JPS62278217A - Lance inlaying thermocouple for controlling slag level - Google Patents
Lance inlaying thermocouple for controlling slag levelInfo
- Publication number
- JPS62278217A JPS62278217A JP12194786A JP12194786A JPS62278217A JP S62278217 A JPS62278217 A JP S62278217A JP 12194786 A JP12194786 A JP 12194786A JP 12194786 A JP12194786 A JP 12194786A JP S62278217 A JPS62278217 A JP S62278217A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- lance
- thermocouple
- slag level
- flow path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
3、発明の詳細な説明
(産業上の利用分野)
本発明は、製鋼炉における炊飯時のスラグレベルを制御
する吹ば用ランスに関する。Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a blowing lance for controlling the slag level during rice cooking in a steelmaking furnace.
(従来の技術〕
上吹あるいは上底吹転炉等の製鋼炉は尚生産性、及び品
質向上を図るために炉内の精錬反応の進行状態を把握し
、その状態に応じた適性制御をする必要がある。(Prior art) In steelmaking furnaces such as top-blown or top-bottom blown converters, in order to improve productivity and quality, it is necessary to grasp the progress state of the refining reaction inside the furnace and perform appropriate control according to the state. There is a need.
従って従来より炉内制御を行なうために、例えば特開昭
56−151881号公報のように溶融金楓とスラグ高
さを炉内で測定するに際して、耐火物で被覆された棒の
熱変位を測定しスラグ高さを検知することが提案されて
いる。Therefore, in order to control the inside of the furnace, for example, when measuring the height of molten metal maple and slag in the furnace, as in JP-A-56-151881, the thermal displacement of a rod covered with a refractory has been measured. It has been proposed to detect the slag height.
しかしながらこの装置を用いても耐火物と棒の消耗速度
は必ずしも一致し難く、又耐火物の消耗状況によっても
正常に温式検出できるとは言い難い。即ち棒の熱伝導率
や長さによって熱検出器への伝熱エネルギーは異なる。However, even if this device is used, the consumption rates of the refractory and the rod do not necessarily match, and it is difficult to say that normal temperature detection can be performed depending on the consumption status of the refractory. That is, the heat transfer energy to the heat detector differs depending on the thermal conductivity and length of the rod.
これは本来測定すべき炉内表面が溶損さnるため、表面
に熱伝対を埋設できないという欠点がある。This method has the disadvantage that the inner surface of the furnace, which should be measured, is melted and damaged, so it is not possible to embed a thermocouple in the surface.
また、特開昭55−38915号公報のように転炉のス
ロッピング全予知する際に、鎖の吊下げ端でこれに働く
スラグスプラツ・/ユの衝撃力やスラグフォーミングに
よる浮力を検知して把握することも提案てれている。In addition, when predicting all the slopping in a converter as in Japanese Patent Application Laid-open No. 55-38915, the impact force of the slag splatter/yu acting on the hanging end of the chain and the buoyant force due to slag forming can be detected and grasped. It has also been proposed to do so.
しかしこの手段を用いても検知レベルによってモーメン
トの差が発生し、しかも鎖に付着固化したスラグの重量
により、同一衝撃力や浮力が発生しても慣性力の差とな
シ歪値が減少するので測定誤差が大きくなり易い。又装
置の出入によって操業時のタイムロスも発生し実用性に
乏しい等の欠点を有している。However, even with this method, a difference in moment occurs depending on the detection level, and due to the weight of the slag that has solidified on the chain, even if the same impact force or buoyancy force is generated, the difference in inertia force and the strain value will decrease. Therefore, measurement errors tend to increase. In addition, there is a drawback that time loss occurs during operation due to the loading and unloading of the equipment, making it impractical.
(発明が解決しようとする問題点)
本発明は前述した如き従来のスラグレベル検知の欠点で
ある炉内のスラグレベルを高楕度で検出できるとともに
、製鋼炉内の状態をも確実に把握し、またスラグレベル
の検知に際しての検出を長期間にわたシ継続することが
可能であって、しかも検出操作が迅速に行ない得るスラ
グレベル制御用のランスを提供することにある。(Problems to be Solved by the Invention) The present invention is capable of detecting the slag level in the furnace with high ellipticity, which is a drawback of conventional slag level detection as described above, and also enables reliable grasping of the state inside the steelmaking furnace. Another object of the present invention is to provide a lance for controlling a slag level that can continue detecting a slag level for a long period of time and can perform a detection operation quickly.
(問題点を解決するための手段)
本発明は内部にぼ累流路を設け、該酸素流路の外周を冷
却水流路で囲撓した溶融金属の吹酸ランスにおいて、該
吹酸ランスの冷却水流路の外管内に複数の熱伝対を埋設
したことを特徴とするスラグレベル制御用熱伝対埋設ラ
ンスにある。(Means for Solving the Problems) The present invention provides a molten metal blowing acid lance in which a round flow path is provided inside and the outer periphery of the oxygen flow path is surrounded by a cooling water flow path, in which the blowing acid lance is cooled. A thermocouple embedded lance for controlling a slag level is characterized in that a plurality of thermocouples are embedded in an outer pipe of a water flow path.
以下本発明によるヌラグレベル制御用熱伝対埋設ランス
について述べる。The thermocouple embedded lance for controlling the nug level according to the present invention will be described below.
まず本発明者等は、従来の精錬プロセスを活用しつつス
ラグレベルの制御を行なうには、吹酸に用いるランスに
よって直接検知することが最も効率的であること。また
該吹酸ランスの円筒外面形状特性及び炉内に長尺挿入さ
れることから極めて゛変動の大きい炉内状況であっても
全浴面を正確に把握し得るものであることを知見し得た
。First, the present inventors found that direct detection using a lance used for blowing acid is the most efficient way to control the slag level while utilizing the conventional smelting process. Furthermore, it has been found that the cylindrical outer surface shape of the acid blowing lance and the long length inserted into the furnace make it possible to accurately grasp the entire bath surface even under extremely fluctuating conditions inside the furnace. Ta.
本発明は前記の知見に基づいてなされたものであり、以
下図に示す実施vlIに基づいて詳述する。The present invention has been made based on the above-mentioned knowledge, and will be described in detail below based on the embodiment shown in the drawings.
第1図は本発明のスラグレベル制御用熱伝対埋設ランス
のヘッド近傍の断面図を示し、第2図は嬉1図A部の部
分拡大図を示し、第3図は熱伝対埋設部の拡大断面図を
示す。Fig. 1 shows a sectional view near the head of the thermocouple embedded lance for slag level control of the present invention, Fig. 2 shows a partially enlarged view of part A in Fig. 1, and Fig. 3 shows the thermocouple embedded part. An enlarged cross-sectional view is shown.
吹酸ランス1は、例えば適宜径の内径全有し先端のヘッ
ド2のノズル3に連通した酸素流路4とこれを囲撓した
仕切管5と外管6とからなる冷却水流路’7a 、’7
bが設けられている。The acid blowing lance 1 includes, for example, a cooling water flow path '7a which has an appropriate inner diameter and is composed of an oxygen flow path 4 communicating with the nozzle 3 of the head 2 at the tip, a partition pipe 5 surrounding the oxygen flow path 4, and an outer pipe 6; '7
b is provided.
このランス1の外管6の冷却水側には例えばCu−Ni
、Cu−鉄あるいは山笠−白金ロジューム系等の各種素
材からなる一般の熱伝対N−1〜N−3が埋設してあシ
、該熱伝対N=1〜N−3の反対側には熱伝対N−iと
略同レベルに熱伝対Mが同様に埋設しである。この熱伝
対N−1〜N −3、Mの埋設は第2図及び第3図に示
すように外管6の悶厚tに対し%〜%tの厚み以内に埋
設し、導線は冷却水流路7b内を進し吹酸ランス1の外
部まで延長する。The cooling water side of the outer tube 6 of this lance 1 is made of, for example, Cu-Ni.
, general thermocouples N-1 to N-3 made of various materials such as Cu-iron or Yamakasa-platinum rhodium are buried, and the opposite side of the thermocouples N=1 to N-3 is buried. Thermocouple M is similarly buried at approximately the same level as thermocouple N-i. The thermocouples N-1 to N-3 and M are buried within a thickness of % to %t with respect to the thickness t of the outer tube 6, as shown in Figs. 2 and 3, and the conductors are cooled. The water advances through the water flow path 7b and extends to the outside of the acid blowing lance 1.
また吹酸ランス1の外管6に埋設する複数の熱伝対N−
1〜N−3はヘッド2の上部から順次炉口方向へ適宜高
さ方向に間隔音電いて設け、しかも対向する少なくとも
1箇の熱伝対Mは、熱伝対N−1〜N−3と少なくとも
90°以上若しくはhJ孔ランスの場合360’/ H
の間隔をもって円周面を測定できように設ける。In addition, a plurality of thermocouples N- are embedded in the outer pipe 6 of the acid blowing lance 1.
1 to N-3 are provided sequentially from the upper part of the head 2 toward the furnace mouth at appropriate intervals in the height direction, and at least one opposing thermocouple M is provided with thermocouples N-1 to N-3. and at least 90° or more or 360'/H for hJ hole lances
Provided so that the circumferential surface can be measured at intervals of .
このように90’以上若しくは360°/Nとすること
により炉内の流動及び噴出状況を正確に把握できるが、
前記範囲以内の同一面ではその精度が大巾に低下する。In this way, by setting the angle to 90' or more or 360°/N, it is possible to accurately grasp the flow and ejection conditions in the furnace.
For the same surface within the above range, the accuracy is greatly reduced.
次に、このように構成された吹酸ランス1を用いること
により以下に示す状況全把握できる。まず第1図に示す
ように右方向に埋設さnた熱伝対N−’l〜N−3は以
下の如くスラグ高さ変位を測定する。Next, by using the acid blowing lance 1 configured as described above, the following situation can be completely understood. First, as shown in FIG. 1, thermocouples N-'1 to N-3 buried in the right direction measure the slag height displacement as follows.
第4図に示すスラグに浸漬されていない熱゛電対N−2
の測温f[T+は、スラグに浸漬されている熱伝対N−
1の測温値T2よりも低い値を示す。次にスラグレベル
が上昇して、従来スラグに浸漬さ1していなかった熱伝
対N−2がスラグに浸漬された時、第5図のように熱伝
対N−2による測温値変化が起り、スラグレベルの上下
方同変化の認識ができる。又この時の時間差によってス
ラグレベル上昇速度が解る。Thermocouple N-2 not immersed in slag shown in Figure 4
The temperature measurement f[T+ is the thermocouple N− immersed in the slag.
It shows a value lower than the measured temperature value T2 of No. 1. Next, when the slag level rises and thermocouple N-2, which was not previously immersed in slag, is immersed in slag, the temperature value measured by thermocouple N-2 changes as shown in Figure 5. occurs, and it is possible to recognize changes in the slag level both upward and downward. Also, the rate of increase in the slag level can be determined by the time difference at this time.
一方上方にあるスラグレベルが下降した時は、この逆の
現象となりスラグレベルの沈下を検知することができる
。On the other hand, when the slag level above falls, the opposite phenomenon occurs and the sinking of the slag level can be detected.
次に同一高さに埋設された熱伝対MとN−1の機能を第
6図1第7図、第8図によって説明する。Next, the functions of thermocouples M and N-1 buried at the same height will be explained with reference to FIGS. 6, 1, 7, and 8.
スラグに熱伝対が浸漬してない時は、熱伝対MとN−1
は当然低い測温値を示す。(第6図)次にスラグ表面が
傾斜状態で上昇した時、熱伝対は片側(例えば熱伝対M
)のみスラグに浸漬され他方はスラグに浸漬されてない
ため、測温値の差を生ずる。(第7図りさらにスラグに
浸漬されてなかった熱伝対N−1がスラグに浸漬される
と同一温度となる。(第8図りこの時の時間差によって
、スラグ表面の傾斜状況いわゆるスラグのフォーミング
速度ヲ知ることができる。When the thermocouple is not immersed in the slag, thermocouple M and N-1
naturally shows a low temperature value. (Fig. 6) Next, when the slag surface rises in an inclined state, the thermocouple is attached to one side (for example, thermocouple M
) is immersed in the slag while the other is not, resulting in a difference in temperature measurements. (In the 7th figure, when thermocouple N-1, which was not immersed in the slag, is immersed in the slag, the temperature becomes the same. You can know.
次に、熱伝対埋設ランスによる外管6の鉄皮温度の測定
結果を第9,10図に示す。第9図で′PAは埋設熱伝
対が水冷却されている外管鉄皮温度を示し、1゛Bは熱
伝対埋設部分がスラグ層に浸漬した時の、測温値を示す
。またa部は製鋼炉内のスラグがフォーミングするため
、水冷却されている外管6がスラグ層に埋設し表面温度
がランス下方から順次上昇している状態を示し、第9図
のb部はフォーミングスラグが沈静する時、スラグ層に
埋設している外管6がスラグ層より露出して、外管鉄皮
温度がランス上方から順次下降している状態を示す。従
って前述した測定によって吹錬処理中の実時刻における
スラグレベルが検知可能である。Next, FIGS. 9 and 10 show the measurement results of the skin temperature of the outer tube 6 using the embedded thermocouple lance. In FIG. 9, 'PA' indicates the temperature of the outer tube shell where the embedded thermocouple is cooled by water, and 1'B indicates the temperature measured when the embedded part of the thermocouple is immersed in the slag layer. In addition, part a shows a state in which the water-cooled outer tube 6 is buried in the slag layer and the surface temperature gradually increases from the bottom of the lance due to forming of the slag in the steelmaking furnace. When the forming slag subsides, the outer tube 6 buried in the slag layer is exposed from the slag layer, and the temperature of the outer tube shell gradually decreases from above the lance. Therefore, the slag level at the actual time during the blowing process can be detected by the measurement described above.
次に第10図では製鋼炉内スラグが激しく攪拌し層状に
7万一ミンクしていないことを示す。即ち各埋設熱伝対
の温度上昇パターンが又差し、熱伝対埋設位置に関係な
く温度が上昇下降し1いる。Next, FIG. 10 shows that the slag in the steelmaking furnace was stirred violently and was not minked into layers. In other words, the temperature rise pattern of each buried thermocouple overlaps, and the temperature rises and falls regardless of the buried position of the thermocouple.
これは熱伝対埋設部分にスロッピングスラグが溶融金属
表面から直接飛散付着し、該当個所の熱伝対検出温度が
上昇し・次にランス付着スラグが冷却又は剥離によって
検出温度が下降し、この態様を繰返していることを示す
。This is because slopping slag directly scatters and adheres from the molten metal surface to the part where the thermocouple is buried, increasing the temperature detected by the thermocouple at that location.Next, the slag adhering to the lance cools or peels off, causing the detected temperature to drop. Indicates that the aspect is repeated.
この温度変化パターンのピッチ、温度変化式によって炉
内スロッピング状況を監視することができる。又ランス
表面に付着したスラグや地金が剥離せずに、付着固化す
ることが予想され、これによるランス表面温度の測定誤
差が考えられるが、吹錬初期の測温値をペースに現時点
の測温値とq相対値で管理すれば、スラグレベル又フォ
ーミング速鼓は前述と同様に検知可能である。The slopping situation in the furnace can be monitored using the pitch of this temperature change pattern and the temperature change formula. It is also expected that the slag and base metal adhering to the lance surface will not peel off but will adhere and solidify, which may cause measurement errors in the lance surface temperature, but the current measurement is based on the temperature measured at the initial stage of blowing. If the temperature value and the q relative value are used for management, the slag level or forming speed drum can be detected in the same manner as described above.
(実施例)
次に本発明のランスによってスラグレベル制御を実施し
た吹錬結果を第11図に示す。(Example) Next, FIG. 11 shows the blowing results obtained by controlling the slag level using the lance of the present invention.
第11図A都に示すように標準作菓通りの操業を行った
にも拘らず、外乱によってスロッピングが発生した。そ
こで送酸蓋等を変更し該スロッピングの抑制を図った。As shown in Figure A in Figure 11, slopping occurred due to disturbances even though the operation was carried out according to the standard confectionery method. Therefore, we tried to suppress this slopping by changing the acid supply lid and other equipment.
この後吹錬時間60%経過時にB部に示すようにスラグ
レベルの上昇とこの上昇に伴なってスロッピングも発生
した。そこで送酸速匿、ランス高さ、副材(還洗剤)の
投入等によってスラグレベルを制御した結果順次安定化
した。Thereafter, when 60% of the blowing time had elapsed, as shown in part B, the slag level increased and slopping occurred along with this increase. Therefore, the slag level was gradually stabilized as a result of controlling the slag level by controlling the speed of oxygen supply, the height of the lance, and adding an auxiliary material (reduced detergent).
このように本廃明による吹酸ランスも用いることによシ
スロツピング及びスラグの異常フォーミングを抑制する
ことができるとともに、複数の埋設熱伝対金利用してス
ラグレベルを任意の高さに制御し脱p、s等の精錬適性
化も可能となった。In this way, by using the blown acid lance developed by the present invention, it is possible to suppress sysloping and abnormal slag forming, and also to control the slag level to an arbitrary height using multiple buried thermocouples. It has also become possible to improve the refining aptitude of p, s, etc.
(発明の効果〕
以上述べた如く、本発明のランスを用いることにより(
1)スラグレベルの管理、(2)スラグレベルの制御が
可能となり、この結果(1)歩留の向上(2)高能率操
業(3)コスト切下げ等の効果が達成できる。(Effects of the invention) As described above, by using the lance of the present invention, (
1) Management of slag level, (2) Control of slag level becomes possible, and as a result, effects such as (1) improvement in yield, (2) high efficiency operation, and (3) cost reduction can be achieved.
第1図は本発明によるスラグレベル制御用熱伝対埋設ラ
ンスのヘッド近傍の断面ズ、第2図は第1図A部の部分
拡大図、第3図は熱伝対埋設部の拡大断面図、第4図(
al(bl、第5図(a)(blは熱漬対のスラグ浸漬
有無と温度変化を示す図、第6図(a)。
(b)、第7図(a) 、 (b)、第8図(al 、
(Diは対向する熱漬対とスラグ浸漬有無による温度
変化を示す図、第9図、第10図はう/スの外管に埋設
された熱漬対てよる鉄皮温度の測定結果を示す図、第1
1図は本発明による操業の一例を示す模式図である。
1・・ ・・・・ランス
2・・・・・・ヘッド
3・・・・・・ノズル
4・・・ ・・ ・酸素流路
5・・・・・・仕切管
6・・ ・・・ ・外管
’7a、7b・・ ・・冷却水流路
N−トN−3・・・熱漬対
M・・・・ ・・対向する熱漬対
第1図
飴3′A
第4図 巽I
@%ビ5− 飛昭→第9図
吟[
第10図
咋閑Figure 1 is a cross-sectional view near the head of the thermocouple buried lance for slag level control according to the present invention, Figure 2 is a partially enlarged view of section A in Figure 1, and Figure 3 is an enlarged sectional view of the thermocouple buried part. , Figure 4 (
al (bl, Figure 5 (a) (bl is a diagram showing the presence or absence of slag immersion of the hot soaked pair and temperature change, Figure 6 (a). (b), Figure 7 (a), (b), Figure 8 (al,
(Di is a diagram showing the temperature change depending on whether or not slag is immersed in the opposing hot-soaked pair. Figures 9 and 10 show the measurement results of the steel skin temperature using the hot-soaked pair buried in the outer pipe of the crawler. Figure, 1st
FIG. 1 is a schematic diagram showing an example of operation according to the present invention. 1... Lance 2... Head 3... Nozzle 4... Oxygen flow path 5... Partition pipe 6... Outer tubes '7a, 7b... Cooling water flow path N-to N-3... Heat-soaked pair M... Opposing heat-soaked pair Fig. 1 Ame 3'A Fig. 4 Tatsumi I @ % Bi 5- Hiaki → Figure 9 Gin [ Figure 10 Gin
Claims (1)
で囲撓した溶融金属の吹酸ランスにおいて、該吹酸ラン
スの冷却水流路の外管内に複数の熱伝対を埋設したこと
を特徴とするスラグレベル制御用熱伝対埋設ランス。In a molten metal blown acid lance that has an oxygen flow path inside and the outer periphery of the oxygen flow path is surrounded by a cooling water flow path, a plurality of thermocouples are embedded in the outer tube of the cooling water flow path of the blown acid lance. An embedded thermocouple lance for slag level control characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12194786A JPS62278217A (en) | 1986-05-27 | 1986-05-27 | Lance inlaying thermocouple for controlling slag level |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12194786A JPS62278217A (en) | 1986-05-27 | 1986-05-27 | Lance inlaying thermocouple for controlling slag level |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62278217A true JPS62278217A (en) | 1987-12-03 |
Family
ID=14823856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12194786A Pending JPS62278217A (en) | 1986-05-27 | 1986-05-27 | Lance inlaying thermocouple for controlling slag level |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62278217A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234200A (en) * | 1990-11-14 | 1993-08-10 | Voest-Alpine Industrieanlagenbau Gmbh | Method and arrangement for preventing crusts from agglomeration in a metallurgical vessel |
DE19948187A1 (en) * | 1999-10-06 | 2001-05-10 | Thyssenkrupp Stahl Ag | Process for decarburizing a steel melt in a converter comprises monitoring the temperature in the lance head of the blowing lance using a temperature sensor integrated in the lance head and regulating |
US6599464B1 (en) | 1999-10-06 | 2003-07-29 | Bernd Feldhaus | Steelmaking lance with integral temperature probe |
JP2010513842A (en) * | 2006-12-20 | 2010-04-30 | ソン、インシク | Semi-cylindrical solar collector for solar boiler |
US8381690B2 (en) | 2007-12-17 | 2013-02-26 | International Paper Company | Controlling cooling flow in a sootblower based on lance tube temperature |
WO2015139045A1 (en) | 2014-03-14 | 2015-09-17 | Berry Metal Company | Metal making lance with spring-loaded thermocouple or camera in lance tip |
US9541282B2 (en) | 2014-03-10 | 2017-01-10 | International Paper Company | Boiler system controlling fuel to a furnace based on temperature of a structure in a superheater section |
US9915589B2 (en) | 2014-07-25 | 2018-03-13 | International Paper Company | System and method for determining a location of fouling on boiler heat transfer surface |
-
1986
- 1986-05-27 JP JP12194786A patent/JPS62278217A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234200A (en) * | 1990-11-14 | 1993-08-10 | Voest-Alpine Industrieanlagenbau Gmbh | Method and arrangement for preventing crusts from agglomeration in a metallurgical vessel |
DE19948187A1 (en) * | 1999-10-06 | 2001-05-10 | Thyssenkrupp Stahl Ag | Process for decarburizing a steel melt in a converter comprises monitoring the temperature in the lance head of the blowing lance using a temperature sensor integrated in the lance head and regulating |
DE19948187C2 (en) * | 1999-10-06 | 2001-08-09 | Thyssenkrupp Stahl Ag | Process for the metallurgical treatment of a molten steel in a converter with oxygen blown onto the molten steel and oxygen blowing lance |
US6599464B1 (en) | 1999-10-06 | 2003-07-29 | Bernd Feldhaus | Steelmaking lance with integral temperature probe |
JP2010513842A (en) * | 2006-12-20 | 2010-04-30 | ソン、インシク | Semi-cylindrical solar collector for solar boiler |
US8381690B2 (en) | 2007-12-17 | 2013-02-26 | International Paper Company | Controlling cooling flow in a sootblower based on lance tube temperature |
US9671183B2 (en) | 2007-12-17 | 2017-06-06 | International Paper Company | Controlling cooling flow in a sootblower based on lance tube temperature |
US9541282B2 (en) | 2014-03-10 | 2017-01-10 | International Paper Company | Boiler system controlling fuel to a furnace based on temperature of a structure in a superheater section |
WO2015139045A1 (en) | 2014-03-14 | 2015-09-17 | Berry Metal Company | Metal making lance with spring-loaded thermocouple or camera in lance tip |
US9915589B2 (en) | 2014-07-25 | 2018-03-13 | International Paper Company | System and method for determining a location of fouling on boiler heat transfer surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101946102B1 (en) | Method and device for measuring levels of cast-iron and slag in a blast furnace | |
JPS62278217A (en) | Lance inlaying thermocouple for controlling slag level | |
EP0060069A1 (en) | A probe and a system for detecting wear of refractory wall | |
CN102039382A (en) | Container for molten metal, use of the container and method for determining an interface layer | |
JP4616456B2 (en) | Immersion type optical fiber radiation thermometer for measuring molten metal temperature and method for measuring temperature of molten metal | |
JPH01267426A (en) | Temperature measuring device for molten metal | |
JP5299259B2 (en) | Method for measuring and controlling molten steel temperature during secondary refining | |
JPH0894264A (en) | Refractory residual thickness detecting method for electric furnace | |
US4462824A (en) | Annular tuyere | |
US4477279A (en) | Annular tuyere and method | |
EP1601941B1 (en) | Submerged sensor in metallurgical vessel | |
JPH055117A (en) | Method for detecting melt level in a metallurgical refining vessel | |
JP2867918B2 (en) | Method for estimating effective thickness of slag coating in smelting vessel | |
JP4081248B2 (en) | Control method of the lower part of the blast furnace | |
JPH0882553A (en) | Method for measuring molten iron temperature at tap hole by optical fiber thermometer | |
JPS6191529A (en) | Molten metal temperature measuring device | |
JP7400786B2 (en) | Refractory residual status estimation method, refractory residual status estimation device, and metal smelting furnace | |
JPH0238932A (en) | Continuous temperature measurement method for molten metal | |
JPH0259629A (en) | Continuous temperature measuring device for molten metal | |
JP7018405B2 (en) | Electroslag remelting method and melting container | |
JP3932612B2 (en) | Continuous temperature measuring device for molten metal | |
JP2002013881A (en) | Slag level detecting method and method for controlling lance based on it | |
JP2001303120A (en) | Temperature measurement method for inner surface of smelting vessel | |
JPS5834528B2 (en) | Blowing method of bottom blowing converter | |
KR100985492B1 (en) | Continuous temperature measuring device of molten steel |