JPS6227823Y2 - - Google Patents
Info
- Publication number
- JPS6227823Y2 JPS6227823Y2 JP20080782U JP20080782U JPS6227823Y2 JP S6227823 Y2 JPS6227823 Y2 JP S6227823Y2 JP 20080782 U JP20080782 U JP 20080782U JP 20080782 U JP20080782 U JP 20080782U JP S6227823 Y2 JPS6227823 Y2 JP S6227823Y2
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- condenser pipe
- cooler
- refrigerant
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003507 refrigerant Substances 0.000 claims description 29
- 230000000630 rising effect Effects 0.000 claims description 15
- 239000007788 liquid Substances 0.000 description 11
- 238000001816 cooling Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Description
【考案の詳細な説明】
〔考案の技術分野〕
本考案は複数のコンデンサパイプを冷蔵庫本体
に立上り部及び立下り部を有するよう配設した冷
蔵庫に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a refrigerator in which a plurality of condenser pipes are arranged in a refrigerator body so as to have a rising part and a falling part.
従来より、主コンデンサパイプを、冷蔵庫本体
の背面の一側縁部に沿つて立上らせ、上縁部に沿
つて横方向に延び且つ他側縁部に沿つて下降する
よう配設すると共に、結露防止用の加熱源として
も作用する副コンデンサパイプを冷蔵庫本体の前
面の左右両側縁部及び上縁部に沿つて配設し、こ
れら主及び副の両コンデンサパイプを直列に接続
し、冷蔵庫本体の底部に配設したコンプレツサで
圧縮した冷媒を前記両コンデンサパイプにより凝
縮させて冷却器に供給する構成の冷蔵庫がある。
Conventionally, the main condenser pipe is arranged to rise along one side edge of the back of the refrigerator body, extend laterally along the upper edge, and descend along the other side edge. A sub-condenser pipe, which also acts as a heating source to prevent condensation, is placed along the left and right edges and the top edge of the front of the refrigerator, and both the main and sub-condenser pipes are connected in series. There is a refrigerator in which a refrigerant compressed by a compressor disposed at the bottom of the main body is condensed by both condenser pipes and then supplied to a cooler.
上記構成によれば、主コンデンサパイプの出口
側たる立下り部と副コンデンサパイプの入口側た
る立上り部との間に谷部が形成されてしまうの
で、コンデンサパイプと冷却器との間にコンプレ
ツサの停止時に閉塞して過熱状態の液冷媒が冷却
器側に流入しないよう電磁弁を設けたものでは、
コンプレツサが停止すると前記谷部に液冷媒が滞
溜してしまうことになる。このような状態でコン
プレツサが再起動すると、再起動直後では滞溜す
る液冷媒のために谷部におけるガス冷媒の割合
(かわき度)が急激に減少するようになり、この
結果液冷媒を副コンデンサパイプの頂上部を乗り
越えるよう上昇させるまでに時間を要することに
なり、コンプレツサが再起動しても直ちに冷媒を
冷却器に供給して冷却することができず、ひいて
はコンプレツサの運転時間が長くなり、消費電力
量が増大するという問題を生ずる。
According to the above configuration, a trough is formed between the falling part on the outlet side of the main condenser pipe and the rising part on the inlet side of the sub-condenser pipe. If a solenoid valve is installed to prevent overheated liquid refrigerant from flowing into the cooler due to blockage when stopped,
When the compressor stops, liquid refrigerant will accumulate in the valley. If the compressor is restarted in this condition, the proportion of gas refrigerant in the valleys (dirency) will rapidly decrease due to the liquid refrigerant stagnation immediately after the restart, and as a result, the liquid refrigerant will be transferred to the subcondenser. It takes time for the refrigerant to rise above the top of the pipe, and even if the compressor is restarted, it cannot immediately supply refrigerant to the cooler for cooling, which in turn increases the operating time of the compressor. This results in a problem of increased power consumption.
本考案の目的は、コンプレツサの再起動後にお
ける冷却の遅れを防止してコンプレツサの運転時
間を短縮し得、もつて消費電力量の削減を図り得
る冷蔵庫を提供するにある。
An object of the present invention is to provide a refrigerator that can prevent cooling delays after restarting the compressor, shorten the compressor operating time, and thereby reduce power consumption.
本考案は、複数のコンデンサパイプのうち一の
コンデンサパイプの両下端部を夫々コンプレツサ
側及び冷却器側に接続し、この一のコンデンサパ
イプの頂上部を他のコンデンサパイプの頂上部に
接続すると共に、他のコンデンサパイプの両下端
部を冷却器側に接続する構成とすることによりコ
ンデンサパイプ間に谷部が形成されることがない
ようにするところに特徴を有する。
The present invention connects both lower ends of one of the plurality of condenser pipes to the compressor side and the cooler side, and connects the top of this one condenser pipe to the top of the other condenser pipe. , is characterized in that by connecting both lower ends of other condenser pipes to the cooler side, no valley is formed between the condenser pipes.
以下本考案の一実施例につき図面を参照して説
明する。1は冷蔵庫本体で、これの内部には図示
しない冷凍室及び冷蔵室を上下に形成し、前面部
にこれら各室を開閉する冷凍室用扉2及び冷蔵室
用扉3を配設している。4は冷蔵庫本体1の底部
に配設したコンプレツサである。5は主コンデン
サパイプで、これは冷蔵庫本体1の背面部にその
一側縁部に沿う立上り部5aと上縁部に沿う水平
部5bと他側縁部に沿う立下り部5cとを連続し
て構成されている。6は副コンデンサパイプで、
これは冷蔵庫本体1の前面部において冷蔵室及び
冷凍室の各開口縁部に沿つて配設され、それら各
開口縁部を加熱してその結露防止を図るものであ
る。詳細には、この副コンデンサパイプ6は、冷
蔵室前面及び冷凍室前面の一側縁部に沿う立上り
部6aと、冷凍室前面の上縁部に沿う水平部6b
と、冷凍室前面の他側縁部に沿う第1の立下り部
6cと、冷凍室及び冷蔵室の境界部前面に沿つて
折返し状に配置された折返し水平部6dと、冷蔵
室前面の他側縁部に沿う第2の立下り部6eとを
連続させて構成されている。7は連結パイプで、
これは主コンデンサパイプ5の頂上部たる水平部
5bの略中央と副コンデンサパイプ6の頂上部た
る水平部6bの略中央とを連通させるものであ
る。8は蛇行状を成す補助コンデンサで、これは
冷蔵庫本体1の底部内に配設されて上方に除霜水
を受ける水受皿(図示せず)が配設されるように
なつている。而して、以上のように配置されたコ
ンプレツサ4及びコンデンサパイプ5,6等は第
2図に示すよう接続されている。即ち、コンプレ
ツサ4の吐出側は補助コンデンサ8を介して主コ
ンデンサパイプ5の立上り部5aの下端部に接続
され、且つ主コンデンサパイプ5の立下り部5c
並びに副コンデンサパイプ6の立上り部6a及び
第2の立下り部6eの各下端部はドライヤ9の入
口側に接続されている。ドライヤ9の出口側は、
第1のキヤピラリチユーブ10、電磁弁11及び
第2のキヤピラリチユーブ12を順に介して冷却
器13の入口側に接続されている。この電磁弁1
1は、コンプレツサ4の運転時に開放され、停止
時に閉塞されるもので、これによりコンプレツサ
4の停止時において主及び副の両コンデンサパイ
プ5及び6側の高温の液冷媒が冷却器13内に流
入することを防止するためのものである。そし
て、冷却器13の出口側は逆止弁14を介してコ
ンプレツサ4の吸入側に接続されている。
An embodiment of the present invention will be described below with reference to the drawings. Reference numeral 1 denotes a refrigerator body, inside which a freezer compartment and a refrigerator compartment (not shown) are formed above and below, and a freezer compartment door 2 and a refrigerator compartment door 3 for opening and closing each of these compartments are disposed on the front part. . 4 is a compressor disposed at the bottom of the refrigerator body 1. Reference numeral 5 denotes a main condenser pipe, which is connected to the back of the refrigerator main body 1 by a rising part 5a along one side edge, a horizontal part 5b along the upper edge, and a falling part 5c along the other side edge. It is composed of 6 is the sub-condenser pipe,
This is disposed along the edges of the openings of the refrigerator and freezer compartments in the front of the refrigerator body 1, and heats the edges of the openings to prevent condensation. Specifically, this sub-condenser pipe 6 has a rising portion 6a along one side edge of the front surface of the refrigerator compartment and the front surface of the freezer compartment, and a horizontal portion 6b along the upper edge of the front surface of the freezing compartment.
, a first falling part 6c along the other edge of the front surface of the freezer compartment, a folded horizontal part 6d arranged in a folded manner along the front surface of the boundary between the freezer compartment and the refrigerator compartment, and the other part of the front surface of the refrigerator compartment. A second falling portion 6e along the side edge is made continuous. 7 is a connecting pipe,
This allows approximately the center of the horizontal portion 5b, which is the top of the main condenser pipe 5, to communicate with the approximately center of the horizontal portion 6b, which is the top of the sub-condenser pipe 6. Reference numeral 8 denotes a meandering auxiliary capacitor, which is disposed in the bottom of the refrigerator main body 1 and has a water tray (not shown) disposed above to receive defrosting water. The compressor 4, condenser pipes 5, 6, etc. arranged as described above are connected as shown in FIG. That is, the discharge side of the compressor 4 is connected to the lower end of the rising part 5a of the main condenser pipe 5 via the auxiliary capacitor 8, and is connected to the lower end of the rising part 5c of the main condenser pipe 5.
The lower ends of the rising portion 6a and the second falling portion 6e of the sub-condenser pipe 6 are connected to the inlet side of the dryer 9. The outlet side of the dryer 9 is
It is connected to the inlet side of a cooler 13 via a first capillary tube 10, a solenoid valve 11, and a second capillary tube 12 in this order. This solenoid valve 1
1 is opened when the compressor 4 is in operation and closed when the compressor 4 is stopped, so that when the compressor 4 is stopped, high-temperature liquid refrigerant in both the main and auxiliary condenser pipes 5 and 6 flows into the cooler 13. This is to prevent such things from happening. The outlet side of the cooler 13 is connected to the suction side of the compressor 4 via a check valve 14.
次に、上記構成の作用を説明する。コンプレツ
サ4が起動すると、コンプレツサ4で圧縮された
冷媒が補助コンデンサ8を介して主コンデンサパ
イプ5の立上り部5a内に下端部から流入して上
昇し、立上り部5aの上端部から水平部5b内に
流入し、この水平部5b内を流れる際に一部は連
結パイプ7側に分流する。水平部5b内を流れ続
ける冷媒は立下り部5c内に上端部から流入し下
端部からドライヤ9に流れ込む。また連結パイプ
7側に分流した冷媒は副コンデンサパイプ6の水
平部6bに至つて立上り部6a側及び第1の立下
り部6c側に分流し、結局立上り部6a及び第2
の立下り部6eの下端部からやはりドライヤ9内
に流入する。そして、上述のように冷媒が補助コ
ンデンサ8、主コンデンサパイプ5及び副コンデ
ンサパイプ6を流れる際に凝縮されて液化し、第
1のキヤピラリチユーブ10、電磁弁11及び第
2のキヤピラリチユーブ12を順に介して冷却器
13内に流入する。冷却器13内に流入した液冷
媒はここで気化して冷却作用を呈し、更に逆止弁
14を介してコンプレツサ4に環流する。斯様な
冷却運転により庫内が冷却されると、コンプレツ
サ4が停止し、電磁弁10が閉塞される。コンプ
レツサ4の停止直後、主及び副の各コンデンサパ
イプ5及び6内では、冷媒が気液二相状態を呈し
ているが、液冷媒は直ちに各コンデンサパイプ5
及び6の下方、即ち各立上り部5a,6a及び各
立下り部5c,6eの夫々の下端部へと流下して
そこに滞溜する。このとき、電磁弁11は閉塞し
ているから、この比較的高温の液冷媒が冷却器1
3内に流入して冷却器13を加熱してしまう虞れ
はない。そして、庫内温度が再び上昇すると、コ
ンプレツサ4が再起動されると共に電磁弁11が
開放するため、コンプレツサ4で圧縮された冷媒
が前述と同様にして補助コンデンサ8、主コンデ
ンサパイプ5及び副コンデンサパイプ6を流れて
凝縮され、冷却器13側に供給される。このと
き、前回の冷却運転後に主及び副の両コンデンサ
パイプ5,6内に残留していた液冷媒は、各コン
デンサパイプ5,6の下端部に滞溜しているた
め、上述のような冷却運転の再開により容易に押
し出されて冷却器13側に供給される。これによ
り、コンプレツサ4の再起動後、時間的な遅れを
ほとんど生ずることなく液冷媒を冷却器13内に
供給して冷却を開始できるから、コンプレツサ4
の運転時間を短縮でき、消費電力量の削減を図り
得る。しかも、主コンデンサパイプ5の立下り部
5cと副コンデンサパイプ6とには冷媒が並列に
流れる状態となるから、全体の圧力損失は直列の
場合に比べて少なくなし得、コンプレツサ4の負
荷を軽減し得て一層の省電力を図り得る。また、
このように冷媒が並列に流れるような構成とした
から、各コンデンサパイプ5,6の放熱特性、形
状等を適宜設定することにより各コンデンサパイ
プ5,6の冷媒流量を任意に設定することができ
るから、各コンデンサパイプ5,6に略均等に冷
媒を流したり、或いは冷凍室用及び冷蔵室用の各
扉2,3の杷手部に対応する部分のように過熱状
態となることが好ましくない部分のコンデンサパ
イプ5,6には既に液化した冷媒を流すようにし
たりすることも可能である。 Next, the operation of the above configuration will be explained. When the compressor 4 starts, the refrigerant compressed by the compressor 4 flows into the rising part 5a of the main condenser pipe 5 from the lower end via the auxiliary condenser 8 and rises, and from the upper end of the rising part 5a into the horizontal part 5b. When flowing through the horizontal portion 5b, a portion of the water flows into the connecting pipe 7 side. The refrigerant that continues to flow within the horizontal portion 5b flows into the falling portion 5c from the upper end and flows into the dryer 9 from the lower end. Further, the refrigerant that has been diverted to the connecting pipe 7 side reaches the horizontal portion 6b of the sub-condenser pipe 6, and is then diverted to the rising portion 6a side and the first falling portion 6c side, and eventually to the rising portion 6a and the second falling portion 6c.
It also flows into the dryer 9 from the lower end of the falling portion 6e. Then, as described above, when the refrigerant flows through the auxiliary condenser 8, the main condenser pipe 5, and the auxiliary condenser pipe 6, it is condensed and liquefied, and the refrigerant is transferred to the first capillary tube 10, the electromagnetic valve 11, and the second capillary tube 12. The water flows into the cooler 13 through the . The liquid refrigerant that has flowed into the cooler 13 is vaporized here, exhibiting a cooling effect, and further flows back to the compressor 4 via the check valve 14. When the inside of the refrigerator is cooled by such a cooling operation, the compressor 4 is stopped and the solenoid valve 10 is closed. Immediately after the compressor 4 stops, the refrigerant is in a gas-liquid two-phase state in the main and auxiliary condenser pipes 5 and 6.
and 6, that is, to the lower ends of each rising portion 5a, 6a and each falling portion 5c, 6e, and accumulate there. At this time, since the solenoid valve 11 is closed, this relatively high temperature liquid refrigerant is transferred to the cooler 1.
There is no risk of it flowing into the cooler 13 and heating the cooler 13. Then, when the temperature inside the refrigerator rises again, the compressor 4 is restarted and the solenoid valve 11 is opened, so that the refrigerant compressed by the compressor 4 is transferred to the auxiliary condenser 8, the main condenser pipe 5, and the auxiliary condenser in the same manner as described above. It flows through the pipe 6, is condensed, and is supplied to the cooler 13 side. At this time, the liquid refrigerant remaining in both the main and auxiliary condenser pipes 5, 6 after the previous cooling operation accumulates at the lower end of each condenser pipe 5, 6, so the cooling as described above When the operation is restarted, it is easily pushed out and supplied to the cooler 13 side. As a result, after restarting the compressor 4, liquid refrigerant can be supplied into the cooler 13 and cooling can be started with almost no time delay.
The operating time of the system can be shortened, and power consumption can be reduced. Moreover, since the refrigerant flows in parallel to the falling part 5c of the main condenser pipe 5 and the sub-condenser pipe 6, the overall pressure loss can be reduced compared to the case of series connection, and the load on the compressor 4 can be reduced. Therefore, further power saving can be achieved. Also,
Since the refrigerant is configured to flow in parallel in this way, the refrigerant flow rate of each condenser pipe 5, 6 can be arbitrarily set by appropriately setting the heat dissipation characteristics, shape, etc. of each condenser pipe 5, 6. Therefore, it is not preferable to flow the refrigerant approximately evenly into each condenser pipe 5, 6, or to cause overheating in the parts corresponding to the locks of the doors 2, 3 for the freezer and refrigerator compartments. It is also possible to allow already liquefied refrigerant to flow through the condenser pipes 5 and 6.
本考案は以上述べたように、複数のコンデンサ
パイプを連結パイプにより相互間に谷部が形成さ
れないよう接続したから、従来とは異なりその谷
部にコンプレツサの停止後液冷媒が滞溜して再起
動時に冷却器への冷媒供給に遅れが生ずることを
防止でき、もつてコンプレツサの運転時間を短縮
し得て消費電力量の低減化を図ることができると
いう効果を奏する。
As described above, in the present invention, multiple condenser pipes are connected by connecting pipes so that no valleys are formed between them, so unlike the conventional method, liquid refrigerant accumulates in the valleys after the compressor is stopped and is regenerated. It is possible to prevent a delay in the supply of refrigerant to the cooler at the time of startup, thereby shortening the operating time of the compressor and reducing power consumption.
図面は本考案の一実施例を示し、第1図はコン
デンサパイプ等の配管構成を示す概略的斜視図、
第2図は冷却サイクル構成図である。
図中、1は冷蔵庫本体、4はコンプレツサ、5
は主コンデンサパイプ(コンデンサパイプ)、5
a及び5cは立上り部及び立下り部、6は副コン
デンサパイプ(コンデンサパイプ)、6aは立上
り部、6c及び6eは第1及び第2の立下り部、
7は連結パイプ、13は冷却器である。
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic perspective view showing the piping structure such as a condenser pipe.
FIG. 2 is a cooling cycle configuration diagram. In the figure, 1 is the refrigerator body, 4 is the compressor, and 5
is the main condenser pipe (condenser pipe), 5
a and 5c are rising parts and falling parts, 6 is a sub-condenser pipe (condenser pipe), 6a is a rising part, 6c and 6e are first and second falling parts,
7 is a connecting pipe, and 13 is a cooler.
Claims (1)
上り部及び立下り部を有するよう夫々全体として
略逆U字状に配設した複数のコンデンサパイプに
より凝縮して冷却器に供給すると共に前記コンプ
レツサ停止後の冷媒の冷却器側への流入を防止す
る弁を設けたものにおいて、前記複数のコンデン
サパイプのうち一のコンデンサパイプの両下端部
を夫々コンプレツサ側及び冷却器側に接続し、こ
の一のコンデンサパイプの頂上部を他のコンデン
サパイプの頂上部に接続すると共に、他のコンデ
ンサパイプの両下端部を冷却器側に接続するよう
にしたことを特徴とする冷蔵庫。 The refrigerant compressed by the compressor is condensed through a plurality of condenser pipes, each of which is arranged in a generally inverted U-shape so that the refrigerator body has a rising part and a falling part, and is supplied to the cooler, and the refrigerant after the compressor is stopped. In the device, the lower ends of one of the plurality of condenser pipes are connected to the compressor side and the cooler side, respectively. A refrigerator characterized in that a top part is connected to the top part of another condenser pipe, and both lower ends of the other condenser pipe are connected to a cooler side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20080782U JPS59103188U (en) | 1982-12-27 | 1982-12-27 | refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20080782U JPS59103188U (en) | 1982-12-27 | 1982-12-27 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59103188U JPS59103188U (en) | 1984-07-11 |
JPS6227823Y2 true JPS6227823Y2 (en) | 1987-07-16 |
Family
ID=30426321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20080782U Granted JPS59103188U (en) | 1982-12-27 | 1982-12-27 | refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59103188U (en) |
-
1982
- 1982-12-27 JP JP20080782U patent/JPS59103188U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59103188U (en) | 1984-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100393776B1 (en) | Refrigerating cycle device having two evaporators | |
CN100485290C (en) | Method and arrangement for defrosting vapor compression system | |
KR100431348B1 (en) | refrigerator | |
US4646539A (en) | Transport refrigeration system with thermal storage sink | |
KR0130756B1 (en) | Unloading system and unloading method for two stage compressor | |
US2713249A (en) | Liquid defrosting system and the like | |
JPH09189473A (en) | Refrigerator and operation control method thereof | |
WO2020103271A1 (en) | Heat pump system | |
JPS6227823Y2 (en) | ||
JP2000346502A (en) | Refrigerating device | |
JPS6227824Y2 (en) | ||
JPH07248164A (en) | Refrigerator | |
JPS61262560A (en) | Heat pump type air conditioner | |
JPH07218003A (en) | Refrigerator control method | |
JPH0447590Y2 (en) | ||
JPS621670Y2 (en) | ||
JPH0424471A (en) | Refrigerating cycle | |
JPS5871A (en) | Refrigerating cycle | |
JPH0434374Y2 (en) | ||
CN208254000U (en) | The highly effective defrosting type refrigeration unit automobile-used suitable for Refrigerated Transport | |
JPH0356872Y2 (en) | ||
JPH0233101Y2 (en) | ||
JPS59224484A (en) | Freezer | |
CN115930496A (en) | Refrigerating system and refrigeration cabinet | |
JPH01244263A (en) | Air heat exchanger defrosting device |