[go: up one dir, main page]

JPS62276850A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62276850A
JPS62276850A JP61119667A JP11966786A JPS62276850A JP S62276850 A JPS62276850 A JP S62276850A JP 61119667 A JP61119667 A JP 61119667A JP 11966786 A JP11966786 A JP 11966786A JP S62276850 A JPS62276850 A JP S62276850A
Authority
JP
Japan
Prior art keywords
film
opening
semiconductor
opening part
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61119667A
Other languages
Japanese (ja)
Inventor
Shiro Nakanishi
中西 史朗
Yoshinori Yamashita
義典 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61119667A priority Critical patent/JPS62276850A/en
Publication of JPS62276850A publication Critical patent/JPS62276850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a high degree of integration and characteristic stability, by forming single-crystal silicon inside an opening part by an epitaxial method. CONSTITUTION:A P type silicon substrate 1 is covered with a mask 4, and an opening part 3 is formed by RIE. The mask 4 is then removed to form a SiO2 film 6 and pile a Si3 N4 film 7 by a reduced-pressure CVD method. Thereafter both insulating films 6 and 7 on the bottom surface of the opening part 3 is removed by RIE method and the exposed bottom surface is sacrificially oxidized to perform impurity ion implantation. The sacrificial oxidization film is then removed to pile an intermediate film 8 made of amorphous silicon by the reduced-pressure CVD method and to leave intermediate films 9 only on the insulating film 7 inside the opening part 3 by an RIE method. The intermediate films 9 are then changed into semiconductor films 10 made of single-crystal silicon by a solid phase epitaxial method, and selective epitaxial growth of single-crystal silicon is performed inside the opening part 3 to form a semiconductor layer 11 there. Phosphor self-diffusion occurs in this epitaxial process so that a n type semiconductor if formed.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (イ)産業上の利用分野 本発明は高集積化に適する半導体装置の製造方法に関す
るものであり、隣接する異なる導電型の半導体領域を分
離する素子分離領域の専有面積を小きくすると共に、該
素子分離領域によって囲まれる素子領域が該素子分離領
域との界面付近で結晶性が書なわれるのを防止する製法
を提供しようとするものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (a) Industrial Field of Application The present invention relates to a method for manufacturing a semiconductor device suitable for high integration, in which adjacent semiconductor regions of different conductivity types are separated. The present invention aims to provide a manufacturing method that reduces the exclusive area of an element isolation region and prevents the element region surrounded by the element isolation region from exhibiting crystallinity near the interface with the element isolation region. be.

〈ロン 従来の技術 ′18.導体装置の高集積化を実現するため、選択酸化
法に代わる新しい素子分離法が多く開発され、報告され
ている。CMOSデバイスにおいては素子分離領域を単
に縮少するたけではウェル形成における不純物の拡散や
ランチアップという問題がある。これらの点を考慮した
深い素子分離領域を形成する分駈技%irの開発が要請
きれており、選択エビ分離法を改良する1方法が、笠井
他’ CMO8におけるKlllll幅素子分離技術」
<iK学技報vO!。
<Ron Conventional technology '18. In order to achieve high integration of conductor devices, many new element isolation methods have been developed and reported to replace selective oxidation methods. In CMOS devices, simply reducing the element isolation region poses problems such as impurity diffusion and launch-up during well formation. Taking these points into account, there is a strong demand for the development of a dividing technique %ir for forming deep element isolation regions, and one method to improve the selective isolation method is Kasai et al.'s 'Kllllll width element isolation technology in CMO8'.
<iK Academic Report vO! .

85 No303  P 1〜P6)に紹介されている
。これは、半導体基板に開口部を設け、この開口部を画
成する内債1面に絶R膜を設け、この絶1縁膜上を含め
前記開口部内に上記半導体基板から単結晶ノリフンを選
択エピタキ:ノヤル成長きせるようにしている。この方
法では、形成される単結晶シリコンの、絶縁膜の界面付
近に結晶欠陥を生してしまうというおそれがある。
85 No.303 P1-P6). In this method, an opening is provided in the semiconductor substrate, an insulating R film is provided on one surface of the internal bond that defines this opening, and a single-crystal R film is selected from the semiconductor substrate within the opening, including on the insulating film. Epitaki: I'm trying to help Noya grow. In this method, there is a risk that crystal defects may occur near the interface of the insulating film in the single crystal silicon that is formed.

(ハ)発明が解決しようとする問題点 開口部内に形成きれた単結晶シリコンに、絶縁膜との界
面付近で結晶欠陥が生しると、その部分での特性劣化を
肪止する為、その部分を素子領域としないようにする必
要がある。これは半導体基板内に無効領域を形成してし
まうことになり高集積化を実現する上から問題がある。
(c) Problems to be Solved by the Invention When crystal defects occur in the single-crystal silicon that has been formed inside the opening near the interface with the insulating film, it is necessary to It is necessary to prevent the portion from becoming an element region. This results in the formation of an invalid region within the semiconductor substrate, which poses a problem in terms of realizing high integration.

本発明はこの点に留意してなされたものであり、開口部
内に形成される単結晶シリコンの、絶縁膜に隣接する部
分における結晶性を改善することができる製造方法を提
供しようとするものである。
The present invention has been made with this point in mind, and it is an object of the present invention to provide a manufacturing method that can improve the crystallinity of the single crystal silicon formed in the opening adjacent to the insulating film. be.

(ニ) 問題点を解決するための手段 本発明は、第1導電型を呈する半導体基板上に選択的に
開口部を備えて該半導体基板上にランド部と該開口部と
を設ける工程と、前記ランド部の外表面に絶縁膜を付設
する工程と、前記開口部に臨むn2半導体基板内に不純
物イオンを注入する工程と、前記絶縁膜上の前記開口部
に臨む部分にアモルファスシリコンよりなる中間膜を形
成する工程と、固相成長法により前記中間膜を単結晶シ
リコンよりなる半導体膜に変成する工程と、その後、前
記開口部内に前記第1導電型とは異なる第2導電型を呈
する単結晶シリコンよりなる半導体層をエピタキシャル
成長法により形成する工程を含む半導体装置の製造方法
である。
(d) Means for Solving the Problems The present invention provides a step of selectively providing an opening on a semiconductor substrate exhibiting a first conductivity type, and providing a land portion and the opening on the semiconductor substrate; a step of attaching an insulating film to the outer surface of the land portion, a step of implanting impurity ions into the N2 semiconductor substrate facing the opening, and a step of implanting an intermediate layer made of amorphous silicon on a portion of the insulating film facing the opening. a step of forming a film, a step of transforming the intermediate film into a semiconductor film made of single-crystal silicon by a solid phase growth method, and then forming a single film exhibiting a second conductivity type different from the first conductivity type in the opening. This is a method of manufacturing a semiconductor device including a step of forming a semiconductor layer made of crystalline silicon by an epitaxial growth method.

(ホ)作用 本発明は上述のように、開口部に臨む絶縁膜上にアモル
ファスシリコンよりなる半導体膜を形成し、これを同相
成長法によって単結晶シリコンよりなる半導体膜に変成
し、その後に、上記開口部内に単結晶シリコンよりなる
半導体層をエピタキシャル成長法により形成するように
しているので、上記絶縁膜に隣接する部分の単結晶シリ
コンはその結晶性が上記同相成長法の採用により害なわ
れず、また後工程のエピタキシャル成長法にて上記開口
部内に形成される半導体層も基板と上記変成きれた半導
体膜とに配向きれた良質な単結晶シリコンにて構成きれ
る。
(E) Function As described above, the present invention forms a semiconductor film made of amorphous silicon on the insulating film facing the opening, transforms this into a semiconductor film made of single crystal silicon by the in-phase growth method, and then, Since a semiconductor layer made of single-crystal silicon is formed within the opening by epitaxial growth, the crystallinity of the single-crystal silicon in the portion adjacent to the insulating film is not impaired by the use of the in-phase growth method. Furthermore, the semiconductor layer formed in the opening by the epitaxial growth method in the subsequent step can also be made of high-quality single crystal silicon oriented to the substrate and the metamorphosed semiconductor film.

(へ)実施例 次に本発明方法の1実施例を図示工程図を利用して説明
する。第1図〜第6図は本発明方法によって製造される
半導体装置の1つのCMO3部分の断面を工程順に示し
ている。
(f) Example Next, one example of the method of the present invention will be described using illustrated process charts. 1 to 6 show cross sections of one CMO3 portion of a semiconductor device manufactured by the method of the present invention in the order of steps.

半導体基板(1)は低抵抗1Ω・CのP型ノリコン単結
晶基板であり、この基板の表面(2)は(100)面と
されている。この基板に開口部(3)を形成するためこ
の開口部以外の部分に、SiO2膜、Si3N+膜及び
5iOz膜の3暦からなるマスク(4)を付設し、この
マスクを利用してシリコン基板(1)にRIEにより開
口部(3)を選択的に形成する。この開口部(3)の形
成によって、マスク(4)下に残されている部分(5)
はランド部と呼ばれる。第1図はこのようにして開口部
(3)とランド部(5)とを設けてなる基板の部分断面
図を示l−ている。
The semiconductor substrate (1) is a P-type Noricon single crystal substrate with a low resistance of 1 Ω·C, and the surface (2) of this substrate is a (100) plane. In order to form an opening (3) in this substrate, a mask (4) consisting of three films, an SiO2 film, a Si3N+ film, and a 5iOz film, is attached to the part other than this opening, and using this mask, the silicon substrate ( 1), an opening (3) is selectively formed by RIE. Due to the formation of this opening (3), the portion (5) left under the mask (4)
is called the land part. FIG. 1 shows a partial sectional view of a substrate provided with openings (3) and lands (5) in this manner.

次にマスク(4)を除去して、熱酸化法により基板(1
)表面に厚さ01岬の5i02膜(6)を形成し、続い
て減圧CVD法によって厚き0.15−の5ixN+膜
(7)を堆積きれる。その後、開口部(3)底面に付設
された両地縁膜(6)<7)をRIE法によって除去し
、この開口部底面における基板表面を露出きせる。二7
チングきれて露出した開口部底面の基板表面を犠牲酸化
し、続いて開口部内にnウェルを形成するために不純物
であるリンイオン(P9〉をウェハ全面にI X 10
” ClTl−2だけイオン注入する(第2図)。
Next, the mask (4) is removed and the substrate (1) is thermally oxidized.
) A 5i02 film (6) with a thickness of 01 is formed on the surface, and then a 5ixN+ film (7) with a thickness of 0.15- is deposited by low pressure CVD. Thereafter, both the edge films (6)<7) attached to the bottom of the opening (3) are removed by RIE to expose the substrate surface at the bottom of the opening. 27
The surface of the substrate at the bottom of the opening exposed by the etching is subjected to sacrificial oxidation, and then phosphorus ions (P9), which is an impurity, are applied to the entire surface of the wafer at I x 10 in order to form an n-well in the opening.
” Only ClTl-2 is ion-implanted (Figure 2).

次に、犠牲酸化膜を除去した後、減圧CVD法によりS
iH+を熱分解させ基板全面にアモルファスシリコンよ
りなる中間膜(8)を約0.61Jrn堆積許せる。尚
、堆積条件は、基板温!g550°C1S I H4/
Ii量50cc1分、真空度500クリトール、堆積時
間30分である(第3図参照)。
Next, after removing the sacrificial oxide film, S
By thermally decomposing iH+, it is possible to deposit approximately 0.61 Jrn of an intermediate film (8) made of amorphous silicon over the entire surface of the substrate. In addition, the deposition conditions are the substrate temperature! g550°C1S I H4/
The amount of Ii was 50 cc for 1 minute, the degree of vacuum was 500 Kritol, and the deposition time was 30 minutes (see Figure 3).

次に、RIE技術により、縦方向にのみエツチングを施
し、第4図に示す如く開口部<3)r’l′Iの絶縁膜
(7)の上にのみアモルファスシリコンよりなる中間膜
(9)を残す。
Next, by RIE technology, etching is performed only in the vertical direction, and as shown in FIG. leave.

次に、この中間膜を固相成長法によりi結晶ンリコンよ
りなる半導体膜(10)に変成きせる。この固相成長法
による変成条件は、基板温度600°C1Arガス流量
200cc/分、真空度150ミリトール、変成時間約
50時間である。このようにして、単結晶ノリコンより
なる半導体膜(10)で囲まれた開口部(3)が得られ
る(第5図)。
Next, this intermediate film is transformed into a semiconductor film (10) made of i-crystal silicon by solid phase growth. The metamorphism conditions for this solid phase growth method are: substrate temperature 600° C., Ar gas flow rate 200 cc/min, vacuum degree 150 mTorr, and metamorphosis time approximately 50 hours. In this way, an opening (3) surrounded by a semiconductor film (10) made of single-crystalline silicon is obtained (FIG. 5).

次に、上記開口部(3)内に単結晶シリコンの選択エピ
タキシャル成長を行ない、該開口部内に半導体層(11
)を設ける。このときの成長条件は、基板温度950℃
、真空度50ミリトール、ガスS i H2C,12H
CI  H2、パターン方向<100>である。半導体
層(11)は、下地シリコン基板中にイオン注入法によ
り高濃度の燐が注入されているため、成長中に燐の自己
拡散が起りn型半導体とぎれている。第6図はエピタキ
シャル成長工程後の基板の部分断面図を示しており、半
導体ff1(11)の下部にnoの埋込N!!(12)
が形成されている。このようにして、基板(1)上に、
n?+ン不ルFETを形成するためのP型半導体部(1
3)とPチャンネルFETを形成するためのn型半導体
部(14>とを深い素子分離部を構成する絶縁膜(6)
(7)を中間に挾んで形成するようにしている。
Next, selective epitaxial growth of single crystal silicon is performed in the opening (3), and a semiconductor layer (11) is grown in the opening.
) will be established. The growth conditions at this time were a substrate temperature of 950°C.
, vacuum degree 50 millitorr, gas S i H2C, 12H
CI H2, pattern direction <100>. Since the semiconductor layer (11) has a high concentration of phosphorus injected into the underlying silicon substrate by ion implantation, self-diffusion of phosphorus occurs during growth, resulting in a broken n-type semiconductor. FIG. 6 shows a partial cross-sectional view of the substrate after the epitaxial growth process, in which no is buried under the semiconductor ff1 (11). ! (12)
is formed. In this way, on the substrate (1),
n? P-type semiconductor part (1
3) and an n-type semiconductor part (14) for forming a P-channel FET, and an insulating film (6) constituting a deep element isolation part.
(7) is sandwiched in the middle.

CMO3を構成する一組の半導体部(13)(14)の
各外側に、LOCO5法を用いてフィールド領域を形成
し、次いで各半導体部に、一般の製法に従ってnfヤン
ネルFETとPチャンネルFETとをそれぞれ形成し、
CMO3を製造する。
A field region is formed on the outside of each of the pair of semiconductor parts (13) and (14) constituting the CMO3 using the LOCO5 method, and then an nf channel FET and a P channel FET are formed in each semiconductor part according to a general manufacturing method. form each,
Produce CMO3.

(ト)発明の効果 本発明は一方の導電型を呈する半導体基板の開口部に臨
む壁面に絶縁膜を設けこの絶縁膜上にアモルファスシリ
コンよりなる中間膜を付設しこの中間膜を同相成長法を
用いて単結晶シリコンよりなる半導体膜に変成しその後
、上記開口部内に単結晶シリコンをエピタキシャル成長
法によって成長させるようにしているので、このように
して成長された単結晶シリコンは絶縁膜との界面付近に
おいても固相成長時に得られる精度の結晶性を呈するも
のが得られ素子領域の全域を有効利用することができ高
集積化と特性の安定化に資することができる。
(G) Effects of the Invention The present invention provides an insulating film on the wall surface facing the opening of a semiconductor substrate exhibiting one conductivity type, attaches an intermediate film made of amorphous silicon on the insulating film, and deposits this intermediate film using the in-phase growth method. After that, the single crystal silicon is grown in the opening by an epitaxial growth method, so that the single crystal silicon grown in this way grows near the interface with the insulating film. Also, it is possible to obtain crystallinity with the precision obtained during solid-phase growth, and the entire area of the device region can be effectively utilized, contributing to high integration and stabilization of characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明方法の1実施例の工程説明図で
ある。 (1)・・・半導体基板、(3)・・・開口部、〈5)
・・・ランド部、(6>(7)・・・絶縁膜、(9)・
・・中間膜、〈10)・・・半導体膜、(11)・・・
半導体層。
1 to 6 are process explanatory diagrams of one embodiment of the method of the present invention. (1)...Semiconductor substrate, (3)...Opening, <5)
...Land part, (6>(7)...Insulating film, (9).
...Intermediate film, <10)...Semiconductor film, (11)...
semiconductor layer.

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型を呈する半導体基板上に選択的に開口
部を備えて該半導体基板上にランド部と該開口部とを設
ける工程と、前記ランド部の外表面に絶縁膜を付設する
工程と、前記開口部に臨む前記半導体基板内に不純物イ
オンを注入する工程と、前記絶縁膜上の前記開口部に臨
む部分にアモルファスシリコンよりなる中間膜を形成す
る工程と、固相成長法により前記中間膜を単結晶シリコ
ンよりなる半導体膜に変成する工程と、その後、前記開
口部内に前記第1導電型とは異なる第2導電型を呈する
単結晶シリコンよりなる半導体層をエピタキシャル成長
法により形成する工程を含む半導体装置の製造方法。
(1) Selectively providing an opening on a semiconductor substrate exhibiting a first conductivity type to provide a land portion and the opening on the semiconductor substrate, and attaching an insulating film to the outer surface of the land portion. a step of implanting impurity ions into the semiconductor substrate facing the opening, a step of forming an intermediate film made of amorphous silicon on a portion of the insulating film facing the opening, and a solid phase growth method. A step of transforming the intermediate film into a semiconductor film made of single crystal silicon, and then forming a semiconductor layer made of single crystal silicon exhibiting a second conductivity type different from the first conductivity type in the opening by an epitaxial growth method. A method for manufacturing a semiconductor device including a process.
JP61119667A 1986-05-23 1986-05-23 Manufacture of semiconductor device Pending JPS62276850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61119667A JPS62276850A (en) 1986-05-23 1986-05-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61119667A JPS62276850A (en) 1986-05-23 1986-05-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62276850A true JPS62276850A (en) 1987-12-01

Family

ID=14767078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61119667A Pending JPS62276850A (en) 1986-05-23 1986-05-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62276850A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077228A (en) * 1989-12-01 1991-12-31 Texas Instruments Incorporated Process for simultaneous formation of trench contact and vertical transistor gate and structure
US5416041A (en) * 1993-09-27 1995-05-16 Siemens Aktiengesellschaft Method for producing an insulating trench in an SOI substrate
US5994718A (en) * 1994-04-15 1999-11-30 National Semiconductor Corporation Trench refill with selective polycrystalline materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077228A (en) * 1989-12-01 1991-12-31 Texas Instruments Incorporated Process for simultaneous formation of trench contact and vertical transistor gate and structure
US5416041A (en) * 1993-09-27 1995-05-16 Siemens Aktiengesellschaft Method for producing an insulating trench in an SOI substrate
US5994718A (en) * 1994-04-15 1999-11-30 National Semiconductor Corporation Trench refill with selective polycrystalline materials

Similar Documents

Publication Publication Date Title
JPH05152429A (en) Manufacture of semiconductor device
JPS6038874A (en) Manufacturing method of semiconductor device
JPH11204633A (en) Method of forming trench isolation
JPS58132946A (en) Manufacture of semiconductor device
JPS62276850A (en) Manufacture of semiconductor device
JPS59165434A (en) Manufacture of semiconductor device
JPS58197839A (en) Manufacture of semiconductor device
JPH02172254A (en) Method for forming trench isolation structures in silicon substrates for CMOS and NMOS devices
JPS63302536A (en) Formation of element isolation region
JPH0249019B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPS63229838A (en) Formation of element isolation region
JPS5893252A (en) Semiconductor device and manufacture thereof
JPS594046A (en) Semiconductor device and fabrication thereof
JPS594048A (en) Fabrication of semiconductor device
JPH04151838A (en) Manufacture of semiconductor device
JP2763105B2 (en) Method for manufacturing semiconductor device
JPH065588A (en) Manufacture of semiconductor device
JPH034514A (en) Manufacture of wafer
JP3053678B2 (en) Method for manufacturing semiconductor device
JPS61207076A (en) Manufacture of semiconductor device
JPS63198373A (en) Semiconductor device and its manufacture
JPS60752A (en) Manufacture of semiconductor device
JPH0464182B2 (en)
JPH05211230A (en) Manufacture of semiconductor device
JPS6193618A (en) Semiconductor integrated circuit device