[go: up one dir, main page]

JPS62281304A - Strain-sensitive conductive rubber material - Google Patents

Strain-sensitive conductive rubber material

Info

Publication number
JPS62281304A
JPS62281304A JP12524686A JP12524686A JPS62281304A JP S62281304 A JPS62281304 A JP S62281304A JP 12524686 A JP12524686 A JP 12524686A JP 12524686 A JP12524686 A JP 12524686A JP S62281304 A JPS62281304 A JP S62281304A
Authority
JP
Japan
Prior art keywords
rubber
weight
parts
voltage
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12524686A
Other languages
Japanese (ja)
Inventor
真下 智司
長安 進
山口 良雄
徹 野口
田中 健蔵
横山 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP12524686A priority Critical patent/JPS62281304A/en
Publication of JPS62281304A publication Critical patent/JPS62281304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は歪感応型導電性ゴム材料に係り、詳しくは導電
部材をゴムに混入してなる導電性ゴム発泡体であって、
引張り伸びの変化に伴って抵抗値あるいは電圧等を変化
させ、且つ荷重を除去しても元の伸度−抵抗値曲線上を
変化するヒステリシスの非常に小さい特性を有し、特に
伸張応力を感知するセンサとして使用される歪感応型導
電性ゴム材料に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a strain-sensitive conductive rubber material, and more specifically to a conductive rubber foam obtained by mixing a conductive member into rubber. And,
It has extremely low hysteresis, which changes the resistance value or voltage as the tensile elongation changes and remains on the original elongation-resistance curve even after the load is removed, and is especially sensitive to tensile stress. This invention relates to a strain-sensitive conductive rubber material used as a sensor.

(従来技術) 従来、ゴム弾性体に導電性の優れたカーボンブラック、
金属粒子等を混合充愼したゴム組成物が圧縮歪を受ける
ことにより抵抗値が大巾に減少し感圧特性を示すことに
ついては、例えば特開昭55−58504号公報、特開
昭58−152033号公報等数多の文献に開示されて
いる。
(Prior art) Conventionally, carbon black, which has excellent conductivity, was used as a rubber elastic body.
Regarding the fact that a rubber composition mixed and filled with metal particles etc. undergoes compressive strain, its resistance value decreases greatly and exhibits pressure-sensitive characteristics, for example, in JP-A-55-58504 and JP-A-58- It is disclosed in numerous documents such as No. 152033.

この種の感圧導電性ゴムが感圧特性を示す機構として、
まず該ゴムシートが押圧力によって歪を受けるとシート
体中に分散している導電性粒子同志が接触してリンクを
形成する確率が高くなり抵抗値が減少すると言われてい
る。
The mechanism by which this type of pressure-sensitive conductive rubber exhibits pressure-sensitive properties is as follows:
First, it is said that when the rubber sheet is distorted by a pressing force, the probability that the conductive particles dispersed in the sheet come into contact with each other to form a link increases and the resistance value decreases.

(発明が解決しようとする問題点) 従来の感圧導電性ゴムは圧縮歪の感知する特性を有する
反面、−軸方向の引張り歪を感知する機能に欠けている
。即ち、この種の感圧導電性ゴムを伸張させると伸度が
増すにつれて抵抗値も増大するが、荷重除去しても元の
抵抗値曲線をたどらないため、繰り返し性に欠け、伸張
応力を感知するセンサ素材としては使用不可能であった
(Problems to be Solved by the Invention) Although conventional pressure-sensitive conductive rubber has the property of sensing compressive strain, it lacks the function of sensing tensile strain in the -axial direction. In other words, when this type of pressure-sensitive conductive rubber is stretched, its resistance value increases as the degree of elongation increases, but even when the load is removed, it does not follow the original resistance value curve, so it lacks repeatability and cannot sense the stretching stress. It could not be used as a sensor material.

本発明は上述の如き実状に対処し、特に引張り伸びの変
化量を抵抗値あるいは電圧等の電気信号として出力変換
し、且つ伸張変形に対してヒステリシスの小さな特性を
有するもので伸張応力を感知するセンサとして使用出来
る歪感応型導電性ゴム材料を提供することを目的とする
The present invention deals with the above-mentioned actual situation, and in particular converts the amount of change in tensile elongation into an electrical signal such as a resistance value or voltage, and senses the tensile stress using a device that has a characteristic of having small hysteresis with respect to the tensile deformation. The purpose of the present invention is to provide a strain-sensitive conductive rubber material that can be used as a sensor.

(問題点を解決するための手段) 即ち、本発明の特徴とするところは、電気絶縁性を有す
るゴム100重量部に少なくとも導電性カーボンブラッ
ク25〜130重量部を添加したものを発泡させてなる
歪感応型導電性ゴム材料にある。
(Means for Solving the Problems) That is, the present invention is characterized by foaming a material obtained by adding at least 25 to 130 parts by weight of conductive carbon black to 100 parts by weight of electrically insulating rubber. It is a strain-sensitive conductive rubber material.

本発明において電気絶縁性を有するゴムとしては、例え
ば天然ゴム、ポリブタジェンゴム、ポリイソプレンゴム
、スチレンープクジエン共重合体ゴム、ニトリルゴム、
ブチルゴム、クロロプレンゴム、アクリロニトリル−ブ
タジェン共重合体ゴム、エチレン−プロピレン共重合体
ゴム、シリコンゴム等があるが、そのうちこれらのゴム
を2種類使用することも可能である。そして、上記ゴム
は機械的強度及び耐熱性を向上させるために硫黄、硫黄
化合物又は過酸化物で架橋可能なゴムを用い、また架橋
して使用される。
In the present invention, examples of rubber having electrical insulation properties include natural rubber, polybutadiene rubber, polyisoprene rubber, styrene-pucdiene copolymer rubber, nitrile rubber,
There are butyl rubber, chloroprene rubber, acrylonitrile-butadiene copolymer rubber, ethylene-propylene copolymer rubber, silicone rubber, etc., and it is also possible to use two types of these rubbers. In order to improve mechanical strength and heat resistance, the above-mentioned rubber is crosslinkable with sulfur, a sulfur compound, or a peroxide, or is used after being crosslinked.

また、本発明において使用する導電性カーボンブラック
としては、例えば通常用いられるファーネスブラック系
、アセチレンブラ・ツク系、サーマルブラック系、チャ
ネルブランク光等公知のものが使用され、その添加量は
上記ゴム100重量部に対して25〜130重量部、好
ましくは40〜100である。
Further, as the conductive carbon black used in the present invention, for example, commonly used ones such as furnace black type, acetylene black type, thermal black type, channel blank light etc. are used, and the amount added is 100% of the above rubber. It is 25 to 130 parts by weight, preferably 40 to 100 parts by weight.

もし、カーボンブラックの添加量が130重量部を越え
ると発泡倍率は小さく導電性ゴム組成物のヒステリシス
が大きくなり、また一方25重量部未満では伸張変化に
対して抵抗値あるいは電圧の変化が鈍感になってくる。
If the amount of carbon black added exceeds 130 parts by weight, the expansion ratio will be small and the hysteresis of the conductive rubber composition will increase, while if it is less than 25 parts by weight, changes in resistance or voltage will become insensitive to changes in elongation. It's coming.

そして、本発明において使用することが出来る他の導電
部材として非金属無機質の短繊維、粉体あるいはウィス
カー等があり、上記短繊維としては炭化珪素(SiC)
、ガラス、窒化珪素(Si3N4)等のcm等を素材と
するもので、長さ1100pから1011、径0.3〜
30μmを有し、一方粉体としては直径が0.05〜1
00μmのセラミック粉と呼ばれるもので、例えば炭化
珪素(SiC)、炭化チタン(TiC)、炭化ホウ素(
84C)、炭化タングステン(WC)等の炭化物、窒化
珪素(S i 3N4) 、窒化アルミニウム(AIN
)、窒化ホウ素(BN)、窒化チタン(T i N)等
の窒化物及びアルミナ(Al2O2)、ジルコニア(Z
r02)、ベリリア(Bed)等の酸化物であり、最も
好ましくは炭化珪素または窒化珪素である。
Other conductive members that can be used in the present invention include nonmetallic and inorganic short fibers, powder, whiskers, etc. The short fibers include silicon carbide (SiC).
, glass, silicon nitride (Si3N4), etc., with a length of 1100p to 1011p and a diameter of 0.3 to
30 μm, while the powder has a diameter of 0.05 to 1
00 μm ceramic powder, such as silicon carbide (SiC), titanium carbide (TiC), boron carbide (
84C), carbides such as tungsten carbide (WC), silicon nitride (S i 3N4), aluminum nitride (AIN
), boron nitride (BN), titanium nitride (T i N) and other nitrides, alumina (Al2O2), zirconia (Z
r02), beryllia (Bed), and most preferably silicon carbide or silicon nitride.

更に、ウィスカーとしてはα−炭化珪素(α−3iC)
、β−炭化珪素(β−3iC)、窒化珪素(S i 3
N4) 、α−アルミナ(A1203)、酸化チタン、
酸化亜鉛、酸化スズ、黒鉛、Fe、Cu、Ni等であり
、直径0.05〜3μm、長さ5〜500μm程度の形
状からなる針状結晶体である。上記無機質充填材をゴム
に添加するにあたっては、前もってシランカップリング
剤やチタンカップリング剤等で処理したり、ゴムと混合
時にシランカップリング剤やチタンカップリング剤を添
加することも可能である。これにより、補強効果がより
高まりゴムへの分散性がより良好になる。
Furthermore, as a whisker, α-silicon carbide (α-3iC)
, β-silicon carbide (β-3iC), silicon nitride (S i 3
N4), α-alumina (A1203), titanium oxide,
They are zinc oxide, tin oxide, graphite, Fe, Cu, Ni, etc., and are needle-like crystals with a diameter of about 0.05 to 3 μm and a length of about 5 to 500 μm. When adding the above-mentioned inorganic filler to rubber, it is possible to treat it with a silane coupling agent, a titanium coupling agent, etc. in advance, or to add a silane coupling agent or a titanium coupling agent at the time of mixing with the rubber. This further enhances the reinforcing effect and improves the dispersibility into rubber.

上記無機質充填材を添加しなくても本発明の目的を達成
することが可能であるが、しかし該充填材を添加するこ
とにより伸張応力を感知するセンサのみならず、圧縮力
を感知するセンサとしても使用できる。
Although it is possible to achieve the object of the present invention without adding the above-mentioned inorganic filler, by adding the filler, it can be used not only as a sensor that senses tensile stress but also as a sensor that senses compressive force. can also be used.

上記無機質充填材の添加量は、ゴム100重量部に対し
て1〜80重量部、好ましくは10〜40重量部である
The amount of the inorganic filler added is 1 to 80 parts by weight, preferably 10 to 40 parts by weight, per 100 parts by weight of rubber.

また、本発明のゴム組成物に使用される発泡剤は、例え
ばN、N’  −ジニトロソ・ペンタメチレン・テトラ
ミン、NXN”−ジメチル−N、N’−ジニトロソ・テ
レフタルアミド等のニトロソ化合物、アゾジカルボンア
ミド、アゾジカルボンアミドを主成分とする複合発泡剤
等のアゾ化合物、ベンゼン・スルフォニル・ヒドラジド
、P、P’−オキシビス(ベンゼンスルホニル・ヒドラ
ジド)、トルエン・スルホニル・ヒドラジド等のスルホ
ニル・ヒドラジドを初めとする有機発泡剤、あるいは重
炭酸ナトリウム、重炭酸アンモニウム、炭酸アンモニウ
ム等の無機発泡剤等があり、その添加量はゴム100重
量部に対して2〜30重量部であり、もし2重量部以下
の場合には所定の発泡倍率が得られるくなり、また30
重量部を越えると発泡倍率はそれ程度化せず、発泡状態
の悪いいびつな形状の発泡体が得られることが多い。
Further, the blowing agent used in the rubber composition of the present invention is, for example, a nitroso compound such as N,N'-dinitroso pentamethylene tetramine, NXN''-dimethyl-N,N'-dinitroso terephthalamide, or azodicarbonate. Including azo compounds such as composite blowing agents mainly composed of amides and azodicarbonamide, sulfonyl hydrazides such as benzene sulfonyl hydrazide, P, P'-oxybis (benzenesulfonyl hydrazide), and toluene sulfonyl hydrazide. There are organic blowing agents, or inorganic blowing agents such as sodium bicarbonate, ammonium bicarbonate, ammonium carbonate, etc., and the amount added is 2 to 30 parts by weight per 100 parts by weight of rubber. In some cases, the specified foaming ratio cannot be obtained;
If the amount exceeds 1 part by weight, the expansion ratio will not be increased to that extent, and a foam with a distorted shape and poor foaming state will often be obtained.

尚、本発明においては尿素およびその化合物等の発泡助
剤を添加して発泡剤の分散温度を関節することができる
In the present invention, the dispersion temperature of the blowing agent can be controlled by adding a blowing aid such as urea and its compounds.

次に、前記各成分を混合する方法として特に制限はなく
、例えばバンバリーミキサ−、ニーダ−、ロール等を用
い、適宜公知の手段、方法によって混練され加熱加圧す
ることができる。
Next, there is no particular restriction on the method of mixing the above-mentioned components, and the mixture may be kneaded and heated and pressurized by appropriately known means and methods using, for example, a Banbury mixer, a kneader, a roll, or the like.

そして、本発明においては通常ゴムに使用される軟化剤
、老化防止剤、加工助剤、加硫促進剤、架橋剤等を添加
することができる。
In the present invention, softeners, anti-aging agents, processing aids, vulcanization accelerators, crosslinking agents, etc. that are commonly used in rubber can be added.

(効果) このようにして得られたゴム材料は約1.5〜15程度
の発泡体であり、未発泡体のゴム材料に比べてまず (11発泡体ゴム材料の場合には抵抗値は伸びの大きさ
によって変化するが、伸びが大きくなるにつれ減少傾向
を示し、且つ直線的に減少する。尚、未発泡のゴム材料
では伸びが大きくなるにつれ抵抗値も上昇し、発泡体と
全く相反する傾向になる。
(Effects) The rubber material obtained in this way is a foam with a diameter of about 1.5 to 15, and compared to an unfoamed rubber material, the resistance value is lower (in the case of a foamed rubber material of 11, the resistance value increases). It changes depending on the size of the material, but as the elongation increases, it shows a decreasing tendency and decreases linearly.In addition, with unfoamed rubber materials, as the elongation increases, the resistance value also increases, which is completely contrary to the foam material. become a trend.

(2)発泡体ゴム材料の場合には、荷重を除去してもほ
ぼ同じ抵抗値を示すことからヒステリシスが小さい特性
を有するため、特に伸張応力を感知するセンサ、例えば
膨張可能なチューブ、パイプ等の被検知体の曲面変形を
敏感に感知できる張力検知センサに通用できる。
(2) In the case of foam rubber materials, even when the load is removed, the resistance value is almost the same, so the hysteresis is small. It can be used as a tension detection sensor that can sensitively sense curved surface deformation of a detected object.

次に、本発明をより具体的な実施例により更に詳細に説
明する。
Next, the present invention will be explained in more detail using more specific examples.

実施例 1 天然ゴム100重量部、Zn04重量部、ステアリン酸
1重量部、促進剤CM2重量部、発泡剤(セルマイクA
N  三協化成社)10重量部、プロセスオイル30重
量部、硫黄1重量部、アセチレンブラック50重量部、
ウィスカ−5iC20重量部からなるゴム配合物をバン
バリーミキサ−でl昆練後、ロールを用いた厚さ2龍の
シートに押し出した。このシートをモールドに挟み加硫
条件133X10分で加硫し、更に得られたシート16
0゛Cのオーブンに10分間放置して所定倍率に発泡さ
せた。得られた発泡体を50 X 2 X 2 mmに
切断し、この両端にリード線を連結してテストピースと
した。
Example 1 100 parts by weight of natural rubber, 4 parts by weight of Zn0, 1 part by weight of stearic acid, 2 parts by weight of accelerator CM, foaming agent (Celmic A
N Sankyo Kasei Co., Ltd.) 10 parts by weight, 30 parts by weight of process oil, 1 part by weight of sulfur, 50 parts by weight of acetylene black,
A rubber compound consisting of 20 parts by weight of Whisker 5iC was kneaded in a Banbury mixer and then extruded into a sheet with a thickness of 2 mm using a roll. This sheet was sandwiched between molds and cured under vulcanization conditions of 133 x 10 minutes, and the resulting sheet 16
The mixture was left in an oven at 0°C for 10 minutes to foam to a predetermined ratio. The obtained foam was cut into a size of 50 x 2 x 2 mm, and lead wires were connected to both ends to prepare a test piece.

該テストピースのリード線を引張試験機のチャックに固
定してテストピースを20 m / secの速度で伸
張あるいは荷重を除去しつつ電圧を測定した。電圧測定
はテストピースと電圧検出用の抵抗200にΩを直列に
連結し、これらの両端にDC9■をかけ、抵抗200に
Ωの両端で電圧の変化を検出した。
The lead wire of the test piece was fixed to the chuck of a tensile testing machine, and the voltage was measured while the test piece was stretched at a speed of 20 m/sec or the load was removed. For voltage measurement, Ω was connected in series with the test piece and a resistor 200 for voltage detection, and a DC voltage of 9 cm was applied across both ends of the resistor 200, and a change in voltage was detected across the Ω of the resistor 200.

テストピースの伸張、荷重除去そしてこれらの繰り返し
における伸度と電圧の関係を第1図に示す。これによる
と、伸度が増大するにつれてテストピースの電圧値は上
昇する傾向を示し、一方荷重を除去してもほぼ元の直線
に近接してヒステリシスの小さい特性が示される。また
、これを3回繰り返してもほぼ同じ傾向になり、繰り返
し性も良好と言える。
FIG. 1 shows the relationship between elongation and voltage during elongation of the test piece, load removal, and repetition of these steps. According to this, the voltage value of the test piece shows a tendency to increase as the elongation increases, and on the other hand, even when the load is removed, the test piece remains close to the original straight line and exhibits characteristics with small hysteresis. Moreover, even if this process is repeated three times, almost the same tendency is obtained, and the repeatability can be said to be good.

実施例2 (カーボンブラックの変量)天然ゴム100
重量部、ZnO4重量部、ステアリン酸1重量部、促進
剤CM2重量部、発泡剤(セルマイクAN三協化成社製
)20重量部、プロセスオイル30重量部、硫黄1重量
部そしてアセチレンブランクを25〜100重量部に変
量してなるゴム配合物を実施例1と同様の方法にて発泡
体のテストピースを製造し、同様の方法らで電圧を測定
した。その結果は第2図及び第3図に示されるが、アセ
チレンブラックが25重量部では伸度が増大しても電圧
の変化が無いことが判明した。
Example 2 (Variable of carbon black) Natural rubber 100
parts by weight, 4 parts by weight of ZnO, 1 part by weight of stearic acid, 2 parts by weight of accelerator CM, 20 parts by weight of a blowing agent (manufactured by Cellmic AN Sankyo Kasei Co., Ltd.), 30 parts by weight of process oil, 1 part by weight of sulfur, and 25 to 25 parts by weight of an acetylene blank. A foam test piece was prepared using a rubber compound containing 100 parts by weight in the same manner as in Example 1, and the voltage was measured in the same manner. The results are shown in FIGS. 2 and 3, and it was found that when the amount of acetylene black was 25 parts by weight, there was no change in voltage even if the elongation increased.

実施例3 (発泡倍率の変化) なるテストピースを作成し、伸度と電圧の関係を求めた
。その結果は第4図に示される。
Example 3 (Change in expansion ratio) A test piece was prepared, and the relationship between elongation and voltage was determined. The results are shown in FIG.

比較例 実施例1において発泡剤を含まないゴム組成物を加硫成
形し未発泡のゴム材料からなるテストピース(50X2
X1)の伸度と電圧の変形を求めた。その結果は第5図
に示される。これによって、未発泡の導電性ゴム材料は
伸度が大きくなるに従って電圧が低下し、荷重を減量し
た際の電圧変化は元の値から大きく離れてヒステリシス
が大きくなる結果になった。
Comparative Example In Example 1, a test piece (50 x 2
The elongation and voltage deformation of X1) were determined. The results are shown in FIG. As a result, as the elongation of the unfoamed conductive rubber material increases, the voltage decreases, and when the load is reduced, the voltage change greatly deviates from the original value, resulting in increased hysteresis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の係るゴム材料を伸張、荷重除去そして
それらの繰り返しにおける伸度と電圧との関係を示す図
、第2図及び第3図は本発明の係るゴム材料のカーボン
ブラックの添加量を変化した場合における伸度と電圧と
の関係を示す図、第4図は本発明に係るゴム材料の発泡
倍率を変化させた場合における伸度と電圧との関係を示
す図、そして第5図は従来のゴム材料における伸度と電
圧との関係を示す図である。 特許出願人  三ツ足ベルト株式会社 9               。 U) す・祇鷺 第2図 骨洩(・A) 第3図 第4図 1v渡(≠) 第5図 1隼、& (%) 手続補正書(自発) 昭和62年 5月20日
FIG. 1 is a diagram showing the relationship between elongation and voltage during stretching and load removal of the rubber material according to the present invention, and the repetition thereof; FIGS. 2 and 3 show the addition of carbon black to the rubber material according to the present invention. FIG. 4 is a diagram showing the relationship between elongation and voltage when changing the foaming ratio of the rubber material according to the present invention, and FIG. The figure is a diagram showing the relationship between elongation and voltage in conventional rubber materials. Patent applicant Mitsuko Belt Co., Ltd.9. U) Su・Gisagi Figure 2 bone leakage (・A) Figure 3 Figure 4 Figure 1V Watari (≠) Figure 5 Figure 1 Hayabusa, & (%) Procedural amendment (voluntary) May 20, 1988

Claims (1)

【特許請求の範囲】[Claims] 1、電気絶縁性を有するゴム100重量部に少なくとも
導電性カーボンブラック25〜130重量部を添加した
ものを発泡成形してなることを特徴とする歪感応型導電
性ゴム材料。
1. A strain-sensitive conductive rubber material, characterized in that it is formed by foam-molding a mixture of 100 parts by weight of electrically insulating rubber and at least 25 to 130 parts by weight of conductive carbon black.
JP12524686A 1986-05-29 1986-05-29 Strain-sensitive conductive rubber material Pending JPS62281304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12524686A JPS62281304A (en) 1986-05-29 1986-05-29 Strain-sensitive conductive rubber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12524686A JPS62281304A (en) 1986-05-29 1986-05-29 Strain-sensitive conductive rubber material

Publications (1)

Publication Number Publication Date
JPS62281304A true JPS62281304A (en) 1987-12-07

Family

ID=14905385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12524686A Pending JPS62281304A (en) 1986-05-29 1986-05-29 Strain-sensitive conductive rubber material

Country Status (1)

Country Link
JP (1) JPS62281304A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208052A (en) * 2005-01-25 2006-08-10 Bridgestone Corp Distortion sensor for rubber article
JP2008249621A (en) * 2007-03-30 2008-10-16 Yokohama Rubber Co Ltd:The Deformation behavior measuring method for tire reinforcement layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113850A (en) * 1978-02-24 1979-09-05 Japan Synthetic Rubber Co Ltd Pressureesensitive resistance body
JPS57154702A (en) * 1981-03-20 1982-09-24 Alps Electric Co Ltd Pressure sensitive resistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113850A (en) * 1978-02-24 1979-09-05 Japan Synthetic Rubber Co Ltd Pressureesensitive resistance body
JPS57154702A (en) * 1981-03-20 1982-09-24 Alps Electric Co Ltd Pressure sensitive resistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208052A (en) * 2005-01-25 2006-08-10 Bridgestone Corp Distortion sensor for rubber article
JP2008249621A (en) * 2007-03-30 2008-10-16 Yokohama Rubber Co Ltd:The Deformation behavior measuring method for tire reinforcement layer

Similar Documents

Publication Publication Date Title
EP0207450B1 (en) Pressure-sensitive conductive rubber material
US4028276A (en) Pressure-sensitive elastic resistor compositions
Park et al. Filler–elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites
JP5166714B2 (en) Cross-linked elastomer for sensor and method for producing the same
Wang et al. Magnetorheological elastomers based on isobutylene–isoprene rubber
JPS62281304A (en) Strain-sensitive conductive rubber material
Pramanik et al. Conductive nitrile rubber composite containing carbon fillers: Studies on mechanical properties and electrical conductivity
Smith et al. Origin of the self-reinforcement in PDMS bimodal networks
US4076652A (en) Elastic resistor compositions containing metallic-conductive particles and conductive lubricant particles
JPH0471108A (en) Pressure sensitive conductive elastomer
Yamashita et al. Approximated form of the strain energy-density function of carbon-black filled rubbers for industrial applications
JP2009139329A (en) Elastomer composite material for sensors and deformation sensor
JPS587001B2 (en) Durable pressure sensitive resistor and its manufacturing method
JPS62249304A (en) Pressure sensitive conducting rubber material
JPS628406A (en) Pressure sensitive conducting rubber sheet
JPS6235406A (en) Pressure-sensitive conducting rubber sheet
Nakajima et al. Strain amplification of elastomers filled with carbon black in tensile deformation
JPH04253109A (en) Deformable conductive elastomer
JPS62114202A (en) Pressure sensitive conductive rubber sheet
JPS6254742A (en) Pressure-sensitive rubber molding
JPH0586813B2 (en)
JPH077608B2 (en) Deformed conductive elastomer
Cho et al. Green Strength of Carbon-Black-Filled Styrene—Butadiene Rubber
Maruyama et al. Anisotropy of piezoresistance in n‐channel inversion layers of metal‐oxide‐semiconductor transistors on (001) Si
JPS62169031A (en) Stress distribution detection sensor