JPS62276887A - Manufacture of piezoelectric ceramic laminate - Google Patents
Manufacture of piezoelectric ceramic laminateInfo
- Publication number
- JPS62276887A JPS62276887A JP61119654A JP11965486A JPS62276887A JP S62276887 A JPS62276887 A JP S62276887A JP 61119654 A JP61119654 A JP 61119654A JP 11965486 A JP11965486 A JP 11965486A JP S62276887 A JPS62276887 A JP S62276887A
- Authority
- JP
- Japan
- Prior art keywords
- layers
- piezoelectric ceramic
- laminate
- ceramic
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 76
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000000126 substance Substances 0.000 claims description 11
- 238000005470 impregnation Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 abstract description 11
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 230000002349 favourable effect Effects 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 88
- 239000000463 material Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 239000003822 epoxy resin Substances 0.000 description 9
- 229920000647 polyepoxide Polymers 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 239000004014 plasticizer Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000007606 doctor blade method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- -1 phthalate ester Chemical class 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Landscapes
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔技術分野〕
この発明は、セラミックス層と電極層が交互に積層され
ている圧電セラミックス体の製法に関するものである。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Technical Field] The present invention relates to a method for manufacturing a piezoelectric ceramic body in which ceramic layers and electrode layers are alternately laminated.
〔背景技術]
セラミックス層と電極層が交互に積層されている圧電セ
ラミックス体は、従来、つぎのような方法で製造されて
いた。[Background Art] A piezoelectric ceramic body in which ceramic layers and electrode layers are alternately laminated has conventionally been manufactured by the following method.
所望の組成を有するセラミックスの仮焼物粉末にバイン
ダーなどを添加して共に混合粉砕・脱泡することにより
得られたスラリーを、ドクターブレード法あるいは押し
出し成形法でグリーンシートにする。このグリーンシー
トを切断した後、導電性ペーストを用いてグリーンシー
ト表面に電極パターンを印刷したものを複数枚重ねてお
いて、60〜15 G ’Cの温度で、熱圧着し積層す
る。その後、積層体を焼結すると、圧電セラミックス層
と導電性ペーストによる電極層が交互に積層された圧電
セラミックス体が得られることとなる。バインダーは焼
結工程で除かれる。外部電極は焼結したあとに取り付け
る。A binder and the like are added to ceramic calcined powder having a desired composition, and the resulting slurry is mixed, pulverized, and defoamed to form a green sheet using a doctor blade method or an extrusion method. After cutting this green sheet, a plurality of green sheets having electrode patterns printed on their surfaces using conductive paste are stacked one on top of the other, and are bonded and laminated by thermocompression at a temperature of 60 to 15 G'C. Thereafter, the laminate is sintered to obtain a piezoelectric ceramic body in which piezoelectric ceramic layers and electrode layers made of conductive paste are alternately laminated. The binder is removed during the sintering process. The external electrodes are attached after sintering.
この従来の製法は、量産性に優れ、一層あたりのセラミ
ックス層の厚みを薄くして駆動電圧を低くできるという
長所を有する。しかしながら、電極層とセラミックス層
を約1300℃の高温下で同時に焼かれるので、電極形
成用材料が高い焼結温度に耐えるものでなければならな
い。そのため、Pdの含有量が多いAg−Pd系の高価
な材料を用いている。それで、多層化するとコストが非
常に高くなってしまう。そればかりか、得られた圧電セ
ラミックス体におけるセラミックス層と電極層の熱膨張
履歴の違いに基づ(歪みが残留し、圧電セラミックス体
の強度が劣化する。また、電極層とセラミックス層の密
着強度も強くないので、圧電素子のようにダイナミック
な動きを伴う機能素子に用いるには、いまひとつ信頼性
が十分ではない。This conventional manufacturing method has the advantage that it is excellent in mass production, and that the thickness of each ceramic layer can be made thinner so that the driving voltage can be lowered. However, since the electrode layer and the ceramic layer are simultaneously fired at a high temperature of approximately 1300° C., the material for forming the electrode must be able to withstand the high sintering temperature. Therefore, an expensive Ag-Pd material with a high content of Pd is used. Therefore, the cost becomes extremely high when the layer is multi-layered. Moreover, due to the difference in thermal expansion history between the ceramic layer and the electrode layer in the obtained piezoelectric ceramic body (strain remains, the strength of the piezoelectric ceramic body deteriorates, and the adhesion strength between the electrode layer and the ceramic layer However, since it is not strong enough, it is not reliable enough to be used in functional elements that involve dynamic movement, such as piezoelectric elements.
このような短所を解消するため、電極形成用材料にセラ
ミックス粉末を混入したり、電極パターンに小孔を設け
て密着強度を増すようなこともなされているが、みるべ
き効果は得られていない。In order to overcome these shortcomings, efforts have been made to mix ceramic powder into the electrode forming material and create small holes in the electrode pattern to increase adhesion strength, but these efforts have not produced the desired effect. .
また、セラミックス電極層を用いる方法も提案されてい
る。BaTi0z(チタン酸バリウム)組成の材料と半
導電性B a T iO3組成の材料をの組み合わせて
焼結する方法では、一定の効果も見られるが、圧電特性
に優れた、例えば、PZT(チタン酸ジルコン酸鉛)組
成の材料に半導電性BaTi0.組成の材料を組み合わ
せたものでは、pbがす早く半導電性l3aTiOz組
成の材料へ拡散するため、電極層である導電性セラミッ
クス層がなくなってしまう (導電性を有しなくなる)
という問題がある。A method using a ceramic electrode layer has also been proposed. A method of sintering a material with a BaTi0z (barium titanate) composition and a material with a semiconductive BaTiO3 composition has some effects, but Semiconductive BaTi0. In a combination of materials with the same composition, PB quickly diffuses into the material with the semiconductive l3aTiOz composition, so the conductive ceramic layer that is the electrode layer disappears (no longer has conductivity).
There is a problem.
この発明は、上記の事情に鑑み、高価な電極形成用材料
を必要とせず、セラミックス層と電極層の密着強度や電
極層形成に伴う歪みも解消することができ、しかも、低
電圧駆動に適した多層構造を有する圧電セラミック、ス
体の製法を提供することを目的とする。In view of the above circumstances, this invention eliminates the need for expensive electrode forming materials, eliminates the adhesion strength between the ceramic layer and the electrode layer, and eliminates the distortion associated with electrode layer formation, and is suitable for low voltage driving. The purpose of this invention is to provide a method for manufacturing a piezoelectric ceramic body having a multilayer structure.
前記目的を達成するため、この発明は、セラミックス層
と電極層が交互に積層されている圧電セラミックス体を
得る方法において、前記セラミックス層と前記電極層と
なる多孔質層が交互に積層されてなる積層体を準備して
おいて、前記多孔質層に導電性を付与することを特徴と
する圧電セラミックス体の製法を要旨とする。In order to achieve the above object, the present invention provides a method for obtaining a piezoelectric ceramic body in which ceramic layers and electrode layers are alternately laminated, wherein the ceramic layers and porous layers serving as the electrode layers are alternately laminated. The gist of the present invention is a method for manufacturing a piezoelectric ceramic body, which comprises preparing a laminate and imparting conductivity to the porous layer.
以下、この発明にかかる圧電セラミックス体の製法を、
その一実施例にもとすいて詳しく説明する。The method for manufacturing the piezoelectric ceramic body according to the present invention will be described below.
A detailed description will be given of one embodiment thereof.
所望の組成の圧電セラミックス仮焼物粉体に、必要に応
じてバインダー、可塑剤、溶剤を加えたものを、混合・
粉砕しスラリー化する。得られたスラリーをドクターブ
レード法、または、押出法を用いて、グリーンシートに
し、このグリーンシートを所望の大きさに切断する。A piezoelectric ceramic calcined powder with a desired composition is mixed with a binder, plasticizer, and solvent as necessary.
Grind and slurry. The obtained slurry is made into a green sheet using a doctor blade method or an extrusion method, and this green sheet is cut into a desired size.
次に、このグリーンシート上に、電極層となる多孔質層
形成用の材料をスクリーン印刷法で付ける。多孔質層形
成用の材料には、圧電セラミックス仮焼物粉末に、バイ
ンダー、可塑剤、溶剤、および、空隙を作るためのグラ
ファイト粉末を加えてペースト状にしたものを用いる。Next, a material for forming a porous layer that will become an electrode layer is applied onto this green sheet by screen printing. As the material for forming the porous layer, a paste made by adding a binder, a plasticizer, a solvent, and graphite powder for creating voids to piezoelectric ceramic calcined powder is used.
グラファイト粉末は、約700℃で熱分解を開始しCO
2となって抜は出す。また、無定形の炭素でも、分解温
度は低いが使用できる。 多孔質層形成用のペーストを
印刷したグリーンシートを複数枚積層しておいて、温度
と圧力を加えて接着する(熱圧着する)。このようにし
て得られた積層体(生チップ)を焼結する。空気中で徐
々に脱バインダー化し、ついで約1300℃の温度で焼
結する。焼結が完了すると、グラファイトが抜けてペー
スト印刷層は多孔質層となる。このように、セラミック
ス層と多孔質層が交互に積層されてなる積層体を準備す
る。Graphite powder starts thermal decomposition at about 700°C and releases CO
It became 2 and he was eliminated. Amorphous carbon can also be used although its decomposition temperature is low. Multiple green sheets printed with a paste for forming a porous layer are stacked and bonded together by applying heat and pressure (thermocompression bonding). The thus obtained laminate (green chip) is sintered. The binder is gradually removed in air and then sintered at a temperature of about 1300°C. Once sintering is complete, the graphite is removed and the paste printing layer becomes a porous layer. In this way, a laminate in which ceramic layers and porous layers are alternately stacked is prepared.
焼結に続いて、多孔質層に導電性を付与する。Following sintering, the porous layer is rendered electrically conductive.
この実施例では、導電性物質を多孔質層内に含浸により
入れて導電性を持たせている。導電性物質を樹脂液に含
ませておいて、減圧下、樹脂液ごと導電性′Jj!IJ
質を多孔質内に含浸する。導電性を付与した多孔質層は
電極層となる。導電性物質は、カーボン(C) 、Aj
!、Ag、Ni、Cuをはじめとして、なんでもよく、
種類の異なる物質を同時に多孔質層に入れてもよい。通
常、上記の種類の導電性物質は微粒子状態で樹脂液に含
まれている。樹脂液も、接着力のあるエポキシ系樹脂液
であることが望ましいが、これに限らない。ただ、樹脂
液の場合、多孔質層内で硬化して多孔質層の強度を強め
る傾向にある。さらに、樹脂液でなくとも、導電性物質
を分散して含み多孔質層内へ導電性物質を入れることが
できるようなものであればよい。導電性樹脂液を導入し
たあと、硬化のため、さらに100℃程度の加熱処理を
施すこともある。In this embodiment, a conductive material is impregnated into the porous layer to provide conductivity. A conductive substance is included in the resin liquid, and the resin liquid becomes conductive under reduced pressure. I.J.
impregnate the material into the pores. The porous layer imparted with electrical conductivity becomes an electrode layer. The conductive substance is carbon (C), Aj
! , Ag, Ni, Cu, anything is fine.
Different types of substances may be placed in the porous layer at the same time. Usually, the above-mentioned types of conductive substances are contained in the resin liquid in the form of fine particles. The resin liquid is also desirably an epoxy resin liquid with adhesive strength, but is not limited thereto. However, in the case of resin liquid, it tends to harden within the porous layer and increase the strength of the porous layer. Furthermore, it does not have to be a resin liquid, but any material that contains a conductive substance in a dispersed manner and can introduce the conductive substance into the porous layer may be used. After introducing the conductive resin liquid, heat treatment at about 100° C. may be further performed for curing.
以上のようにして、第1図にみるように、セラミックス
層2と電極層3が交互に積層されている圧電セラミック
ス体lが得られるのである。この圧電セラミックス体1
のセラミックス層2の厚み、あるいは、電極層3の厚み
は、それぞれ、グリーンシートの厚み、あるは、ペース
ト印刷の厚みに応じて決まることとなり、適当に調節す
ることもができる。ただ、積層構造の圧電セラミックス
が小型で低電圧駆動の機能素子に用いられるものである
ことを考えれば、セラミックス層2は、薄いほど変位し
やすいので50〜300μm程度とするのがよい。また
、電極層3もできるだけ薄いほうがよいけれど、5〜1
10Al程度の厚みにはしておくのが、信頼性確保の点
で望ましい。In the above manner, as shown in FIG. 1, a piezoelectric ceramic body 1 in which ceramic layers 2 and electrode layers 3 are alternately laminated is obtained. This piezoelectric ceramic body 1
The thickness of the ceramic layer 2 or the thickness of the electrode layer 3 is determined depending on the thickness of the green sheet or the thickness of paste printing, and can be adjusted appropriately. However, considering that piezoelectric ceramics with a laminated structure are used for small-sized, low-voltage-driven functional elements, the thickness of the ceramic layer 2 is preferably about 50 to 300 μm because the thinner it is, the easier it is to displace. Also, it is better for the electrode layer 3 to be as thin as possible;
From the viewpoint of ensuring reliability, it is desirable to keep the thickness around 10Al.
以上の説明から明らかなように、焼結のすんだセラミッ
クス層間の多孔質層に導電性物質を入れるので、導電性
材料は何ら高温にさらされない。As is clear from the above explanation, since the conductive material is placed in the porous layer between the sintered ceramic layers, the conductive material is not exposed to any high temperature.
そのため、何ら高価な電極用の導電性材料を用いる必要
がない。多孔質層もセラミックス層に類似の材料である
から、熱膨張率の差による歪みや接着強度の弱さの問題
も解消される。したがって、セラミックス層の厚みを薄
くシて低電圧で駆動させるようにしても十分強度が備わ
っている。つまり、安価で十分に信頼性のあるものとす
ることができるのである。Therefore, there is no need to use any expensive conductive material for electrodes. Since the porous layer is also made of a material similar to the ceramic layer, the problems of distortion and weak adhesive strength due to differences in thermal expansion coefficients are also solved. Therefore, even if the ceramic layer is made thinner and driven at a lower voltage, it still has sufficient strength. In other words, it can be made inexpensive and sufficiently reliable.
また、セラミックス層と多孔質層とよりなる積層体をY
J、(JNするのに、グリーンシートに多孔質層用パタ
ーンを印刷しておいたものを複数枚重ねておいて、全層
を同時に焼結するようにしていたが、これに限らない。In addition, a laminate consisting of a ceramic layer and a porous layer is
J, (In order to perform JN, a plurality of green sheets with patterns for porous layers printed on them were stacked one on top of the other, and all the layers were sintered at the same time, but the method is not limited to this.
あらかじめ焼結したセラミックス層のみを、バルクの焼
結体をスライスしたり、グリーンシートのみを焼結する
ことにより得て、これらのセラミックス層に多孔質層が
交互に積層されるように多孔質層を別工程で形成しても
よい。ただ、非常に薄いセラミックス層をバルクの焼結
体から切断することや、薄いセラミックス層を取り扱う
ことは容易なことではないばかりか、工程数も増えるこ
とから、上記の実施例のように両方の層を同時形成する
ことが望ましい。また、導電性付与を含浸以外の方法で
行ってもよい。Pre-sintered ceramic layers are obtained by slicing a bulk sintered body or by sintering only green sheets, and porous layers are layered so that porous layers are alternately laminated on top of these ceramic layers. may be formed in a separate process. However, it is not easy to cut a very thin ceramic layer from a bulk sintered body or to handle a thin ceramic layer, and the number of steps increases. It is desirable to form the layers simultaneously. Further, conductivity may be imparted by a method other than impregnation.
続いてより具体的な実施例と比較例を示す。Next, more specific examples and comparative examples will be shown.
(実施例1)
P b Z r o、ssT j o、ato3なる組
成となるように特級試薬のP bO1,Z r O2、
T IO2を秤量し、湿式混合粉砕後、濾過し、さらに
アルミナルツボ中、850°Cの温度下で焼成し、仮焼
物とする。この仮焼物を湿式粉砕後、濾過・乾燥して仮
焼物粉末を得る。(Example 1) Special grade reagents P bO1, Z r O2,
T IO2 is weighed, wet mixed and pulverized, filtered, and further calcined in an alumina crucible at a temperature of 850°C to obtain a calcined product. This calcined product is wet-pulverized, filtered and dried to obtain a calcined powder.
つぎにこの仮焼物粉末100重量部に対し、バインダー
としてポリビニルブチラール樹脂8重量部、可塑剤とし
てフタル酸エステル4重量部、溶剤としてブタノール2
0重量部、トリクロルエチレン50重量部を添加したも
のを、ディスペンサーで混合しスラリー状にした。この
スラリーをドクターブレード法を用いて厚み300μm
のグリーンシートを作成した。このグリーンシートを3
QB角に切断した。Next, to 100 parts by weight of this calcined powder, 8 parts by weight of polyvinyl butyral resin as a binder, 4 parts by weight of phthalate ester as a plasticizer, and 2 parts by weight of butanol as a solvent.
0 parts by weight and 50 parts by weight of trichlorethylene were mixed in a dispenser to form a slurry. This slurry was made into a thickness of 300 μm using the doctor blade method.
A green sheet was created. This green sheet 3
It was cut to the QB angle.
多孔質形成用の材料をつぎのようにして作成した。P
b Z r 、、53T i 、、7Q、なる組成の仮
焼物粉末を30重量部、グラファイト粉末を70重量部
の合計100重量部に対し、バインダーとしてポリビニ
ルブチラール樹脂8重量部、可塑剤としてフタル酸エス
テル4重量部、溶剤としてブタノール25重量部および
トリクロルエチレン55重量部を添加したものを、ディ
スペンサーで混合し、スラリー状とした。A porous material was prepared as follows. P
b Z r , 53T i , 7Q For a total of 100 parts by weight of 30 parts by weight of calcined powder and 70 parts by weight of graphite powder, 8 parts by weight of polyvinyl butyral resin as a binder and phthalic acid as a plasticizer. 4 parts by weight of ester, 25 parts by weight of butanol and 55 parts by weight of trichlorethylene as solvents were mixed in a dispenser to form a slurry.
このスラリー(多孔質層形成用材料)を、前述のグリー
ンシートの両方の面それぞれにスクリーン印刷法で塗布
した。厚みは20μmとした。印刷済のグリーンシート
50枚を重ねて、100°Cの温度下、500kg/c
11の圧力で熱圧着した。This slurry (material for forming a porous layer) was applied to both sides of the green sheet by screen printing. The thickness was 20 μm. Stacking 50 printed green sheets at 100°C, 500kg/c
Thermocompression bonding was carried out at a pressure of 11.
この後、積層したグリーンシートの焼結をつぎのように
しておこなった。100℃/時間の速度で、300℃ま
で昇温し、300℃の状態を24時間保持して脱脂(バ
インダー等の除去)をしたあと、200°C/時間の速
度で1260℃まで昇温し、この温度を1時間保持し、
つぎに300℃/時間の速度で降温する。この場合、積
層したグリーンシートはMgO製の匣鉢中に置かれるが
、PbOの蒸発を防ぐため同じ圧電セラミックスのダミ
ー材で囲んでおく。また、脱脂を行う時には、匣鉢のフ
タを開けておいて、空気の出入りを良くしておく。この
ようにして、セラミックス層と多孔質層が交互に積層さ
れてなる積層体が得られる。多孔質層の厚みは、15μ
mであった。Thereafter, the laminated green sheets were sintered as follows. The temperature was raised to 300°C at a rate of 100°C/hour, held at 300°C for 24 hours to degrease (remove binder, etc.), and then raised to 1260°C at a rate of 200°C/hour. , maintain this temperature for 1 hour,
Next, the temperature is lowered at a rate of 300°C/hour. In this case, the stacked green sheets are placed in a sagger made of MgO, but are surrounded by a dummy material made of the same piezoelectric ceramic to prevent evaporation of PbO. Also, when degreasing, leave the lid of the sagger pot open to allow air to flow in and out. In this way, a laminate in which ceramic layers and porous layers are alternately laminated is obtained. The thickness of the porous layer is 15μ
It was m.
この積層体の多孔質層に導電性を付与する。導電性物質
としてAg含むエポキシ樹脂(昭栄化学工業■製 導電
性エポキシ樹脂N2762AB)をブチルグリシジルエ
ーテルで希釈して200cps(B型粘度計で60rp
m)の粘度に調整し、この中に上記の焼結した積層体を
沈め、1O−3torrの減圧状態とし、多孔質層内へ
Agを含むエポキシ樹脂を含浸した。樹脂含浸のあと、
100℃の温度で硬化させた。樹脂硬化後、研摩処理で
、必要な個所以外に付着した樹脂を除去し、圧電セラミ
ックス体を完成した。Conductivity is imparted to the porous layer of this laminate. An epoxy resin containing Ag as a conductive substance (conductive epoxy resin N2762AB manufactured by Shoei Kagaku Kogyo ■) was diluted with butyl glycidyl ether to 200 cps (60 rp with a B-type viscometer).
The sintered laminate was submerged therein, the pressure was reduced to 10-3 torr, and the epoxy resin containing Ag was impregnated into the porous layer. After resin impregnation,
It was cured at a temperature of 100°C. After the resin had hardened, a polishing process was performed to remove the resin that had adhered to areas other than where it was needed, completing the piezoelectric ceramic body.
(実施例2)
実施例1において、導電性物質としてAgを含むエポキ
シ樹脂の代わりに、導電性物質としてC(カーボン)を
含むエポキシ樹脂(藤倉化成■製導電性エポキシ樹脂ド
ータイト5H3A)を用いて、同樹脂の希釈シンナSH
で希釈して200cps(B型粘度計で6Orpm)の
粘度に調整する以外は、実施例1と全く同様にして、圧
電セラミックス体を完成した。(Example 2) In Example 1, an epoxy resin containing C (carbon) as a conductive substance (conductive epoxy resin Dotite 5H3A manufactured by Fujikura Kasei ■) was used instead of the epoxy resin containing Ag as a conductive substance. , diluted thinner SH of the same resin
A piezoelectric ceramic body was completed in exactly the same manner as in Example 1, except that the viscosity was adjusted to 200 cps (6 Orpm using a B-type viscometer) by diluting the mixture.
(実施例3)
導電性物質としてAgを含むエポキシ樹脂の代わりに、
導電性物質としてNi粒子(粒子径2μm以下)とする
とともに、エポキシ樹脂にアラルダイトAZ15 (C
IBA−GEIGY社製)の主剤と硬化剤を混合したも
のとし、樹脂分とNi粒子分の重量比が約l:2となる
ように混合したものを用い、この混合物を、アセトンで
希釈して200cps(B型粘度計で60rpm)の粘
度に調整した。そして、多孔質層内へN1を含むエポキ
シ樹脂を含浸しのあと、180℃の温度で硬化させた。(Example 3) Instead of epoxy resin containing Ag as a conductive substance,
Ni particles (particle size of 2 μm or less) are used as the conductive material, and Araldite AZ15 (C
IBA-GEIGY (manufactured by IBA-GEIGY) and a curing agent were mixed together so that the weight ratio of resin and Ni particles was about 1:2, and this mixture was diluted with acetone. The viscosity was adjusted to 200 cps (60 rpm using a B-type viscometer). After impregnating the porous layer with an epoxy resin containing N1, it was cured at a temperature of 180°C.
それ以外は、実施例1と全く同様にして、圧電セラミッ
クス体を完成した。Other than that, a piezoelectric ceramic body was completed in the same manner as in Example 1.
(比較例1)
実施例1で得られた3Qii角のグリーンシートの両面
にptペースト(エンゲルハルl製A−3444)をス
クリーン印刷で塗布した。厚みは、10μmであった。(Comparative Example 1) PT paste (A-3444 manufactured by Engelhall) was applied to both sides of the 3Qii square green sheet obtained in Example 1 by screen printing. The thickness was 10 μm.
印刷済のグリーンシート50枚を重ね、100°Cの温
度下、500kg/crAのプレス圧で熱圧着し、実施
例1と同じ条件で焼結し、圧電セラミックス体を完成し
た。Fifty printed green sheets were stacked, thermocompression bonded at a temperature of 100°C and a press pressure of 500 kg/crA, and sintered under the same conditions as in Example 1 to complete a piezoelectric ceramic body.
実施例1〜3および比較例1の電極の抵抗値は、比抵抗
で10’ Ω・0ffl以下と十分に低かった。The resistance values of the electrodes of Examples 1 to 3 and Comparative Example 1 were sufficiently low as 10' Ω·0ffl or less in terms of specific resistance.
電極層とセラミックス層の密着強度は、つぎのようにし
て測定した。完成した圧電セラミックス体は、25m冒
X25mmX15mmの大きさとなった。これから2.
5酊X 2.5*nX l 5mmの大きさのものをダ
イヤモンドカッターで切り出し、電極層と平行方向の抗
折強度と破壊個所を測定した。The adhesion strength between the electrode layer and the ceramic layer was measured as follows. The completed piezoelectric ceramic body had a size of 25 m x 25 mm x 15 mm. From now on 2.
A piece with a size of 5mm x 2.5*nxl was cut out using a diamond cutter, and the bending strength in the direction parallel to the electrode layer and the fracture location were measured.
結果は次のとおりである。The results are as follows.
実施例1 破壊強度 830kg/cut破壊個所 セ
ラミックス層間
実施例2 破壊強度 750kg/cat破壊個所 セ
ラミックス層間
実施例3 破壊強度 950kg/cnl破壊個所 セ
ラミックス層間
比較例1 破壊強度 360に、、/ant破壊個所
電極−セラミックス層界面
上記の測定結果から明らかなように、実施例1〜3の圧
電セラミックス体は、電極−セラミックス層界面では剥
離が生じないので、電極層とセラミックス層の密着強度
は十分強いものであることがわかる。また、破壊がおき
るときの強さも、比較例1と比べて、格段に大きいこと
から歪みが生じているようなものではないことがわかる
。Example 1 Breaking strength: 830 kg/cut at the fracture location Ceramic interlayer Example 2 Breaking strength: 750 kg/cut at the fracture location Ceramic interlayer Example 3 Breaking strength: 950 kg/cnl at the fracture location Comparative example 1 between ceramic layers Breaking strength: 360,,/ant at the fracture location
Electrode-ceramic layer interface As is clear from the above measurement results, in the piezoelectric ceramic bodies of Examples 1 to 3, no peeling occurs at the electrode-ceramic layer interface, so the adhesion strength between the electrode layer and the ceramic layer is sufficiently strong. It can be seen that it is. Furthermore, the strength at which the breakage occurred was significantly greater than that of Comparative Example 1, indicating that no distortion occurred.
以上に詳しくのべたように、この発明にかかる圧電セラ
ミックス体を得る方法は、セラミックス層と電極層とな
る多孔質層が交互に積層されてなる積層体を準備してお
いて、多孔質層に導電性を付与する構成となっている。As described in detail above, the method for obtaining a piezoelectric ceramic body according to the present invention involves preparing a laminate in which ceramic layers and porous layers serving as electrode layers are alternately laminated, and It has a structure that provides conductivity.
そのため、高価な電極形成用導電性材料を用いる必要が
ないく低いコストで、低電圧駆動できる圧電セラミック
ス体を製造できる。さらに、導電性材料を用いる前の工
程で電極層となる多孔質層を形成することとなるため、
導電性材料と無関係にセラミックス層と多孔質層を好ま
しい状態に積層させることができるので、得られた圧電
セラミックス体が信頼性の高いものとなる。Therefore, there is no need to use expensive conductive materials for electrode formation, and a piezoelectric ceramic body that can be driven at low voltage can be manufactured at low cost. Furthermore, since a porous layer that becomes an electrode layer is formed in the process before using the conductive material,
Since the ceramic layer and the porous layer can be laminated in a preferable manner regardless of the conductive material, the resulting piezoelectric ceramic body has high reliability.
第1図は、この発明にかかる圧電セラミックス体の製法
の一実施例によって製造された圧電セラミックス体の部
分断面図である。
1・・・圧電セラミックス体 2・・・セラミックス
層 3・・・電極層
第1図FIG. 1 is a partial sectional view of a piezoelectric ceramic body manufactured by an embodiment of the piezoelectric ceramic body manufacturing method according to the present invention. 1... Piezoelectric ceramic body 2... Ceramic layer 3... Electrode layer Fig. 1
Claims (2)
圧電セラミックス体を得る方法において、前記セラミッ
クス層と前記電極層となる多孔質層が交互に積層されて
なる積層体を準備しておいて、前記多孔質層に導電性を
付与することを特徴とする圧電セラミックス体の製法。(1) In a method for obtaining a piezoelectric ceramic body in which ceramic layers and electrode layers are alternately laminated, a laminate in which the ceramic layers and the porous layers serving as the electrode layers are alternately laminated is prepared. . A method for producing a piezoelectric ceramic body, which comprises imparting conductivity to the porous layer.
により導入することによっておこなう特許請求の範囲第
1項記載の圧電セラミックス体の製法。(2) A method for manufacturing a piezoelectric ceramic body according to claim 1, wherein conductivity is imparted by introducing a conductive substance into the porous layer by impregnation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61119654A JPS62276887A (en) | 1986-05-23 | 1986-05-23 | Manufacture of piezoelectric ceramic laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61119654A JPS62276887A (en) | 1986-05-23 | 1986-05-23 | Manufacture of piezoelectric ceramic laminate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62276887A true JPS62276887A (en) | 1987-12-01 |
Family
ID=14766779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61119654A Pending JPS62276887A (en) | 1986-05-23 | 1986-05-23 | Manufacture of piezoelectric ceramic laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62276887A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5245734A (en) * | 1989-11-14 | 1993-09-21 | Battelle Memorial Institute | Multilayer piezoelectric actuator stack and method for its manufacture |
US5479684A (en) * | 1993-12-30 | 1996-01-02 | Compaq Computer Corporation | Method of manufacturing ink jet printheads by induction heating of low melting point metal alloys |
US6119342A (en) * | 1996-06-17 | 2000-09-19 | Nec Corporation | Method of producing a record head for an electrostatic ink jet recorder |
-
1986
- 1986-05-23 JP JP61119654A patent/JPS62276887A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5245734A (en) * | 1989-11-14 | 1993-09-21 | Battelle Memorial Institute | Multilayer piezoelectric actuator stack and method for its manufacture |
US5479684A (en) * | 1993-12-30 | 1996-01-02 | Compaq Computer Corporation | Method of manufacturing ink jet printheads by induction heating of low melting point metal alloys |
US6119342A (en) * | 1996-06-17 | 2000-09-19 | Nec Corporation | Method of producing a record head for an electrostatic ink jet recorder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4835656A (en) | Multi-layered ceramic capacitor | |
JPH02283664A (en) | Magnesium titanate ceramic and double dielectric base plate using it | |
GB2392550A (en) | Laminated piezoelectric element | |
JPS62276887A (en) | Manufacture of piezoelectric ceramic laminate | |
JP3275326B2 (en) | Method for producing multilayer ceramic sintered body | |
JPH11340090A (en) | Manufacture of grain boundary insulated multilayer ceramic capacitor | |
JP2001023853A (en) | Manufacture of multilayer ceramic capacitor | |
JPS62277780A (en) | Manufacture of piezoelectric ceramic body | |
JP2756745B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JPH0317207B2 (en) | ||
JPS6114679B2 (en) | ||
JP4721069B2 (en) | Manufacturing method of ceramic plate | |
JP4596154B2 (en) | Composite porous body and method for producing composite porous body | |
JP2605743B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JPH07326537A (en) | Production of ceramic laminated electronic component | |
JPS6347137A (en) | Manufacture of piezoelectric ceramic body | |
JPH0236512A (en) | Manufacture of laminated ceramic electronic component | |
JP2996049B2 (en) | Manufacturing method of multilayer ceramic electronic component | |
US6910473B1 (en) | Method of cutting ceramic green block | |
JP2000114611A (en) | Multi-layer piezoelectric element | |
JP3878916B2 (en) | Manufacturing method of multilayer electronic components | |
JPS63120482A (en) | Manufacture of piezoelectric ceramic body | |
JP2756746B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JPH02138781A (en) | Bimorph type piezoelectric element and manufacture thereof | |
JP2001181056A (en) | Ceramic green sheet and method for producing laminate |