[go: up one dir, main page]

JPS62282204A - Speckle photograph analyser - Google Patents

Speckle photograph analyser

Info

Publication number
JPS62282204A
JPS62282204A JP12472286A JP12472286A JPS62282204A JP S62282204 A JPS62282204 A JP S62282204A JP 12472286 A JP12472286 A JP 12472286A JP 12472286 A JP12472286 A JP 12472286A JP S62282204 A JPS62282204 A JP S62282204A
Authority
JP
Japan
Prior art keywords
interference fringe
angle
fringe
image
projection information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12472286A
Other languages
Japanese (ja)
Other versions
JPH0629702B2 (en
Inventor
Takashi Kawakami
隆 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12472286A priority Critical patent/JPH0629702B2/en
Publication of JPS62282204A publication Critical patent/JPS62282204A/en
Publication of JPH0629702B2 publication Critical patent/JPH0629702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve S/N ratio and to enable highly accurate and stabilized measurement of deformation of an article, by rotating interference fringe information of a 2-dimensional image developed, obtaining angles and distances of interference fringes from intensity projection information an each rotation angle. CONSTITUTION:A high deflector 23 is so set that a beam of light irradiated a deviation measuring unit of a dry plate 27 and constants (wavelength of laser light, etc.) of optical system are introduced into on arithmetic operation apparatus 35. Next, when a beam of laser light 21 is emitted. Young's interference fringes are regenerated on a semitransparent screen 29 corresponding to direction and magnitude of a deformation on the measuring unit. They are developed as images by a 2-dimensional image-developing apparatus 31 for storing 33. On the apparatus 35, intensity projection in each angle covering 0 deg.-18 deg. is obtained allowing these fringe images to rotate and the angle at the time when, out of the angles, an intensity projection provided with a characteristic different from that of other angle is detected is obtained as an angle of fringe. Next, the fringe image is rotated by the angle of fringe for arithmetic operation of the intensity projection and a decrement is calculated from the result and a frequency analysis is performed using the maximum entropy method for detection of the peak frequency and the fringe distances are obtained from the result by conversion.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の技術分野] この発明は、物体の表面における変形のスペックルパタ
ーンを撮像した干渉縞から物体の変形量を測定するスペ
ックル写真解析装置に関ずろ。
Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field of the Invention] This invention relates to speckle photo analysis that measures the amount of deformation of an object from interference fringes obtained by imaging speckle patterns of deformation on the surface of the object. Regarding the equipment.

[発明の技術的背景およびその問題点コ従来のスペック
ル写真解析装置としては、例えば雑誌「光学」第11巻
第6号(1982年12月)の583頁乃至588頁に
詳細に説明されている装置がある。この装置はレーザビ
ームを使用して干渉縞を照射し、この照射した干渉縞を
回転プリズムを介してスクリーン上に映写し、この映写
された画像を一次元躍像素子で画像している。
[Technical background of the invention and its problems] A conventional speckle photo analysis device is described in detail in, for example, the magazine "Optics" Vol. 11, No. 6 (December 1982), pages 583 to 588. There is a device that This device irradiates interference fringes using a laser beam, projects the irradiated interference fringes onto a screen via a rotating prism, and converts the projected image into an image using a one-dimensional dynamic image element.

回転プリズムは干渉縞を回転されるために使用されるも
のであり、この回転させ゛られた干渉縞によって画像素
子の出力の変調度が変化することを利用して干渉縞の角
度を求めている。また、干渉縞の間隔は縞の本数によっ
て平均化したり、または高速フーリエ変換を使用して測
定している。そして、このように求めた干渉縞の角度お
よび間隔から物体の表面の変形■を算出している。
A rotating prism is used to rotate the interference fringes, and the angle of the interference fringes is determined by utilizing the fact that the degree of modulation of the output of the image element changes due to the rotated interference fringes. . Further, the interval between interference fringes is measured by averaging the number of fringes or by using fast Fourier transform. Then, the deformation (2) of the surface of the object is calculated from the angle and interval of the interference fringes obtained in this way.

ところで、上記従来のスペックル写真解析装置は、干渉
縞の躍像に一次元の歴象素子を使用し、縞間隔を求める
ために平均化法または高速フーリエ法を使用し、また縞
の回転に回転プリズムを使用しているため、スペックル
ノイズの11を受は易く、ノイズが大きかったり、また
は縞のコントラストが悪い画像の場合には測定を行なう
ことが困難であったり、上記平均化法または高速フーリ
エ法の使用選定に当って明確なしきい値の決定が困難で
ある上に、高速フーリエ法はノイズの影響を受は易くて
請度が悪く、更に光学系の構成部品が多いという問題が
ある。また、縞の本数が少ない時には高速フーリエ法等
の手法ではデータ数が少なく、またノイズの影響を受け
るため、縞の周波数成分を抽出することは回付であり、
高精度な測定ができないという問題もある。
By the way, the above-mentioned conventional speckle photo analysis device uses a one-dimensional historical imaging element for the movement of interference fringes, uses an averaging method or fast Fourier method to determine the fringe spacing, and uses a Since a rotating prism is used, it is easily susceptible to speckle noise.If the noise is large or the contrast of the stripes is poor, it may be difficult to measure the image. In addition to the difficulty of determining a clear threshold when selecting the use of the fast Fourier method, the fast Fourier method is easily affected by noise and has poor reliability, and it also has the problem of having a large number of optical system components. be. In addition, when the number of fringes is small, methods such as the fast Fourier method have a small amount of data and are affected by noise, so extracting the frequency components of the fringes is a deferred method.
There is also the problem that highly accurate measurements cannot be made.

E発明の目的] この発明は、上記に鑑みてなされたbので、その目的と
するところは、S/N比を向上し、高精度で安定したス
ペックル写真解析装置を提供することにある。
E. OBJECT OF THE INVENTION] This invention was made in view of the above-mentioned problems, and its purpose is to improve the S/N ratio and provide a highly accurate and stable speckle photo analysis device.

U発明の概要j 上記目的を達成するため、物体の表面におけるスペック
ルパターンから得られた干渉縞に基づいて物体の変形迅
を測定するスペックル写真解析装置において、この発明
は、第1図に示す如く、レーザ光を照射された物体の測
定部位をh1像して、二次元画像の干渉縞情報を形成す
る干渉縞画像形成手段1と、前記干渉縞画像を所定の回
転角ずつ回転させる回転手段3と、前記回転手段3で回
転させられた干渉縞画像の各回転角における濃度投影情
報を作成する投影情報作成手段5と、前記各回転角にお
ける各濃度投影情報の特徴に基づいて干渉縞角度を求め
る干渉縞角麻測定手段7と、前記濃度投影情報の周波数
成分を解析して干渉縞間隔を求める干渉噴間隔測定手段
9とを有することを要旨とJる。
U Overview of the invention j In order to achieve the above object, the present invention provides a speckle photo analysis device for measuring the deformation speed of an object based on interference fringes obtained from a speckle pattern on the surface of the object. As shown, there is an interference fringe image forming means 1 that forms an h1 image of a measurement site of an object irradiated with a laser beam to form interference fringe information of a two-dimensional image, and a rotation unit that rotates the interference fringe image by a predetermined rotation angle. means 3; projection information creation means 5 for creating density projection information at each rotation angle of the interference fringe image rotated by the rotation means 3; The gist of the present invention is to include an interference fringe angle measuring means 7 for determining the angle, and an interference jet distance measuring means 9 for determining the interference fringe interval by analyzing the frequency component of the density projection information.

[発明の実施例] 以下、図面を用いてこの発明の詳細な説明する。[Embodiments of the invention] Hereinafter, the present invention will be explained in detail using the drawings.

第2図はこの発明の一実施例に係るスペックル写真解析
装置のブロック図である。同図において、レーザ源21
から出力されたレー啼ア光は光偏向器23J5よびコリ
メータレンズ25を介して乾板27の任、αの面上に集
光される。この乾板27がら一定距離H1隔した位置に
は半透明スクリーン29が配設され、この半透明スクリ
ーン2つにはレープ光を照射した部位における変形の方
向と大きさに従ったヤングの干渉縞が再生される。そし
て、この干渉縞画像は半透明スクリーン29がら乾板2
7と反対側に所定距離の位置に配設されている例えばT
Vカメラ等からなる二次元鴎(像装置31によって画像
され、二次元画像の干渉縞情報として画像メモリ33に
記憶される。この画像メモリ33に記憶された干渉縞情
報は演算装置35に供給され、該絵画像情報から縞の方
向および間隔が測定され、更に物理量に変換され、変f
Qffi、ターなりら変位の絶対量として演算装置35
がら出力される。
FIG. 2 is a block diagram of a speckle photo analysis device according to an embodiment of the present invention. In the figure, a laser source 21
The laser beam outputted from the laser beam is condensed onto the surface α of the dry plate 27 via the optical deflector 23J5 and the collimator lens 25. A semi-transparent screen 29 is arranged at a certain distance H1 from the dry plate 27, and Young's interference fringes are formed on these two semi-transparent screens according to the direction and magnitude of deformation in the area irradiated with the rape light. will be played. This interference fringe image is then displayed on the dry plate 2 through the semi-transparent screen 29.
For example, T is placed at a predetermined distance on the opposite side of
The image is captured by a two-dimensional imager (imaging device 31) consisting of a V-camera, etc., and stored in the image memory 33 as interference fringe information of the two-dimensional image.The interference fringe information stored in the image memory 33 is supplied to the arithmetic unit 35. , the direction and spacing of the stripes are measured from the pictorial image information, and further converted into physical quantities, and the change f
Qffi, the calculation unit 35 as the absolute amount of displacement
is output.

次に、作用を第3図のフローヂャートを参照して説明す
る。
Next, the operation will be explained with reference to the flowchart of FIG.

まず、変位を測定したい部位、すなわち変位計1創部位
にレーザ光が照OJするように光偏向器23を設定しく
ステップ110)、それから光学系の定数を演算装置3
5に入力する(ステップ120)。この定数は後で物理
量の変換を(テなう時に必要となるもので、入力項目と
してはレーザ光の波長λ、乾板27と半透明スクリーン
2つとの間の距離しおよび縞踊影倍率〜1である。そし
て、この3つの定数と後述するように求められた縞間隔
Fが測定されれば、変位の絶対it [)lは次式によ
り変換して求められる。
First, the optical deflector 23 is set so that the laser beam illuminates the site where the displacement is to be measured, that is, the wound site of the displacement meter 1 (Step 110), and then the constants of the optical system are determined by the calculation device 3.
5 (step 120). This constant will be needed later when converting physical quantities.The input items are the wavelength λ of the laser beam, the distance between the dry plate 27 and the two semi-transparent screens, and the fringe magnification ~1 Then, if these three constants and the fringe interval F obtained as described below are measured, the absolute displacement it[)l can be obtained by converting according to the following equation.

+ [)l =λL/MF 以上のように光偏向器23を設定し、光学系の定数が入
力されると、レーザ源21からレーザ光を発生して半透
明スクリーン2つに干渉縞を再生ずる(ステップ130
)。この干渉縞を二次元搬像装置31で搬像し、画像メ
モリ33に記憶する(ステップ140)a通m、測定部
位は複数となるので二次元@像装置31でff1fE+
した干渉縞画像情報はVTRや磁気ディスク等の画像メ
モリ33に記憶され、後で演算装置35により一括処理
して効率化している。
+ [)l =λL/MF When the optical deflector 23 is set as described above and the constants of the optical system are input, a laser beam is generated from the laser source 21 and interference fringes are reproduced on the two translucent screens. occurs (step 130)
). These interference fringes are transported by the two-dimensional imaging device 31 and stored in the image memory 33 (step 140).
The resulting interference fringe image information is stored in an image memory 33 such as a VTR or magnetic disk, and later processed in batches by an arithmetic unit 35 to improve efficiency.

次に、画像メモリ33に記憶された干渉縞情報から項乃
度および縞間隔が測定され(ステップ150.160>
それから物理ωの変換を行ない、変位の方向および大き
ざに換算して演算装置35から出力する(ステップ17
0,180)。
Next, the term degree and the fringe interval are measured from the interference fringe information stored in the image memory 33 (steps 150 and 160>
Then, the physical ω is converted, converted into the direction and magnitude of displacement, and outputted from the arithmetic unit 35 (step 17
0,180).

第4図および第5図は上記ステップ150,160で実
施される項乃度および縞間隔の測定の詳細な手順を示す
フローチャートである。
FIGS. 4 and 5 are flowcharts showing detailed procedures for measuring the degree of degree and the distance between fringes, which are carried out in steps 150 and 160.

Q’lJJに、第4図のフローチャートに従い、かつ第
6図を参照して項乃度の測定動作を詳細に説明する。
Q'IJJ, the measurement operation of the degree of term will be explained in detail according to the flowchart of FIG. 4 and with reference to FIG.

まず、画像メモリ33に入力された縞画像が第6図(a
 )において符号41で示すような画像と仮定すると、
この画像上で左上を原点とするX−Y座標系を設定し、
該縞画像のY軸方向の濃度投影情報を符号43で示l1
l−J:うに求める(ステップ210)。
First, the striped image input to the image memory 33 is shown in FIG.
), assuming an image as shown by reference numeral 41,
Set the X-Y coordinate system on this image with the origin at the upper left,
Density projection information in the Y-axis direction of the striped image is indicated by reference numeral 43 l1
l-J: Find the sea urchin (step 210).

次に、このように求めた濃度投影情報から第6図(a 
)の符号45で示す差分およびこの差分の分散賄をへ1
綿する(ステップ220.230)。
Next, from the density projection information obtained in this way, Figure 6 (a
) and the variance of this difference shown by the symbol 45 to 1
Cotton (steps 220 and 230).

そして、分散値を求めた(す、該縞画像を例えばアフィ
ン変換により所定角度反時計方向に回転させ(ステップ
240)、この回転角度が180°になっていない場合
には前記ステップ210に戻り、該回転された状態の縞
画像に対しで前記処理と同様に濃度投影情報を求め、更
に差分J3よび分散1直を求める処理を行なう(ステッ
プ250)。この処理を縞画像に対して所定角度ずつ回
転させて180” になるまで繰り返ず。
Then, the dispersion value is calculated (step 240), and if this rotation angle is not 180°, return to step 210, The density projection information is obtained for the rotated striped image in the same manner as in the above process, and the difference J3 and the variance 1 are also calculated (step 250).This processing is performed for each predetermined angle with respect to the striped image. Rotate and repeat until it reaches 180”.

そして、以上の繰返し11作で求めた各回転角度におけ
る分散値が最大となる時の回転角度θを検出すればこの
回転角度θが項乃度αである(ステップ260)。更に
詳しくは、例えば第6図(a )の符号41で示す縞画
像のY軸に対する角、度、すなわら項乃度をαとすると
、この縞画像41を所定角度ずつ回転させていき、角度
αまで回転させたところで該縞画像が符号47で示ずよ
うにY1軸に平行になる。この平行になった時、濃度1
Ω影情報の撮幅は最大となり、前記分散値も最大となる
ものである。従って、この時までに回転した前記角度が
項乃度となるのである。第6図(b)は各回転角度0に
対ずろ分散(直V(θ)を示ずグラフであるが、項乃度
αで分散値V〈θ)は最大となっている。
Then, if the rotation angle θ at which the dispersion value at each rotation angle obtained through the above 11 repetitions is maximum is detected, this rotation angle θ is the term α (step 260). More specifically, for example, if the angle, degree, or term, or degree, of the striped image 41 in FIG. When rotated to the angle α, the striped image becomes parallel to the Y1 axis as shown by reference numeral 47. When they become parallel, the concentration is 1
The imaging width of the Ω image information is the maximum, and the dispersion value is also the maximum. Therefore, the angle rotated up to this point becomes the degree. Although FIG. 6(b) is a graph without showing the offset dispersion (direct V(θ)) for each rotation angle of 0, the dispersion value V<θ) is maximum at the term α.

上記処理においては、項乃度を求めるのに濃度(グ彰の
差分および分散(1αを求めて行なっているが、換言す
ると縞画像を所定角度ずつ回転させながら、Ooから1
80°までの各角度における濃度IQ影を求め、この各
角度における濃度IQ影のうら他と異なる特徴を有する
濃度投影が検出された時の角度が項乃1哀αとなるので
ある。
In the above process, the density (the difference in the density and the variance (1α) are calculated to obtain the term degree. In other words, while rotating the striped image by a predetermined angle,
The density IQ shadow at each angle up to 80° is determined, and the angle at which a density projection having features different from those of the back of the density IQ shadow at each angle is detected is the term α.

次に、第5図のフローチャー1〜に従って縞間隔の測定
動作を詳細に説明する。
Next, the operation of measuring the fringe interval will be described in detail according to flowchart 1 to FIG. 5.

まず、第4図で説明したように項乃度の測定処理で求め
た項乃度たけ縞画像を回転し、縞を例えば第6図(a 
)の符号47で示すようにY軸と平行に設定しておく(
ステップ310)。そして、この画像の濃度投影、すな
わち第6図(a)において符号・19で示ず濃度投影を
計算し、この濃度投影から第6図(a )の符号51で
示す差分を計算する(ステップ320.330)。次に
、最大エントロピー法(MEM)を使用して周波数解析
を行ない(ステップ340)、縞の周波数成分を抽出し
、ずなわちビーク周波数を検出し、これから縞間隔を換
算して求める(ステップ350.360)。なお、第6
図(C)は縞周波数に対するMEMスペクトルを示すグ
ラフである。
First, as explained in FIG.
) as shown by the symbol 47, set it parallel to the Y axis (
step 310). Then, the density projection of this image, that is, the density projection indicated by reference numeral 19 in FIG. 6(a), is calculated, and the difference indicated by reference numeral 51 in FIG. 6(a) is calculated from this density projection (step 320). .330). Next, frequency analysis is performed using the maximum entropy method (MEM) (step 340), the frequency components of the fringes are extracted, the peak frequency is detected, and the fringe spacing is calculated from this (step 350). .360). In addition, the 6th
Figure (C) is a graph showing the MEM spectrum versus fringe frequency.

[発明の効果] 以上説明したように、この発明によれば、囮象した二次
元画像の干渉縞情報を回転し、各回転角における濃度投
影情報の特徴から干渉縞角度を求めるとともに、濃度投
影情報の周波数成分を解析して干渉縞間隔を求めている
ので、′JH度投影情報が有する積分子「用により画商
のS/N比が向上し、またスペックル画像特有の光学的
ノイズ、縞のコントラスト不良等の恕条rトに対しても
安定した結果が19られる。更に、濃度投影情報の周波
数成分を解析するのに最大エントロピー法を使用してい
るので、スペクトルの分解能が高く、稿本数に影響され
ず、精度の高い測定が可能である。
[Effects of the Invention] As explained above, according to the present invention, the interference fringe information of a simulated two-dimensional image is rotated, the interference fringe angle is determined from the characteristics of the density projection information at each rotation angle, and the density projection Since the interference fringe spacing is determined by analyzing the frequency components of the information, the signal-to-noise ratio of the art dealer is improved by using the multiplier of the JH degree projection information, and the optical noise and fringes peculiar to speckle images are improved. Stable results can be obtained even under conditions such as poor contrast.Furthermore, since the maximum entropy method is used to analyze the frequency components of the density projection information, the spectral resolution is high and the manuscript is Highly accurate measurement is possible regardless of the number of tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のクレーム対応図、第2図はこの発明
の一実施例に係るスペックル写真解析装置のブロック図
、第3図乃至第5図は第2図の装置の作用を示すフロー
チャート、第6図は第2図の装置の作用を説明するため
の図である。 1・・・干渉縞画像形成手段 3・・・“回転手段 5・・・投影情報作成手段 7・・・干渉縞角度測定手段 9・・・干渉縞間隔測定手段 特に1出願人    日産自動車株式会社代理人 弁理
士  三 好 保 男 第1図 第3図 第2図
FIG. 1 is a diagram corresponding to claims of the present invention, FIG. 2 is a block diagram of a speckle photo analysis device according to an embodiment of the present invention, and FIGS. 3 to 5 are flowcharts showing the operation of the device in FIG. 2. , FIG. 6 is a diagram for explaining the operation of the apparatus shown in FIG. 2. 1...Interference fringe image forming means 3...Rotating means 5...Projection information creating means 7...Interference fringe angle measuring means 9...Interference fringe interval measuring means Particularly Applicant 1 Nissan Motor Co., Ltd. Agent Patent Attorney Yasuo MiyoshiFigure 1Figure 3Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)物体の表面におけるスペックルパターンから得ら
れた干渉縞に基づいて物体の変形量を測定するスペック
ル写真解析装置において、レーザ光を照射された物体の
測定部位を撮像して、二次元画像の干渉縞情報を形成す
る干渉縞画像形成手段と、前記干渉縞画像を所定の回転
角ずつ回転させる回転手段と、該回転手段で回転させら
れた干渉縞画像の各回転角における濃度投影情報を作成
する投影情報作成手段と、前記各回転角における各濃度
投影情報の特徴に基づいて干渉縞角度を求める干渉縞角
度測定手段と、前記濃度投影情報の周波数成分を解析し
干渉縞間隔を求める干渉縞間隔測定手段とを有すること
を特徴とするスペックル写真解析装置。
(1) In a speckle photo analysis device that measures the amount of deformation of an object based on interference fringes obtained from a speckle pattern on the surface of the object, the measurement area of the object irradiated with laser light is imaged and two-dimensional An interference fringe image forming means for forming interference fringe information of an image, a rotating means for rotating the interference fringe image by a predetermined rotation angle, and density projection information at each rotation angle of the interference fringe image rotated by the rotating means. projection information creation means for creating a projection information; interference fringe angle measurement means for determining an interference fringe angle based on the characteristics of each density projection information at each rotation angle; and interference fringe angle measuring means for determining an interference fringe interval by analyzing frequency components of the density projection information. 1. A speckle photo analysis device comprising: interference fringe interval measuring means.
(2)前記干渉縞画像形成手段は、測定部位の撮像を二
次元の撮像領域を有する撮像手段で行なうことを特徴と
する特許請求の範囲第1項に記載のスペックル写真解析
装置。
(2) The speckle photo analysis apparatus according to claim 1, wherein the interference fringe image forming means images the measurement site using an imaging means having a two-dimensional imaging area.
(3)前記干渉縞角度測定手段は前記投影情報の一次差
分を求め、該差分の分散から干渉縞角度を測定すること
を特徴とする特許請求の範囲第1項乃至第2項に記載の
スペックル写真解析装置。
(3) The specification according to claim 1 or 2, wherein the interference fringe angle measuring means obtains a first-order difference of the projection information, and measures the interference fringe angle from the variance of the difference. photo analysis device.
(4)前記干渉縞間隔測定手段は最大エントロピー法を
使用して周波数成分の解析を行なうことを特徴とする特
許請求の範囲第2項または第3項記載のスペックル写真
解析装置。
(4) The speckle photo analysis apparatus according to claim 2 or 3, wherein the interference fringe interval measuring means analyzes frequency components using a maximum entropy method.
(5)前記干渉縞間隔測定手段は投影情報の極値の間隔
から干渉縞間隔を測定する手段を有することを特徴とす
る特許請求の範囲第2項または第3項記載のスペックル
写真解析装置。
(5) The speckle photo analysis apparatus according to claim 2 or 3, wherein the interference fringe interval measuring means includes means for measuring the interference fringe interval from the interval between extreme values of projection information. .
JP12472286A 1986-05-31 1986-05-31 Spectral photo analyzer Expired - Lifetime JPH0629702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12472286A JPH0629702B2 (en) 1986-05-31 1986-05-31 Spectral photo analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12472286A JPH0629702B2 (en) 1986-05-31 1986-05-31 Spectral photo analyzer

Publications (2)

Publication Number Publication Date
JPS62282204A true JPS62282204A (en) 1987-12-08
JPH0629702B2 JPH0629702B2 (en) 1994-04-20

Family

ID=14892483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12472286A Expired - Lifetime JPH0629702B2 (en) 1986-05-31 1986-05-31 Spectral photo analyzer

Country Status (1)

Country Link
JP (1) JPH0629702B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868465A (en) * 2012-12-18 2014-06-18 上海宝钢工业技术服务有限公司 Judgment method for online measurement of bulging of chemical coke drum
TWI452270B (en) * 2011-10-21 2014-09-11 Univ Nat Central Detecting apparatus and detecting method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452270B (en) * 2011-10-21 2014-09-11 Univ Nat Central Detecting apparatus and detecting method thereof
CN103868465A (en) * 2012-12-18 2014-06-18 上海宝钢工业技术服务有限公司 Judgment method for online measurement of bulging of chemical coke drum

Also Published As

Publication number Publication date
JPH0629702B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US11092511B2 (en) Device and method for measuring lens contour based on laser wave number scanning
JP3842298B2 (en) Method and apparatus for scanning phase measurement of an object in a video station
US7403650B2 (en) System for simultaneous projections of multiple phase-shifted patterns for the three-dimensional inspection of an object
US6208416B1 (en) Method and apparatus for measuring shape of objects
US3694088A (en) Wavefront measurement
US6501553B1 (en) Surface profile measuring method and apparatus
JP6161714B2 (en) Method for controlling the linear dimension of a three-dimensional object
US20080117438A1 (en) System and method for object inspection using relief determination
DE69719427T2 (en) Optical device for rapid defect analysis
Sensiper et al. Modulation transfer function testing of detector arrays using narrow-band laser speckle
US20140168368A1 (en) Method and apparatus for triangulation-based 3d optical profilometry
WO1996025764A1 (en) System and method for three-dimensional imaging of opaque objects
US4350443A (en) Optical fringe analysis
JPS6249562B2 (en)
US7274466B2 (en) Method and apparatus for measuring dynamic configuration surface
CN111750799A (en) Device and method for measuring five-dimensional information of spectral polarization topography based on interference illumination
CN114440789A (en) Method and system for simultaneous interferometric measurement of rotating body speed, distance and three-dimensional topography
JPS62282204A (en) Speckle photograph analyser
US7304745B2 (en) Phase measuring method and apparatus for multi-frequency interferometry
Bertani et al. High-resolution optical topography applied to ancient painting diagnostics
Shao et al. Dual profilometry based on Fourier single-pixel imaging using annular Fourier coefficient measurements
JP5518187B2 (en) Deformation measurement method
Toyooka et al. Automatic processing of Young's fringes in speckle photography
JP2001050727A (en) Shape measurement method using fringe modulation
JP2004279137A (en) Apparatus for measuring dynamic shape and dynamic position at once