ必要があるので径の小さな孔を多数つく
る必要があり、心管の製作が極めて繁雑になる欠
点がある。また心管として焼結金属などから成る
多孔質管が知られているが、この方式は圧力損失
が大きくまた目づまりを起しやすい欠点がある。 In this way, the heart tube placed in the center of the hollow fiber layer serves as a supply channel for the fluid to be treated that has been supplied to the membrane separation device, or as a discharge channel for the fluid to be treated that has already passed through the hollow fibers. In particular, care must be taken to ensure that the flow of the fluid to be treated is uniform in the hollow fiber layer. Conventionally, a hollow tube with many small holes has been proposed as the heart tube, but the hollow fiber layer near the unperforated part of the heart tube becomes a dead space, and there is insufficient contact with the fluid to be treated, so that permeation is difficult. The disadvantage is that the flow rate and separation efficiency are reduced. To reduce the dead space, increase the number of holes, but in order to obtain a uniformly distributed flow of the fluid to be treated, it is necessary to keep the pressure loss of the fluid passing through the holes above a certain limit, so the diameter should be increased. This method has the disadvantage that many small holes need to be made, making the heart tube extremely complicated to manufacture. Also, a porous tube made of sintered metal or the like is known as a core tube, but this method has the drawbacks of large pressure loss and clogging.
本発明者等は、従来一般に行われている心管の
代りに長さ方向に実質的に連続した突起を有する
柱体を中空繊維層の支持体として用いると上記の
欠点を解決し得ることを見出し、本発明に到達し
たものである。 The present inventors have found that the above-mentioned drawbacks can be solved by using a pillar having substantially continuous protrusions in the length direction instead of the conventional heart tube as a support for the hollow fiber layer. This is the heading that led to the present invention.
即ち、本発明は外筒内に長さ方向に実質的に連
続した突起を有する柱体の周りに選択透過性中空
繊維を螺旋状に巻回してなる繊維層が配置され、
該柱体の凹部と該繊維層との間に流体通路が形成
され、繊維層の両端が樹脂壁で構成される中空繊
維組立体を収容してなり、かつ該樹脂壁は環状部
材を介して端板に支持され、該端板は流体出口を
備えスナツプリングにより外筒に支持されてな
り、また一方の端板は流体入出口を備えスナツプ
リングを介して外筒に支持されてなる膜分離装置
である。 That is, in the present invention, a fiber layer made of permselective hollow fibers spirally wound around a column having substantially continuous protrusions in the length direction is arranged in the outer cylinder,
A fluid passage is formed between the concave portion of the column and the fiber layer, and both ends of the fiber layer accommodate a hollow fiber assembly composed of resin walls, and the resin wall is connected to the fiber layer through an annular member. The membrane separator is supported by end plates, the end plate has a fluid outlet and is supported on the outer cylinder by a snap spring, and one end plate has a fluid inlet and outlet and is supported by the outer cylinder via the snap spring. be.
本発明において長さ方向に実質的に連続した突
起を有する柱体とは、かかる柱体の周囲に中空繊
維を配置した場合に該柱体の凹部と該繊維層との
間に柱体の長さ方向に連続した流体通路が形成さ
れるものである。かかる柱体の突起は長さ方向に
連続していることが好ましいが、該柱体の周囲に
繊維が配置され、柱体の凹部に繊維が入り込まな
い程度に不連続であつてもさしつかえない。また
柱体の断面は少なくとも3つの突起を有するもの
である。また柱体自身中空になつていてもかまわ
ず、更に柱体の側面に多数の小孔が設けられて、
柱体の中空部が柱体の凹部と繊維層との間に形成
される流体通路と小孔で連通していてもよい。 In the present invention, a column having projections that are substantially continuous in the length direction means that when hollow fibers are arranged around the column, there is a gap between the concave part of the column and the fiber layer over the length of the column. A continuous fluid passage is formed in the longitudinal direction. It is preferable that the protrusions of the column are continuous in the length direction, but the fibers may be arranged around the column and may be discontinuous to the extent that the fibers do not enter the recesses of the column. Further, the cross section of the column has at least three protrusions. In addition, the column itself may be hollow, and many small holes may be provided on the side of the column.
The hollow portion of the column may communicate with a fluid passage formed between the recess of the column and the fibrous layer through a small hole.
かかる長さ方向に実質的に連続した突起を有す
る柱体は一般に断面の径が10〜100ミリメート
ル、断面における突起部の高さ(半径方向の長
さ)は一般に4〜40ミリメートル、柱体の長さが
100〜5000ミリメートルが適当である。柱体の材
質は合成樹脂が一般的であるが、金属あるいは無
機材料でもよい。合成樹脂としては例えばポリエ
チレン、ポリプロピレン、ポリ塩化ビニル、ナイ
ロン6、ナイロン66、ナイロン12、ポリエチレン
テレフタレート、ポリカーボネートなどを挙げる
ことができる。 Such a column having a substantially continuous protrusion in the longitudinal direction generally has a cross-sectional diameter of 10 to 100 mm, the height of the protrusion in the cross section (radial length) is generally 4 to 40 mm, and the column has a diameter of 10 to 100 mm. length is
100-5000mm is suitable. The material of the column is generally synthetic resin, but it may also be made of metal or inorganic material. Examples of the synthetic resin include polyethylene, polypropylene, polyvinyl chloride, nylon 6, nylon 66, nylon 12, polyethylene terephthalate, and polycarbonate.
本発明で用いる中空繊維は外径が10〜1000ミク
ロン、中空率が3〜80%であり、その膜壁が流体
に対して選択透過性を有するものであれば特に限
定はない。これらの中空繊維の膜壁は均質、微小
多孔質、異方性のいずれでもよい。 The hollow fibers used in the present invention have an outer diameter of 10 to 1000 microns and a hollow ratio of 3 to 80%, and are not particularly limited as long as their membrane walls have selective permeability to fluids. The membrane walls of these hollow fibers may be homogeneous, microporous, or anisotropic.
本発明において柱体の周囲に中空繊維を配置し
て繊維層を形成する場合、繊維層が柱体の突起部
先端で支持されており、柱体の凹部に中空繊維が
入りこまないように配置することが必要である。
例えば柱体のまわりに中空繊維を螺旋状にくり返
し巻きつけて行くと、柱体の周囲に突起部の先端
で支持された繊維層が形成され凹部には中空繊維
を含まない空間が残される。またこのようにして
得られる中空繊維組立体において中空繊維をでき
るだけ密に配置して繊維間の間隙を少なくするほ
うが好ましい。密に充填された繊維層は流体通路
との間に圧力差を生ぜしめ、組立体の長さ方向全
体にわたつて被処理流体を均等に流すことができ
る。しかしながら中空繊維をあまり密に配置しす
ぎると被処理流体に濃度分極を生じやすくなるの
で好ましくない。中空繊維層の見掛けの体積に対
して中空繊維の実際に占める体質の割合は65%以
下が望ましい。 In the present invention, when forming a fiber layer by arranging hollow fibers around a column, the fiber layer is supported at the tips of the protrusions of the column, and the hollow fibers are arranged so as not to enter the recesses of the column. It is necessary to.
For example, when hollow fibers are repeatedly wound spirally around a column, a fiber layer supported by the tips of the protrusions is formed around the column, leaving a space free of hollow fibers in the recess. Further, in the hollow fiber assembly thus obtained, it is preferable to arrange the hollow fibers as densely as possible to reduce the gaps between the fibers. The closely packed fibrous layer creates a pressure differential with the fluid passageway to allow for even flow of the fluid to be treated throughout the length of the assembly. However, it is not preferable to arrange the hollow fibers too closely because it tends to cause concentration polarization in the fluid to be treated. It is desirable that the actual proportion of the constitution of the hollow fibers to the apparent volume of the hollow fiber layer is 65% or less.
本発明において樹脂壁を構成する樹脂は硬化前
に流動性のある流体であつて硬化によつて固化し
て硬い固体となるものが好ましく、その代表例と
してエポキシ樹脂、シリコン樹脂、ポリウレタン
樹脂を挙げることができる。本発明の中空繊維組
立体において樹脂壁は中空繊維組立体の片端部ま
たは両端部に軸に垂直に設けるのが一般的である
が中空繊維層の円筒部側面に設けることもでき
る。夫々の中空繊維はこの樹脂壁の少くともひと
つを貫通して外部に開口しており、中空繊維と樹
脂壁との間は流体に対して十分にシールされてい
る。 In the present invention, the resin constituting the resin wall is preferably a fluid that is fluid before curing and becomes a hard solid upon curing. Typical examples thereof include epoxy resin, silicone resin, and polyurethane resin. be able to. In the hollow fiber assembly of the present invention, the resin wall is generally provided perpendicularly to the axis at one end or both ends of the hollow fiber assembly, but it may also be provided on the side surface of the cylindrical portion of the hollow fiber layer. Each hollow fiber passes through at least one of the resin walls and opens to the outside, and the space between the hollow fiber and the resin wall is sufficiently sealed against fluid.
次に図によつて本発明をさらに具体的に説明す
る。 Next, the present invention will be explained in more detail with reference to the drawings.
第1図は本発明の中空繊維組立体の一具体例に
関して一部切欠断面図を示したものであり、長さ
方向に連続した突起を有する柱体1のまわりに繊
維層2が配置され、柱体1の凹部と繊維層との間
に流体通路3が形成され、繊維層の両端は樹脂壁
4,5で構成される中空繊維組立体である。 FIG. 1 shows a partially cutaway sectional view of a specific example of the hollow fiber assembly of the present invention, in which a fiber layer 2 is arranged around a column 1 having continuous protrusions in the length direction, A fluid passage 3 is formed between the recess of the column 1 and the fiber layer, and both ends of the fiber layer are hollow fiber assemblies composed of resin walls 4 and 5.
流体流路3はその一端が管6を介して膜分離装
置の流体出入口に連通するようになつており、他
端は樹脂壁4によつて閉じられている。繊維層2
を構成する中空糸はU字状をなしており樹脂壁5
の内部で折返してその両端部が樹脂壁4を貫通し
て外側の開口面7に開口している。 One end of the fluid flow path 3 communicates with a fluid inlet/outlet of the membrane separation device via a pipe 6, and the other end is closed by a resin wall 4. fiber layer 2
The hollow fibers constituting the resin wall 5 have a U-shape.
It is folded back inside and both ends thereof penetrate through the resin wall 4 and open to the outer opening surface 7.
第2図は第1図の−線に沿つた断面図を示
したものである。この場合柱体1は6個の突起を
有し、中空繊維はこの突起の先端に接し凹部に接
しない形で配置されるので柱体と繊維層2との間
に長さ方向に連続した流体通路3が形成される。 FIG. 2 shows a sectional view taken along the - line in FIG. 1. In this case, the column 1 has six protrusions, and the hollow fibers are placed in contact with the tips of the protrusions and not in contact with the recesses, so that a continuous fluid exists in the length direction between the column and the fiber layer 2. A passage 3 is formed.
第3図は第1図の中空繊維組立体における柱体
1を械大して示した斜視図である。 FIG. 3 is an enlarged perspective view of the column 1 in the hollow fiber assembly of FIG. 1.
第4図、第5図、第6図、第7図、第8図、第
9図および第10図は本発明の柱体の他の具体例
についてその断面図を示したものである。いずれ
の場合も柱体の凹部と繊維層との間に流体通路が
形成される。特に第9図は中心部にも流体通路を
有し、中心部の流体通路が柱体の凹部と繊維層と
の間に形成される流体通路と柱体側面に設けられ
た多数の小孔で連通する構造の柱体を示したもの
である。 FIGS. 4, 5, 6, 7, 8, 9, and 10 show cross-sectional views of other specific examples of the columnar body of the present invention. In either case, a fluid passage is formed between the recess of the column and the fiber layer. In particular, Fig. 9 has a fluid passage in the center, and the fluid passage in the center consists of a fluid passage formed between the concave part of the column and the fiber layer, and a large number of small holes provided on the side of the column. This figure shows columns with a communicating structure.
第11図は第1図の中空繊維組立体を容器内に
収容した膜分離装置の一具体例に関してその断面
図を示したものである。 FIG. 11 shows a sectional view of a specific example of a membrane separation device in which the hollow fiber assembly shown in FIG. 1 is housed in a container.
樹脂壁4は環状部材12を介して端板9に支持
され、端板9は流体出口13を備えスナツプリン
グ14により円筒8に支持される。一方端板10
は流体入出口11,15を備えスナツプリング1
6を介して円筒8に支持されている。 The resin wall 4 is supported by an end plate 9 via an annular member 12, and the end plate 9 is provided with a fluid outlet 13 and supported by a cylinder 8 by a snap ring 14. One end plate 10
has a fluid inlet and outlet 11, 15 and a snap spring 1
It is supported by a cylinder 8 via 6.
また流体のシール機構としてOリング17,1
8,19が設けられている。かかる膜分離装置を
用いて逆浸透操作を行なう場合に関して流体の流
れを説明すると、まず流体入出口11に供給され
た被処理流体は管6を通つて流体通路3に入り繊
維層2に流入する。被処理流体は繊維層2を通過
する間にその一部が中空繊維内に透過し中空繊維
内の流路を通つて流体出口13より排出される。
一方中空繊維内に透過することなく繊維層2を通
過した被処理流体は繊維層2と円筒8との間の環
状流路を通つて流体入出口15より排出される。 Also, O-rings 17, 1 are used as a fluid sealing mechanism.
8 and 19 are provided. To explain the flow of fluid when performing a reverse osmosis operation using such a membrane separation device, first, the fluid to be treated that is supplied to the fluid inlet/outlet 11 enters the fluid passage 3 through the pipe 6 and flows into the fiber layer 2. . While the fluid to be treated passes through the fiber layer 2, a portion thereof permeates into the hollow fibers and is discharged from the fluid outlet 13 through the flow path within the hollow fibers.
On the other hand, the fluid to be treated that has passed through the fiber layer 2 without permeating into the hollow fibers is discharged from the fluid inlet/outlet 15 through the annular channel between the fiber layer 2 and the cylinder 8.
本発明の中空繊維組立体の流体通路は繊維層自
身で形成されるので多孔心管を使用した時のよう
に心管と中空繊維の接触部付近のデツドスペース
がなく、液処理流体が繊維層全体にわたつて均一
に流れ、濃度分極も生じない。この結果本発明の
中空繊維組立体を用いると従来のものに比べて透
過流量が大きく、分離効率の高い膜分離装置を提
供することができる。また中空繊維層の繊維密度
を大きくした場合は柱体および繊維層が共同して
形成する流体通路と繊維層の間に流体の圧力差が
生じるので中空繊維組立体の長さ方向全体にわた
つて中空繊維層内部の流体の流れを均等にし、全
体を通じて被処理流体を中空繊維に一様に接触さ
せることができる。このほか上記柱体の分岐部の
の設計を変えることにより分岐部と繊維層で構成
される流路の容積を調整することができ、上記流
路内の被処理流体の流速を自由に選び得る利点が
ある。また本発明における分岐状断面を有する柱
体の作製は引抜法などによりわずかな工程で大量
生産が可能であり、孔あき管や焼結金属管のよう
な長い製作工程は不要である。 Since the fluid passages of the hollow fiber assembly of the present invention are formed in the fiber layer itself, there is no dead space near the contact area between the core tube and the hollow fibers, unlike when a porous core tube is used, and the liquid treatment fluid can flow throughout the fiber layer. It flows uniformly over the entire area, and no concentration polarization occurs. As a result, when the hollow fiber assembly of the present invention is used, it is possible to provide a membrane separation device with a larger permeation flow rate and higher separation efficiency than conventional ones. In addition, when the fiber density of the hollow fiber layer is increased, a fluid pressure difference occurs between the fluid passage formed jointly by the column and the fiber layer and the fiber layer, so that the fiber density is increased throughout the length of the hollow fiber assembly. The flow of fluid inside the hollow fiber layer can be made uniform, and the fluid to be treated can be uniformly brought into contact with the hollow fibers throughout the layer. In addition, by changing the design of the branching part of the column, the volume of the flow path made up of the branching part and the fiber layer can be adjusted, and the flow rate of the fluid to be treated in the flow path can be freely selected. There are advantages. Furthermore, the columnar body having a branched cross section according to the present invention can be mass-produced in a few steps using a drawing method or the like, and there is no need for long manufacturing steps such as those for perforated tubes or sintered metal tubes.
第1図は本発明の中空繊維組立体の一部切欠断
面図、第2図は第1図の−線に沿つた断面
図、第3図は第1図の柱体の斜視図、第4〜10
図は本発明の柱体の断面図、第11図は第1図の
中空繊維組立体を収容した膜分離装置の断面図で
ある。
FIG. 1 is a partially cutaway sectional view of the hollow fiber assembly of the present invention, FIG. 2 is a sectional view taken along the - line in FIG. 1, FIG. 3 is a perspective view of the column shown in FIG. ~10
The figure is a cross-sectional view of the columnar body of the present invention, and FIG. 11 is a cross-sectional view of a membrane separation device containing the hollow fiber assembly of FIG. 1.
Claims (1)
有する柱体の周りに選択透過性中空繊維を螺旋状
に巻回してなる繊維層が配置され、該柱体の凹部
と該繊維層との間に流体通路が形成され、繊維層
の両端が樹脂壁で構成される中空繊維組立体を収
容してなり、かつ該樹脂壁は環状部材を介して端
板に支持され、該端板は流体出口を備えスナツプ
リングにより外筒に支持されてなり、また一方の
端板は流体入出口を備えスナツプリングを介して
外筒に支持されてなる膜分離装置。1 A fibrous layer formed by winding permselective hollow fibers in a helical manner around a columnar body having substantially continuous protrusions in the length direction is disposed in the outer cylinder, and a concave portion of the columnar body and the fiber layer A fluid passage is formed between the fiber layer, and both ends of the fiber layer accommodate a hollow fiber assembly composed of resin walls, and the resin wall is supported by the end plate via an annular member, and the end plate A membrane separation device is provided with a fluid outlet and supported on the outer cylinder by a snap spring, and one end plate is provided with a fluid inlet and outlet and supported on the outer cylinder via the snap spring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP415377A JPS5389077A (en) | 1977-01-17 | 1977-01-17 | Hollow fiber assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP415377A JPS5389077A (en) | 1977-01-17 | 1977-01-17 | Hollow fiber assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5389077A JPS5389077A (en) | 1978-08-05 |
JPS622841B2 true JPS622841B2 (en) | 1987-01-22 |
Family
ID=11576804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP415377A Granted JPS5389077A (en) | 1977-01-17 | 1977-01-17 | Hollow fiber assembly |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5389077A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060031280A (en) * | 2004-10-08 | 2006-04-12 | 주식회사 대우일렉트로닉스 | Rotor stock member of motor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4210536A (en) * | 1978-09-19 | 1980-07-01 | Albany International Corp. | Hollow filament separatory module |
US6071414A (en) * | 1995-03-22 | 2000-06-06 | Mechano Chemical Research Institute Ltd. | Method for desalinating salts-containing water and apparatus therefor |
-
1977
- 1977-01-17 JP JP415377A patent/JPS5389077A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060031280A (en) * | 2004-10-08 | 2006-04-12 | 주식회사 대우일렉트로닉스 | Rotor stock member of motor |
Also Published As
Publication number | Publication date |
---|---|
JPS5389077A (en) | 1978-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4352736A (en) | Wound flattened hollow fiber assembly having plural spaced core sections | |
US4061574A (en) | Assembly of permeable hollow fibers and a tubesheet supportable at its face and opened by bores parallel thereto | |
US4707268A (en) | Hollow fiber potted microfilter | |
US5580452A (en) | Moving liquid membrane modules | |
KR0161292B1 (en) | Spiral wound gas permeable membrane module and apparatus and method using the same | |
US3528553A (en) | Permeation separation device for separating fluids | |
EP0689475B1 (en) | Membrane filters | |
US4430219A (en) | Hollow fiber package body and its production | |
US5160042A (en) | Double ended hollow fiber bundle and fluids separation apparatus | |
US20060081524A1 (en) | Membrane contactor and method of making the same | |
JPH06154565A (en) | Fluid separating device and method of manufacturing spirally wound semi-permeable element for use in said device | |
JPS6351722B2 (en) | ||
JPH04247224A (en) | Multiple bundle device for separating fluid | |
JP2002537104A (en) | Cross-flow filtration device with filtrate conduit network and method for producing the same | |
JPS6227007A (en) | Wound film candle filter | |
JPS63104617A (en) | Mass exchange apparatus | |
US4820413A (en) | Annular module for filtering a pressurized liquid by reverse osmosis | |
EP0367774A1 (en) | Reverse osmosis apparatus. | |
JPH11114381A (en) | Spiral type membrane element | |
WO1984001522A1 (en) | Filter | |
JPH0683778B2 (en) | Fluid component diffusion controller | |
JPS622841B2 (en) | ||
IE42749B1 (en) | Fluid fractionating membrane apparatus | |
US4997564A (en) | Hollow fiber ultrafiltration replacement cartridge | |
JPS6241764B2 (en) |