JPS62276927A - Differential pulse modulation system - Google Patents
Differential pulse modulation systemInfo
- Publication number
- JPS62276927A JPS62276927A JP12037186A JP12037186A JPS62276927A JP S62276927 A JPS62276927 A JP S62276927A JP 12037186 A JP12037186 A JP 12037186A JP 12037186 A JP12037186 A JP 12037186A JP S62276927 A JPS62276927 A JP S62276927A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- circuit
- threshold value
- polarity
- difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 abstract description 17
- 238000013139 quantization Methods 0.000 abstract description 5
- 238000013500 data storage Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 3
- 235000014036 Castanea Nutrition 0.000 description 1
- 241001070941 Castanea Species 0.000 description 1
- 241000255632 Tabanus atratus Species 0.000 description 1
- 231100000749 chronicity Toxicity 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Image Processing (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔圧栗上の利用分野〕
この発明は画隊1ぎ号などのディジタルの人力信号を帯
域圧縮を行なって伝送する差分パルス変調方式に関する
。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Application for Chestnut Pressing] This invention relates to a differential pulse modulation method for transmitting a digital human input signal such as the first signal of the squadron after performing band compression.
第5図は従来の差分パルス変調方式(以下DPCM方式
という)の送信側の構成図、−6図は第5図における変
化検出回路の構成図、−7図は従来のDPCM万式1;
おける受信側の構成図である。Fig. 5 is a block diagram of the transmitting side of the conventional differential pulse modulation method (hereinafter referred to as DPCM method), Fig. -6 is a block diagram of the change detection circuit in Fig. 5, and Fig. -7 is the conventional DPCM system 1;
FIG.
屏5図において1は画像信号などの入力信号SIと予測
信号S9との屋をとって予61III誤差信号S2を出
力する減算器、2はしきい直Tと予測倶圧<S号S2と
の比較を行なって変化を検出し、変化検出信号S3と差
分信号S4とを生成して出力する変化検出回路、3は変
化検出信号S3と差分1d号S3を鍵子化し、を子化信
号Ss’出力する量子化回路、4は被子化信号S5を可
変長符号化して符号化信号Sak生成して出力する可変
長符号化回路、5は符号化信号S6を一時蓄積して送信
側に出力する送IBバッファ回路、6は量子化回路3か
ら出力される量子化信号S5から再生産分信号St’l
生成して出力する局部狽号化回路、7は再生差分4信号
S7と予測1ぎ号S9との加算を行なって再生入力信号
S8を出力する加算器、8は再生入力信号Set二もと
づいて予測信号S9’l出力する予測回路、9は送信バ
ッファ回路5に蓄積された符号化信号S6の蓄積量を監
視して適切なしきい値Tを発生するしきい傷発生回路で
ある。In the figure, 1 is a subtracter that takes the difference between an input signal SI such as an image signal and a predicted signal S9 and outputs a pre-61III error signal S2, and 2 is a subtracter that takes the difference between an input signal SI such as an image signal and a predicted signal S9, and outputs a pre-61III error signal S2. A change detection circuit 3 performs a comparison to detect a change, generates and outputs a change detection signal S3 and a difference signal S4, and outputs a change detection signal S3 and a difference signal S3. 4 is a variable length encoding circuit that performs variable length encoding on the encoded signal S5 to generate and output the encoded signal Sak; 5 is a transmission circuit that temporarily stores the encoded signal S6 and outputs it to the transmitting side; An IB buffer circuit 6 receives a reproduction signal St'l from the quantized signal S5 output from the quantization circuit 3.
7 is an adder that adds the reproduced difference 4 signal S7 and the predicted first signal S9 and outputs the reproduced input signal S8; 8 is a predicted signal based on the reproduced input signal Set 2; A prediction circuit 9 outputs a signal S9'l, and a threshold generation circuit 9 monitors the amount of encoded signal S6 stored in the transmission buffer circuit 5 and generates an appropriate threshold value T.
また鋼6図において10は予測誤差信号S2の絶対値を
とる絶対値回路、11は予測誤差信号S2の絶対値とし
きい値Tとの比較を行ない、変化検出信号S3を出力す
る比較回路、12は比較回路」lの比較の結果変化が検
出されないとき0を割当てて差分信号S4として出力す
る零割当回路である。Further, in Figure 6, 10 is an absolute value circuit that takes the absolute value of the prediction error signal S2, 11 is a comparison circuit that compares the absolute value of the prediction error signal S2 with a threshold value T, and outputs a change detection signal S3; is a zero assignment circuit which assigns 0 and outputs it as a difference signal S4 when no change is detected as a result of the comparison of the comparison circuit "l".
また第7図において13は送信側の送イぎバッファ回路
5から出力された符号化信号86ヲ受信して一時a積し
ておく受信バッファ回路、14は受1Jバッファ回路1
3に蓄積されている符号化信号5675I:復号化して
丹生電子化イぎ号Sllを出力する可変長復号化回路、
15は再生量子化信号5ill−もとづいて再生差分信
号S12 ’a’出力する局部復号化回路、16は丹生
差分信号S12と再生予測信号S13との差をとって送
信側の入力信号S1χ丹生する加算回路、17は再生予
測信号Sls 全出力する再生予測回路である。Further, in FIG. 7, 13 is a receiving buffer circuit which receives the encoded signal 86 outputted from the sending buffer circuit 5 on the transmitting side and temporarily stores it, and 14 is a receiving buffer circuit 1.
Coded signal 5675I stored in 3: variable length decoding circuit that decodes and outputs the Niyu electronic code Sll;
15 is a local decoding circuit that outputs a reproduced difference signal S12 'a' based on the reproduced quantized signal 5ill-; 16 is an addition circuit that calculates the difference between the Niu difference signal S12 and the reproduced prediction signal S13 and adds the input signal S1χ to the transmitting side; The circuit 17 is a reproduction prediction circuit which outputs the entire reproduction prediction signal Sls.
次に第5図及び′tA6図(二従って送信側の動作ン説
明する。Next, the operation of the transmitting side will be explained in FIGS. 5 and 6.
まず変化検出回路2における無効化誤差Yd、予測回路
8にンいて再生量カイぎ号S8にかける予測係数なA、
時間tの遅延を2 とすると各信号間には久の関係が成
立する。First, the invalidation error Yd in the change detection circuit 2, the prediction coefficient A which is applied to the reproduction amount coefficient S8 in the prediction circuit 8,
If the delay of time t is 2, a long relationship is established between each signal.
S2寓s、 −89
S4 x 82 + d
87!S4+Q
S6ツS7+S、工Sl+Q十d
s、 xA−ss 、 Z−’
ここで試算器lは入力信号S1と予測信号S9の差であ
る予測誤差信号S2を計算し、変化検出回路2は減算器
lによって計算された予測誤差信号S2から変化検出信
号S3と差分信号S4と全出力する。S2 fables, -89 S4 x 82 + d 87! S4+Q S6tsuS7+S, engineering Sl+Q1d s, xA-ss, Z-' Here, the trial calculator 1 calculates the prediction error signal S2 which is the difference between the input signal S1 and the prediction signal S9, and the change detection circuit 2 is a subtracter. A change detection signal S3 and a difference signal S4 are all output from the prediction error signal S2 calculated by l.
この変化検出回路2の動作に第6図によって更に詳細に
説明すると、絶対値回路10は予測゛誤差信号S2の絶
対値をとり、比較回路11においてこの予測誤差信号S
2の絶対値としきい傷発生回路9から発生するしきい値
Tの比較を行なう。To explain the operation of this change detection circuit 2 in more detail with reference to FIG.
The absolute value of 2 and the threshold value T generated from the threshold generation circuit 9 are compared.
そして次の条件に従って変化検出信号S3を出力する。Then, a change detection signal S3 is output according to the following conditions.
53=O(無効)・・・・・・182+<TS3=1
(有効)・・・・・・l521≧Tまた変1ヒが検出
されないとさすなわちsa=moの時¥F割当回路12
は差分1ぎ号S4をOとして出力する。53=O (invalid)...182+<TS3=1
(Valid)...l521≧T Also, if the change 1 is not detected, that is, when sa=mo, the ¥F allocation circuit 12
outputs the differential signal S4 as O.
−万喧子化回路3は入力された差分信号S4を任意の特
性(二従い膚子化信号55(=変換する。可変長符号化
回路4は変化検出信号S3が有効な場合すなわちS3a
Oの場合のみ撲子化侶号S5を収込み、変化検出信号
S3は例えばランレングス符号化し、を子化は号S5を
二対しては発生頻度の高い0近辺の数値に符号長の短か
いコードを割当てて送信バッファ回、NI5に蓄積する
。送信バッファ回J65は蓄積されたデータを伝送路へ
符号化信号S6として出力する。しきい傷発生回路9で
は送信バッファ回路5の畜、t*艙乞監視し、適切なし
きい値Tを発生しながら符号化データの発生iを制卸す
る0次に受信側の動作全組7図において説明する。- The variable-length encoding circuit 3 converts the input difference signal S4 into an arbitrary characteristic (2-dimensional transformation signal 55 (=). When the change detection signal S3 is valid, that is, the
Only in the case of O, the change detection signal S3 is encoded by run-length encoding, and the code S5 is converted into a numerical value around 0, which occurs frequently, with a short code length. A code is assigned and stored in the NI5 for transmission buffer times. The transmission buffer circuit J65 outputs the accumulated data to the transmission path as an encoded signal S6. The threshold generation circuit 9 monitors the transmission buffer circuit 5 and generates an appropriate threshold value T while controlling the generation of encoded data i. This will be explained in the figure.
送信仰1において可変長符号化された符号化信号S6を
受信バッファ回路13で受信し、可変長符号化回i14
において復号された変化検出イg号S3が有゛効を示し
ている場合のみ(−再生量子化信号SIXを出力し変化
検出信号S3が無@を示している場合は0を出力する。The encoded signal S6 subjected to variable length encoding in the transmission phase 1 is received by the reception buffer circuit 13, and the encoded signal S6 is variable length encoded in the variable length encoding circuit i14.
Only when the change detection signal S3 decoded in is valid (-) is outputted as the reproduced quantized signal SIX, and when the change detection signal S3 indicates no @, 0 is outputted.
さらに局部復号回路15は再生量子化信号Sllを復号
化して舟生屋分信号StZを加算器16に出力゛rる。Furthermore, the local decoding circuit 15 decodes the reproduced quantized signal Sll and outputs the Funoya signal StZ to the adder 16.
加算器16は予ヨ11回路17による再生予測信号S1
3と再生正分信号812とを加算し、送信側の人力・(
ご号Sl¥再生する。The adder 16 receives the reproduction prediction signal S1 from the prediction circuit 17.
3 and the reproduced correct signal 812, the human power on the transmitting side (
Go issue SL¥play.
上記のような従来のD P CM方式は、可変長符号化
段階において有効と伺定されたデータに対してそのまま
可変長符号化の対酸とするため、しきい<「cが高くな
るに従い0近辺ζ二割当てられている符号長の短かいコ
ードが麓生じなくなり符号化効率が急くなる問題点がめ
った。In the conventional D P CM method as described above, in order to use the data found to be valid at the variable length encoding stage as is for variable length encoding, the threshold <"0 as c becomes higher". A problem has arisen in which codes with short code lengths assigned in the vicinity of ζ2 no longer occur, resulting in a rapid increase in coding efficiency.
この発明は上記のような間屈点乞解消するため:二なさ
れたもので、しきい値の大小(二関わらす(二符号長の
短かいコードヲ発生させ、符号化効率のよいDPCM方
式を得ることを目的とする。This invention has been made in order to solve the above-mentioned difficulties: It is possible to generate a code with a short code length and obtain a DPCM system with high coding efficiency. The purpose is to
このためこの開明にかかる差分パルス変L14方式は差
分信号S4の極性を判定2行ない、この判定に基づいて
しきい値TI:極性を加え、この極性を加えた有極しき
い値T1に基づいて上記差分信号S4の補正を行ない、
この補正された補正差分信号StSを量子化して送受す
ることを′Vfmとするものである。Therefore, in the differential pulse variation L14 method according to this invention, the polarity of the differential signal S4 is determined twice, and based on this determination, the threshold value TI: polarity is added, and based on the polarized threshold value T1 to which this polarity is added. Correcting the difference signal S4,
Quantizing and transmitting and receiving this corrected difference signal StS is designated as 'Vfm.
この発明に訃いては差分信号S4の極性?判定し、この
判定に基づいてしきい値Tl二極性を加える。What is the difference between this invention and the polarity of the differential signal S4? A threshold Tl polarity is added based on this determination.
そして極性’に7JOえた有極しきい値Tll:基づい
て差分信号S4の湘正を行ない、この補正を行なった補
正差分信号S15を量子化して送受を行なう。Then, the difference signal S4 is corrected based on the polarity threshold value Tll with 7JO added to the polarity, and the corrected difference signal S15 that has been corrected is quantized and transmitted and received.
以下、本発明の一実4例を図;二ついて説明する。 Hereinafter, four examples of the present invention will be explained with reference to two figures.
′第1図は本発明の差分パルス変調方式の送信匍1の構
成図、第2図は第1図(=おけるしきい値補正回路の構
成図、第3図は本発明の差分パルス変調方式の受信側の
構成図、第4図は第3図におけるしきい値補正復元回路
の構成図である。' Fig. 1 is a block diagram of the transmitter 1 of the differential pulse modulation method of the present invention, Fig. 2 is a block diagram of the threshold correction circuit in Fig. 1 (=), and Fig. 3 is a block diagram of the differential pulse modulation method of the present invention. FIG. 4 is a block diagram of the threshold correction and restoration circuit in FIG. 3.
第1図において18は変化検出回路2から出力される差
分信号S4に従ってしきい値発生回路9から出力される
しきい値T(二極性を加え、この極性を加えた有極しき
い値T1と差分信号S4とを減算して補正差分信号81
5を生成して出力するしきい値補正回路である。In FIG. 1, reference numeral 18 denotes a threshold value T outputted from the threshold generation circuit 9 according to the difference signal S4 outputted from the change detection circuit 2 (a polarized threshold value T1 with a bipolar value added, and a polarized threshold value T1 with this polarity added). A corrected difference signal 81 is obtained by subtracting the difference signal S4.
This is a threshold correction circuit that generates and outputs 5.
第2図において19は差分信号S4の極性を判定して極
性信号SLg!出力する極性判定回路、20は極性信号
816に従ってしきい値発生回路9から出力されるしき
い値Tに極性を付加し、有極しきい値′r1を出力する
極性付加回路、21は有極しきい値T1と差分信号S4
との減算を行なって補正差分信号SISを出力する減算
器である。In FIG. 2, 19 determines the polarity of the difference signal S4 and determines the polarity signal SLg! 20 is a polarity adding circuit that adds polarity to the threshold value T output from the threshold generation circuit 9 according to the polarity signal 816 and outputs a polar threshold value 'r1; 21 is a polarity determining circuit for outputting polarity; Threshold T1 and difference signal S4
This is a subtracter that performs subtraction with and outputs a corrected difference signal SIS.
第3図にンいて22は可変長復号化回路14から出力さ
れる検出される検出イ言号S17.L/きい値T。In FIG. 3, 22 is a detected word S17. which is output from the variable length decoding circuit 14. L/threshold T.
と局部復号化回路15から出力される再生補正差分信号
820とから再生差分信号Szx t’生成して出力す
るしきい値補正復元回路である。This is a threshold correction restoration circuit that generates and outputs a reproduction difference signal Szx t' from the reproduction correction difference signal 820 outputted from the local decoding circuit 15.
また第4図において23は再生補正差分信号82Gの極
性を判定して極性信号823を出力する極性判定回路、
24は極性信号823に従ってしきい値Tに極性を付加
し、有極しきい値T、を出力する極性判定回路、25は
有極しきい値T1と再生補正差分g号とを加算して再生
差分信号821を出力する加算器である。Further, in FIG. 4, 23 is a polarity determination circuit that determines the polarity of the reproduction correction difference signal 82G and outputs a polarity signal 823;
24 is a polarity determination circuit that adds polarity to the threshold value T according to the polarity signal 823 and outputs the polarized threshold value T; 25 is a polarity determination circuit that adds the polarized threshold value T1 and the reproduction correction difference g, and reproduces it. This is an adder that outputs a difference signal 821.
次に第1図、第2図にもとづいてこの発明の送イg側の
動作を説明する。Next, the operation on the sending side of the present invention will be explained based on FIGS. 1 and 2.
まず変化検出回路2における無効化誤差をd、予測回路
8(二おいて再生入力信号S、l二かける予測係数をA
、時間tの遅延を2−1とすると各信号の闇には次の関
係が成立つ。First, the invalidation error in the change detection circuit 2 is d, the reproduction input signal S is set in the prediction circuit 8 (2), and the prediction coefficient multiplied by l2 is A.
, the delay of time t is 2-1, the following relationship holds true for the darkness of each signal.
s2= Sl−s。s2=Sl−s.
34 m S2 + d
S、s= S、 −T
87 = 87 + Q
S6=Sg+S]+T=S1+Q 十dS、−A 、
Sa 、 z−1
ここテe、算器1は人力信号S1と予測信号S9の屋で
ある予測誤差信号S2を計算し、変化検出回路2は減算
器lによって計算きれた予測誤差−=号S2とから変化
検出信号S3と差分信号S4と7出カする。34 m S2 + dS, s=S, -T 87 = 87 + Q S6=Sg+S]+T=S1+Q 10dS, -A,
Sa, z-1 Here, the calculator 1 calculates the prediction error signal S2 which is a combination of the human input signal S1 and the prediction signal S9, and the change detection circuit 2 calculates the prediction error -=sign S2 which is calculated by the subtractor l. A change detection signal S3 and a difference signal S4 are output from 7.
このときの変化検出回路2の動作は虻米と同一である。The operation of the change detection circuit 2 at this time is the same as that of the horsefly.
一方、しきい値補正回路18は変化検出信号S3と差分
信号S4とから有極しきい値T、と間圧差分信号S15
とを出力する。On the other hand, the threshold value correction circuit 18 generates a polarized threshold value T and a pressure difference signal S15 from the change detection signal S3 and the difference signal S4.
Outputs .
このときのしきいt+&補正回路18の動作を弔2図を
診照して評イ40に説明する。The operation of the threshold t+& correction circuit 18 at this time will be explained in Section 40 with reference to Figure 2.
第2図(二訃いて慢性判定回路19は差分信号s4の極
性を判定し、極性信号Sza ’a’憾性付性付加回路
2出力する。この極性信号S16を入力した極性付加回
路20は、しさい発生回路9からのしきい値Tl二対し
て極性を付力口し、有極しきい値T1として出力する。The chronicity determining circuit 19 determines the polarity of the difference signal s4, and outputs the polarity signal Sza 'a' to the polarity addition circuit 2. The polarity addition circuit 20, which receives this polarity signal S16, The polarity is applied to the threshold value Tl2 from the threshold generation circuit 9 and output as a polarized threshold value T1.
ただし変化検出信号S3が無効を示している場合は、’
fWfflしきい値をOとする。このとき憾性判定回路
19に分いてot+判定し、そのことにより極性付加回
路20で有極しきい値を01ニする方法もある。この有
極しきい値T、を減算器21にpいて差分信号S4から
引くことによりしきい値補正をし、補正差分信号S15
を出力する。補正差分信号S15は量子化回路3により
量子化信号S5となり、可変長符号化回路4および局部
復号化回路6に出力される。可変長符号化回路4は、変
化検出イキ号S3が有効となっている場合の量子化信号
S5およびしきい値Tを収込み、例えば変化検出信号S
3にはランレングス符号化し、量子化信号s5には発生
頻度の高い0近辺の数値に符号長の短かいコードを割当
てて送信バッファ回路5に蓄積し、符号化信号S6とし
て伝送路へ出力する。またしきい値発生回路9では送信
バッファ回路5のデータ#積1を監視し、適切なしきい
値Tを発生し符号化データの発生量を制御する。−1局
部復号回路6では量子化信号SSを再生補正差分信号S
7 に復号化し、加算器7(=出力する。加算器7はし
きい値T、予測信号Ss、再生補正差分信号S7を加算
して再生人力信号Ss’a’得る。予測回路8は、再生
入力信号S8をあらかじめ設定されたt時間遅延させ、
さらニ係数Aを乗じて予測信号S9として出力する。However, if the change detection signal S3 indicates invalidity, '
Let the fWffl threshold be O. At this time, there is also a method in which the reluctance determination circuit 19 makes an ot+ determination and the polarity addition circuit 20 thereby sets the polarity threshold value to 01. The threshold value is corrected by applying this polar threshold value T to the subtracter 21 and subtracting it from the difference signal S4, and the corrected difference signal S15
Output. The corrected difference signal S15 is turned into a quantized signal S5 by the quantization circuit 3, and is output to the variable length encoding circuit 4 and the local decoding circuit 6. The variable length encoding circuit 4 stores the quantized signal S5 and the threshold value T when the change detection constant signal S3 is enabled, and converts it into a change detection signal S, for example.
3 is run-length encoded, and the quantized signal s5 is assigned a code with a short code length to a frequently occurring value near 0, stored in the transmission buffer circuit 5, and output to the transmission path as an encoded signal S6. . Further, the threshold generation circuit 9 monitors the data # product 1 of the transmission buffer circuit 5, generates an appropriate threshold T, and controls the amount of encoded data generated. -1 The local decoding circuit 6 converts the quantized signal SS into a reproduction correction difference signal S.
7, and the adder 7 (=outputs). The adder 7 adds the threshold value T, the prediction signal Ss, and the reproduction correction difference signal S7 to obtain the reproduction human input signal Ss'a'. The prediction circuit 8 delaying the input signal S8 by a preset time t;
Furthermore, it is multiplied by a second coefficient A and output as a prediction signal S9.
なお入力信号slが画像信号の場合に、時間tを1フレ
一ム時間に設定すれdフレーム闇DPCM伝送装置、l
フィールド時間に設定すれはフィールド間DPCM伝送
装置となる。Note that when the input signal sl is an image signal, the time t is set to one frame time.
If set to field time, it becomes an inter-field DPCM transmission device.
また上記の実施例において、しさい埴の発生。Furthermore, in the above embodiments, the generation of shishai.
更新を任意の時間でに一度行うような制御をして、伝送
すべきしきい値を削減しても1¥泳の効果を傅ることが
できろ。Even if the threshold value to be transmitted is reduced by controlling the update to be performed once at any given time, the effect of 1 yen swimming can be achieved.
次(二受信側の動作説明を第3因に従って説明すると、
送信側において可変長符号化された符号化信号S6を受
信バッファ回路13で受1^する。そして可変長復号化
回路14は復号された変化検出信号S17が有効な場合
のみしきい(直Tと再生量子化信号St9を出力し、無
効な場合にはOを出力する。Next (explaining the operation of the second receiving side according to the third factor,
The encoded signal S6, which has been variable length encoded on the transmitting side, is received by the reception buffer circuit 13. Then, the variable length decoding circuit 14 outputs the threshold (direct T) and the reproduced quantized signal St9 only when the decoded change detection signal S17 is valid, and outputs O when it is invalid.
局部復号化回路15は再生奮子化1号steを再生補正
差分・1菖号820に産量し、さらイニしきい値補正復
元回v&2にひいて再生理分信号SZtを再生するその
動作な弔4図において説明すると、再生補正差分信号8
20の極性全極性判定回路23において判定し、その正
負′8′表す極性信号S23によりしきい値Tに極性を
付加し、有硬しきい値T1として出力する。ただし変化
検出回路817が無効!示していたらOにする。さらに
加算器25において、再生補正差分信号820と有極し
きい値T1とを加算し、再生差分信号S21を得る。加
W器16は予測日wr17からの予測信号S22と再生
差分信号S21とを加算し、求めるべき送信側入力信号
Stを再生する。The local decoding circuit 15 outputs the reproduction correction difference No. 1 ste to the reproduction correction difference 1st signal 820, and further outputs the reproduction correction difference No. 1 ste to the initial threshold correction restoration circuit v & 2 to reproduce the reproduction rational signal SZt. To explain with reference to FIG. 4, the reproduction correction difference signal 8
The total polarity determination circuit 23 of 20 adds polarity to the threshold value T using a polarity signal S23 representing its positive and negative values, and outputs it as a hard threshold value T1. However, the change detection circuit 817 is disabled! If so, set O. Furthermore, the adder 25 adds the reproduction correction difference signal 820 and the polarized threshold value T1 to obtain a reproduction difference signal S21. The adder 16 adds the predicted signal S22 from the predicted date wr17 and the reproduced difference signal S21, and reproduces the transmission side input signal St to be obtained.
以上説明したようj二この発明は差分信号の極性を判定
を行い、この判定に基づいてしきい値に極性を加え、こ
の極性を加えた有極しきい値に基づいて上記差分信号の
補正を行い、この補正された補正差分信号を量子化して
送受するので、0付辺に割当てられている符号長の短か
いコードの蛇生が押えられ、伝送の効率が向とする効果
がある。As explained above, this invention determines the polarity of the difference signal, adds the polarity to the threshold value based on this determination, and corrects the difference signal based on the polarized threshold value obtained by adding this polarity. Since the corrected difference signal is quantized and transmitted/received, the meandering of codes with short code lengths assigned to the 0 side is suppressed, and the transmission efficiency is improved.
第り図は本元明のDPCM変方式の送猪側の構成図、第
2図は第1図1=おけるしきい値補正回路の構成図、第
3図は本発明の差分パルス変調方式の受イざ側の構成図
、第4図は第3区におけるシキい値補正復元回路の構成
図、第5図は従来のDPCM方式の送信側の構成図、)
(6図は第5図における変化検出回路の構成図、第7図
は従来のDPCM方式におけろ受信側の構成図である。
2・・・変化検出回路、3・・・量子化回路、4・・・
可変長符号化回路、5・・・送信バッファ回路、ら・・
・局部復号化回路、8・・・予測回路、9・・・しきい
値発生回路、18・・・しきい値補正回路、19・・・
極性判定回路、20・・・極性付加回路、22・・・し
きい1直補正復元回路、23・・・再生極性判定回路、
24・・・再生礪性付加回路。Figure 2 is a block diagram of the feeding side of Akira Hongen's DPCM modification system, Figure 2 is a diagram of the threshold correction circuit in Figure 1, and Figure 3 is a diagram of the differential pulse modulation system of the present invention. (Figure 4 is a configuration diagram of the threshold value correction restoration circuit in the third section, and Figure 5 is a configuration diagram of the transmission side of the conventional DPCM system.)
(Figure 6 is a block diagram of the change detection circuit in Figure 5, and Figure 7 is a block diagram of the receiving side in the conventional DPCM system. 2... Change detection circuit, 3... Quantization circuit, 4...
Variable length encoding circuit, 5... Transmission buffer circuit, etc.
- Local decoding circuit, 8... Prediction circuit, 9... Threshold generation circuit, 18... Threshold correction circuit, 19...
Polarity determination circuit, 20... Polarity addition circuit, 22... Threshold 1 direct correction restoration circuit, 23... Reproduction polarity determination circuit,
24... Regenerative resistance addition circuit.
Claims (2)
号と差分信号とを生成し、この変化検出信号と差分信号
とを量子化して送受する差分パルス変調方式において、 上記差分信号の極性を判定を行ない、この判定に基づい
て上記しきい値に極性を加え、この極性を加えた有極し
きい値に基づいて上記差分信号の補正を行ない、この補
正された補正差分信号を量子化して送受することを特徴
とする差分パルス変調方式。(1) In a differential pulse modulation method in which a prediction error signal and a threshold are compared to generate a change detection signal and a difference signal, and the change detection signal and the difference signal are quantized and transmitted/received, the polarity of the difference signal is Based on this determination, polarity is added to the threshold value, the difference signal is corrected based on the polarized threshold value obtained by adding this polarity, and this corrected difference signal is quantized. A differential pulse modulation method that is characterized by transmitting and receiving signals.
減算して生成されることを特徴とする特許請求の範囲第
1項記載の差分パルス変調方式。(2) The differential pulse modulation method according to claim 1, wherein the corrected differential signal is generated by subtracting a polarized threshold from the differential signal.
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12037186A JPS62276927A (en) | 1986-05-26 | 1986-05-26 | Differential pulse modulation system |
KR1019870004872A KR910000707B1 (en) | 1986-05-26 | 1987-05-18 | Method and apparatus for encoding transmitting |
AU73379/87A AU591287B2 (en) | 1986-05-26 | 1987-05-25 | Apparatus for encoding/transmitting image. |
CA000537929A CA1280509C (en) | 1986-05-26 | 1987-05-25 | Method and apparatus for encoding/transmitting image |
US07/053,627 US4809067A (en) | 1986-05-26 | 1987-05-26 | Method and apparatus for encoding transmitting and receiving image by pulse code modulation |
EP87107644A EP0249086B1 (en) | 1986-05-26 | 1987-05-26 | Method and apparatus for encoding/transmitting image |
DE3789074T DE3789074T2 (en) | 1986-05-26 | 1987-05-26 | Method and device for encoding / transmitting images. |
AU41540/89A AU607636B2 (en) | 1986-05-26 | 1989-09-20 | Method for encoding/transmitting images |
AU41541/89A AU606817B2 (en) | 1986-05-26 | 1989-09-20 | Apparatus for encoding/transmitting images |
AU41539/89A AU606816B2 (en) | 1986-05-26 | 1989-09-20 | Method for encoding/transmitting images |
AU41538/89A AU606815B2 (en) | 1986-05-26 | 1989-09-20 | Apparatus for encoding/transmitting images |
CA000615827A CA1292059C (en) | 1986-05-26 | 1990-08-15 | Method for encoding/transmitting an image |
CA000615826A CA1292058C (en) | 1986-05-26 | 1990-08-15 | Method for encoding/transmitting an image |
CA000615825A CA1292057C (en) | 1986-05-26 | 1990-08-15 | Apparatus for encoding/transmitting an image |
CA000615828A CA1292060C (en) | 1986-05-26 | 1990-08-15 | Apparatus for encoding/transmitting an image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12037186A JPS62276927A (en) | 1986-05-26 | 1986-05-26 | Differential pulse modulation system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62276927A true JPS62276927A (en) | 1987-12-01 |
Family
ID=14784543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12037186A Pending JPS62276927A (en) | 1986-05-26 | 1986-05-26 | Differential pulse modulation system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS62276927A (en) |
AU (4) | AU607636B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2520306B2 (en) * | 1989-05-24 | 1996-07-31 | 三菱電機株式会社 | Transform coding device |
JPH0722396B2 (en) * | 1989-11-06 | 1995-03-08 | 三菱電機株式会社 | Image coding device |
US5091782A (en) * | 1990-04-09 | 1992-02-25 | General Instrument Corporation | Apparatus and method for adaptively compressing successive blocks of digital video |
US5068724A (en) * | 1990-06-15 | 1991-11-26 | General Instrument Corporation | Adaptive motion compensation for digital television |
US5122875A (en) * | 1991-02-27 | 1992-06-16 | General Electric Company | An HDTV compression system |
JPH05276500A (en) * | 1991-07-19 | 1993-10-22 | Sony Corp | Moving image coding and decoding device |
TW199257B (en) * | 1991-07-30 | 1993-02-01 | Sony Co Ltd |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60189388A (en) * | 1984-03-09 | 1985-09-26 | Fujitsu Ltd | Moving compensation encoder |
JPS61118085A (en) * | 1984-11-14 | 1986-06-05 | Nec Corp | Coding system and device for picture signal |
DE3685238D1 (en) * | 1985-02-28 | 1992-06-17 | Mitsubishi Electric Corp | ADAPTIVE INTERFACE VECTOR QUANTIZER ENCODER. |
AU579550B2 (en) * | 1985-06-10 | 1988-11-24 | Nec Corporation | Movement compensation predictive encoder for a moving picture signal with a reduced amount of information |
JP2512894B2 (en) * | 1985-11-05 | 1996-07-03 | ソニー株式会社 | High efficiency coding / decoding device |
-
1986
- 1986-05-26 JP JP12037186A patent/JPS62276927A/en active Pending
-
1989
- 1989-09-20 AU AU41540/89A patent/AU607636B2/en not_active Ceased
- 1989-09-20 AU AU41538/89A patent/AU606815B2/en not_active Ceased
- 1989-09-20 AU AU41541/89A patent/AU606817B2/en not_active Ceased
- 1989-09-20 AU AU41539/89A patent/AU606816B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
AU4154089A (en) | 1990-01-04 |
AU606815B2 (en) | 1991-02-14 |
AU4153889A (en) | 1990-01-04 |
AU606817B2 (en) | 1991-02-14 |
AU4153989A (en) | 1990-01-04 |
AU607636B2 (en) | 1991-03-07 |
AU4154189A (en) | 1990-01-04 |
AU606816B2 (en) | 1991-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3406546B2 (en) | Decoding method for continuous images | |
JP2003032677A (en) | Video compression encoding device | |
JPS62276927A (en) | Differential pulse modulation system | |
JPS5857836A (en) | Forecasting encoder | |
JPH01256278A (en) | Prediction coding system | |
JP3398457B2 (en) | Quantization scale factor generation method, inverse quantization scale factor generation method, adaptive quantization circuit, adaptive inverse quantization circuit, encoding device and decoding device | |
JPH09200778A (en) | Video signal coding method and video signal coding device | |
JPS62296633A (en) | Data compressing and transmitting equipment using differential pulse modulation system | |
JP2561855B2 (en) | Encoder | |
JPH02285720A (en) | Encoder | |
JPS62104223A (en) | Adpcm coding and recoding device | |
JPS63191490A (en) | Image encoding and transmitting method | |
JP2584761B2 (en) | Predictive coding transmission system | |
JP3013391B2 (en) | ADPCM coding method | |
JPS62216425A (en) | Forecasting encoder | |
JP2624520B2 (en) | Error propagation compensation method | |
JPS632453A (en) | Coding transmission equipment | |
JPS6058614B2 (en) | DPCM-PCM converter | |
JPH02270490A (en) | Coding control system | |
JPS62145987A (en) | Picture encoding system | |
JPH02135887A (en) | Encoding and decoding device | |
JPH01205765A (en) | Information quantity control circuit | |
JPH0356022B2 (en) | ||
JPH01303871A (en) | Method and apparatus for highly efficient encoding | |
JPH01135281A (en) | High-efficiency encoder |