[go: up one dir, main page]

JPS62273029A - Medium for separating hydrogen - Google Patents

Medium for separating hydrogen

Info

Publication number
JPS62273029A
JPS62273029A JP11357586A JP11357586A JPS62273029A JP S62273029 A JPS62273029 A JP S62273029A JP 11357586 A JP11357586 A JP 11357586A JP 11357586 A JP11357586 A JP 11357586A JP S62273029 A JPS62273029 A JP S62273029A
Authority
JP
Japan
Prior art keywords
porous body
hydrogen
membrane
film
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11357586A
Other languages
Japanese (ja)
Inventor
Hidekazu Kikuchi
英一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ise Kagaku Kogyo KK
Original Assignee
Ise Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ise Kagaku Kogyo KK filed Critical Ise Kagaku Kogyo KK
Priority to JP11357586A priority Critical patent/JPS62273029A/en
Publication of JPS62273029A publication Critical patent/JPS62273029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain a hydrogen separating medium supporting a Pd membrane without a possibility in damaging the same, by forming a membrane based on Pd covering the pore parts of the surface of a heat resistant porous body having a large number of small pores. CONSTITUTION:A porous body having heat resistance withstanding temp. of 300 deg.C or more, no reactivity with gas to be treated and uniform pores with a pore size of 20-30,000Angstrom is used. This porous body is used in a cylindrical or plate like shape having a thickness of 1-0.2mm. After said porous body is washed and activated, a Pd membrane is formed by chemical plating. Chemical plating is performed by a method wherein a liquid such as alcohol or water is preliminarily infiltrated in the porous body and Pd is precipitated using a plating bath based on [Pd(NH3)4]Cl2.H2O. The thickness of the membrane is about 0.001mm when a pore size is 3,000Angstrom and a required plating time is about 17hr.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は水素分離用媒体に関するものである。[Detailed description of the invention] 3. Detailed description of the invention [Purpose of the invention] (Industrial application field) The present invention relates to a hydrogen separation medium.

(従来の技術) 省エネル・ギー型分薄技術として、近年膜による気体の
分離法か注目を集めている。
(Conventional technology) Gas separation methods using membranes have been attracting attention in recent years as an energy-saving thinning technology.

水素含有気体から水素を分離し、 99.99%以上の
高純度の水素を得る方法としてPdを主体とする膜(P
d膜と呼ぶ)を使用する方法(Pd1lfi法と呼ぶ)
が知られている。従来Pd1PIはPd又はPdを主体
とする合金を伸延し、薄膜とすることによって製造され
、この膜は支持枠で支持して使用された。
A membrane mainly composed of Pd (P
(referred to as Pd1lfi method)
It has been known. Conventionally, Pd1PI was produced by drawing Pd or an alloy mainly composed of Pd to form a thin film, and this film was used by supporting it with a support frame.

伸延法によって得られる膜の厚みの下限には限度があり
、又この膜は支持枠で支持して使用されるため、このよ
うな支持方法に耐えるだけの機械的強度を附与する必要
があり、あまり薄い膜を使用すると使用中膜が破損し易
い。
There is a lower limit to the thickness of the membrane that can be obtained by the stretching method, and since this membrane is used while being supported by a support frame, it is necessary to provide it with mechanical strength sufficient to withstand such support methods. However, if a too thin membrane is used, the membrane is likely to be damaged during use.

このためPd膜としては60〜100JL程度の比較的
厚いものを使用せざるを得す、高価なPdの使用量か増
大し、又水素の透過速度が比較的小さい欠点があった。
For this reason, it is necessary to use a relatively thick Pd film of about 60 to 100 JL, which increases the amount of expensive Pd used, and has the disadvantage that the hydrogen permeation rate is relatively low.

(発明が解決しようとする問題点) 本発明は従来技術が有していた前述の問題点を解消する
ことを目的とするものである。
(Problems to be Solved by the Invention) The present invention aims to solve the above-mentioned problems that the prior art had.

[発明の構成コ (問題点を解決するための手段) 本発明は前述の問題点を解決すべくなされたものてあり
、多数の小孔を有する耐熱性多孔質体の表面に、該小孔
の表面側開孔部を覆うPdを主体とする膜を形成せしめ
たことを特徴とするンに溝分離用媒体を提供するもので
ある。
[Structure of the Invention (Means for Solving the Problems)] The present invention has been made to solve the above-mentioned problems. The present invention provides a groove separation medium characterized in that a film mainly composed of Pd is formed to cover the openings on the surface side of the groove.

次に本発明を更に具体的に説明する。Next, the present invention will be explained in more detail.

本発明において、多孔質体としては、300°C以上、
望ましくは400°C以上の温度に耐える耐熱性を有し
、処理すべき気体と反応性を有せず、且つ20〜30,
0QOA、望ましくは40〜5,000 Aの均一な小
孔を有する多孔質体を使用するのが適当である。
In the present invention, the porous body has a temperature of 300°C or higher;
It preferably has heat resistance that can withstand temperatures of 400°C or higher, does not have reactivity with the gas to be treated, and has a temperature of 20 to 30°C.
It is suitable to use a porous body having uniform pores of 0 QOA, preferably 40 to 5,000 A.

このような多孔質体としてはAJLzOi等のセラミッ
クス微粒の焼結体、多孔質硝子が例示されるが、多孔質
硝子を使用するのが好ましい。
Examples of such a porous body include a sintered body of fine ceramic particles such as AJLzOi, and porous glass, but it is preferable to use porous glass.

多孔質硝子としてはハイコール硝子、或は5i0245
〜70wt%、820.8〜30wt%、CaO3〜2
5wt%、 Alt035〜L5wt%、Na2O3〜
8%、K2O1〜5%、  NazO+に、o  4〜
13wt、%、Mg00 S8 wt%なる組成を有す
る硝子(以下硝子Aという)又は5i0245〜70w
t%、 Bz03a 〜30 wt%、CaO3〜25
wt%、A1.035〜15%なる組成を有する硝子(
以下硝子Bという)を熱処理してB20:l、 CaO
を主体とする相を分相せしめ、この相を溶解除去するこ
とによって得られる多孔質硝子(以下、多孔質硝子A又
はBと呼ぶ)が適当であり、多孔質硝子Aを使用し、化
学メッキ法によってPd膜を形成させることによって特
に好適な水素分離用媒体をうることができる。
As the porous glass, Hicor glass or 5i0245
~70wt%, 820.8~30wt%, CaO3~2
5wt%, Alt035~L5wt%, Na2O3~
8%, K2O1~5%, NazO+, o4~
Glass having a composition of 13wt,%, Mg00S8wt% (hereinafter referred to as glass A) or 5i0245~70w
t%, Bz03a ~30 wt%, CaO3 ~25
Glass having a composition of wt%, A1.035-15% (
(hereinafter referred to as glass B) is heat treated to produce B20:l, CaO
Porous glass (hereinafter referred to as porous glass A or B) obtained by phase separation and dissolving and removing this phase is suitable. A particularly suitable hydrogen separation medium can be obtained by forming a Pd film by the method.

上述した多孔質体としては1〜0.2 @a+の厚みを
有する円筒状、又は板状のものを使用するのが適当であ
り、このような多孔質体は所定形状に成型した原料硝子
に分相処理、溶解処理を施こすことによって得ることが
できる。
It is appropriate to use a cylindrical or plate-shaped porous body having a thickness of 1 to 0.2 @a+ as the above-mentioned porous body, and such a porous body is attached to raw glass molded into a predetermined shape. It can be obtained by performing phase separation treatment and dissolution treatment.

本発明において多孔質硝子A又はBを得るためには、上
述した組成を有する硝子A又はBを使用する。これらの
成分のうちSiO□は分相、除去工程によって得られる
多孔硝子の骨格を形成するための基幹成分であり、 A
n zoxは補助成分として得られた多孔硝子の脆さを
減少させる作用を有する。B2O3は一方において多孔
硝子の骨格を形成する補助成分として機能するが、他方
GaQと協同して、熱処理によって微少な分相を生成す
る作用を有する。そしてこのようにして生成したCaO
1B203を主成分とする分相を溶解除去することによ
って多孔質硝子が形成される。
In order to obtain porous glass A or B in the present invention, glass A or B having the above-mentioned composition is used. Among these components, SiO
nzox has the effect of reducing the brittleness of the porous glass obtained as an auxiliary component. On the one hand, B2O3 functions as an auxiliary component that forms the framework of the porous glass, but on the other hand, in cooperation with GaQ, it has the effect of producing minute phase separation through heat treatment. And CaO generated in this way
Porous glass is formed by dissolving and removing the separated phase containing 1B203 as a main component.

B2O3は上述の説明からも首肯しつるように小孔の大
きさを決定する重要な因子であり、ム相中に移行して除
去されるB2O3量、或は逆に多孔硝子中に残存する8
□03量は、小孔の径の均一性と密接な関係を有するこ
とが判明した。
As can be seen from the above explanation, B2O3 is an important factor that determines the size of the pores, and the amount of B2O3 transferred into the mucus phase and removed, or conversely, the amount of B2O3 remaining in the porous glass
It was found that the amount of □03 has a close relationship with the uniformity of the diameter of the small pores.

上記成分を前述の範囲内に保つことにより好適な多孔質
体をうろことができる。
A suitable porous body can be obtained by keeping the above components within the above ranges.

硝子A、Bを所定形状に成型した後熱処理して(:aO
、B20zを主体とする相(以下Cab、  B20゜
相という)を分相せしめる。加熱処理温度が高い程、又
熱処理時間が長い程CaO、B20□相は太きくなり、
従って得られる多孔硝子の小孔の径は大きくなる傾向を
有し、熱処理条件を選択することによって小孔の径を5
0〜50,0OOAの範囲所望の値とすることかできる
。このようにして得られた多孔質硝子は、小孔の径は均
一であり、本発明の目的を達成するのに極めて好適なも
のである。
Glasses A and B are molded into a predetermined shape and then heat treated (:aO
, B20z (hereinafter referred to as Cab, B20° phase). The higher the heat treatment temperature and the longer the heat treatment time, the thicker the CaO and B20□ phases become.
Therefore, the diameter of the small pores in the resulting porous glass tends to increase, and by selecting the heat treatment conditions, the diameter of the small pores can be increased by 50%.
It can be any desired value in the range of 0 to 50,000 OOA. The porous glass thus obtained has small pores of uniform diameter and is extremely suitable for achieving the object of the present invention.

加熱処理を行った硝子をHCI H2SO,、HNO。Heat treated glass is HCI H2SO, HNO.

等の酸中に浸漬してCaO1B、Oユ相を溶解除去する
。なお酸処理を行なうに先立ち、HF溶液で短時間その
表面をエツチング処理するのが望ましい。
The CaO1B and OY phases are dissolved and removed by immersing the sample in an acid such as Note that prior to acid treatment, it is desirable to etching the surface for a short time with an HF solution.

前述したように熱処理の条件によって、得られる多孔硝
子の小孔の径を制御することができるが、小孔の径は多
孔質硝子中に残存するB20.の屋に応じて変化するこ
と及びこのB、0.の量は熱処理、酸処理の条件によっ
て左右されることが判明した。モしてB2O3が望まし
く 0.5 wt%以上残存するようこれらの条件を定
めることにより特に好適な結果の得られることが判明し
た。
As mentioned above, the diameter of the small pores in the resulting porous glass can be controlled by the heat treatment conditions, but the diameter of the small pores depends on the B20. This B, 0. It has been found that the amount of is influenced by the conditions of heat treatment and acid treatment. It has been found that particularly favorable results can be obtained by setting these conditions so that B2O3 desirably remains in an amount of 0.5 wt% or more.

望ましい処理条件は次の通りである。Desirable processing conditions are as follows.

加熱温度 600へ850℃ 加熱時間 2〜48hr、望ましくは12〜24hr酸
の種類 80文、 !(2S04.114G。
Heating temperature 600 to 850℃ Heating time 2-48hr, preferably 12-24hr Type of acid 80 sentences,! (2S04.114G.

酸の濃度 o、oi〜2.ON、望ましくは0.1〜1
、ON 処理時間 2〜20hr、望ましくは4〜16hr温 
 度 50〜95℃、望ましくは80〜90℃上述した
多孔質体にPd膜を形成させるための方法として化学メ
ッキ法を好適に用いることができる。
Acid concentration o, oi~2. ON, preferably 0.1-1
, ON Treatment time 2-20hrs, preferably 4-16hrs
A chemical plating method can be suitably used as a method for forming a Pd film on the above-mentioned porous body at a temperature of 50 to 95°C, preferably 80 to 90°C.

化学メッキを施こす前に多孔質体の表面に付着する汚れ
を除去するため洗浄を行なうのが望ましい、好適な汚れ
除去法としては、トリクロロエチレンを用いた超音波洗
浄法が例示できる。なおトリクロロエチレンによる洗浄
後エタノール等の低級アルコールによる洗浄を行ない、
多孔質体に残存するトリクロロエチレンをアルコールで
置換し、次いで乾燥することもできる。
It is desirable to perform cleaning to remove stains adhering to the surface of the porous body before applying chemical plating, and an example of a suitable stain removal method is an ultrasonic cleaning method using trichlorethylene. After washing with trichlorethylene, wash with lower alcohol such as ethanol.
It is also possible to replace trichlorethylene remaining in the porous body with alcohol and then dry it.

その後化学メッキに先立ち、多孔質体の活性化を行ない
、多孔質体に活性化されたPdを被着するのが適当であ
る。
Thereafter, prior to chemical plating, it is appropriate to activate the porous body and deposit activated Pd onto the porous body.

活性化は例えば、  5nC12溶液及びPdCl2溶
液による浸漬処理を交互に行なうことによって好適な結
果をうることができる。好ましい処理液の組成として5
nC1z ・2Hz01 gin + 37%HC文 
1m文、  PdC文20.1 g/見+37%IC文
0.1  an/fLを例示することができる。なお、
これらの溶液による処理を交互に行なう際、一方の溶液
の処理路後、純水による充分な洗浄を行なうのが適当で
ある。
For example, suitable activation results can be obtained by alternately performing immersion treatment with a 5nC12 solution and a PdCl2 solution. 5 as a preferable treatment liquid composition
nC1z ・2Hz01 gin + 37%HC sentence
1m sentence, PdC sentence 20.1 g/view+37% IC sentence 0.1 an/fL can be exemplified. In addition,
When processing with these solutions is performed alternately, it is appropriate to perform sufficient washing with pure water after the processing path of one of the solutions.

次いで多孔質体を以下示すようなメッキ液に浸漬するこ
とにより、前述の処理によって形成されたPd上にPd
を析出させ、多孔質体の表面側開口部を覆ってPd膜を
生成せしめることができる。この際マスキング等によっ
て多孔質体の必要な部分のみにPd膜を形成させるのが
適当である。
Next, by immersing the porous body in a plating solution as shown below, Pd is deposited on the Pd formed by the above-mentioned treatment.
can be precipitated to form a Pd film covering the openings on the surface side of the porous body. At this time, it is appropriate to form the Pd film only on the necessary portions of the porous body by masking or the like.

例えば円筒状の多孔質体の外表面にPd膜を形成させる
場合、円筒の両端面を閉塞することにより外面のみにP
d膜を形成させることができる。或は又[Pd(NH,
)41 C見2・H2Oを主体とするメッキ液を用いる
場合、多孔質体の小孔にアルコール、水のような液体を
滲み込ませておくことにより、小孔内部にはPd15j
を形成させることなく、多孔質体表面のみにPd膜を形
成させることができる。
For example, when forming a Pd film on the outer surface of a cylindrical porous body, by closing both end faces of the cylinder, Pd film is formed only on the outer surface.
d film can be formed. Or [Pd(NH,
) 41 When using a plating solution mainly composed of C2.H2O, by soaking a liquid such as alcohol or water into the small pores of the porous body, Pd15j is added to the inside of the small pores.
A Pd film can be formed only on the surface of the porous body without forming a Pd film.

上記手段のうち低級アルコールを用いることは本発明の
目的を達成するのに特に有効である。
Among the above means, the use of lower alcohols is particularly effective in achieving the objects of the present invention.

[Pd(NHz)nl C1zが低級アルコールに溶解
性を有しないためと思われる@ 化学メッキによってPd1iiを形成させるために好適
に用いられるメッキ液として次の組成を示す溶液が例示
される。
[This is thought to be because Pd(NHz)nl C1z has no solubility in lower alcohols@ A solution having the following composition is exemplified as a plating solution suitably used to form Pd1ii by chemical plating.

[Pd(NH3)41 (:免2・H,85,4%2 
Na−EDTA         67.2g / l
NH4OH350gr/ 1 H2NNH,・Hzo         0.46■l
/文Pd膜の厚みが小さい程水素の透過速度が大となり
、且つ高価なPd使用量を減少することができるが、あ
まりこの厚みを小とするとPdlにピンホールが生じ水
素以外の気体がリークし又Pdが使用中破損し易くなる
。この傾向は、小孔開口部の径が大きくなる程増大する
[Pd(NH3)41 (:immun2・H,85,4%2
Na-EDTA 67.2g/l
NH4OH350gr/ 1 H2NNH,・Hzo 0.46■l
/text The smaller the thickness of the Pd film, the higher the hydrogen permeation rate, and the amount of expensive Pd used can be reduced, but if the thickness is made too small, pinholes will form in the Pdl and gases other than hydrogen will leak. Moreover, Pd becomes easily damaged during use. This tendency increases as the diameter of the small hole opening increases.

Pd膜の厚さを小孔毎に定めることはてきずPd膜の最
小の厚さは小孔の最大径によって定められる。小孔の径
にバラツキがあり、大きい径の小孔が僅かな数でも存在
するとH2以外の気体のリークを完全に防止するために
は、Pd膜の厚さをこの大きい小孔径に応じて大きくす
る必要が生じ、他の大部分の小孔は、不必要に厚いPd
膜で覆われることとなる。
It is not possible to determine the thickness of the Pd film for each small hole; the minimum thickness of the Pd film is determined by the maximum diameter of the small hole. If there is variation in the diameter of the small pores, and even a small number of small pores with large diameters exist, the thickness of the Pd film must be increased according to the diameter of the large pores in order to completely prevent the leakage of gases other than H2. Most of the other small holes need to be filled with unnecessarily thick Pd.
It will be covered with a membrane.

多孔硝子A、Bは小孔の径が均一でバラツキが少なく、
従って不必要に厚いPdlを使用する必要がなく、しか
もこの多孔硝子を使用し、化学メッキ法によってPd1
llを形成させることにより極めて好適な性質を有する
水素分離媒体の得られることが判明した。
Porous glass A and B have uniform small pore diameters with little variation.
Therefore, there is no need to use unnecessarily thick Pdl, and moreover, by using this porous glass and using chemical plating method, Pd1
It has been found that a hydrogen separation medium with very suitable properties can be obtained by forming 11.

好適なPd膜の厚さは小孔の径が3,000 Aの場合
、0.001@m程度である。
A suitable thickness of the Pd film is about 0.001@m when the diameter of the small hole is 3,000 A.

メッキ所要時間はpd膜の厚みか大となる程大きくする
必要があるが、厚み0.001mmの場合17hr程度
である。 ・ 上述の水素用分離媒体の一方の側に水素を含む混合ガス
を供給すると、媒体は水素のみ透過させ、媒体の他方の
側から純粋な水素が流出する。
The time required for plating needs to be increased as the thickness of the PD film increases; however, in the case of a thickness of 0.001 mm, the time required for plating is approximately 17 hours. - When a mixed gas containing hydrogen is supplied to one side of the above-mentioned separation medium for hydrogen, the medium allows only hydrogen to permeate, and pure hydrogen flows out from the other side of the medium.

水素の透過速度は媒体の両側の水素の圧力(混合気体の
場合水素の分圧)の差に比例し、圧力差が零のときは、
水素は流出しない。
The permeation rate of hydrogen is proportional to the difference in hydrogen pressure (partial pressure of hydrogen in the case of a mixed gas) on both sides of the medium, and when the pressure difference is zero,
Hydrogen does not escape.

又、透過速度は温度が高い程大であり、温度上昇に伴な
いほぼ直線的に増加する。
Further, the higher the temperature, the higher the permeation rate, and increases almost linearly as the temperature rises.

例えば円筒状の媒体を使用し、第1図に示すように媒体
1の外側に下方から混合ガスを連続的に供給し外側上方
からブリートガスを排出することにより、媒体の内側か
ら純粋な水素を連続的に取出すことができる。
For example, using a cylindrical medium, pure hydrogen is continuously supplied from the inside of the medium by continuously supplying a mixed gas from below to the outside of the medium 1 and discharging bleed gas from above the outside as shown in Figure 1. It can be taken out.

水素の透過速度は極めて大きく、500℃、圧力差2 
kg/cm″の場合26 cゴ/cnf−min程度で
あり、この値は従来のPd模膜法5〜7倍に達する。
The permeation rate of hydrogen is extremely high, at 500℃ and pressure difference of 2
kg/cm'', it is about 26 cg/cnf-min, and this value reaches 5 to 7 times that of the conventional Pd patterning method.

ブリートガスは水素分圧が内側の水素の圧力と等しい状
態て取出される。従って取出すべき、内側の水素圧力を
制御することによりブリートガスの組成、水素の分取率
を制御することが可能となる。
The bleed gas is removed with hydrogen partial pressure equal to the internal hydrogen pressure. Therefore, by controlling the internal hydrogen pressure to be extracted, it is possible to control the composition of the bleed gas and the fractionation rate of hydrogen.

なお分相処理を行なった硝子上に化学メッキ法によって
Pd1iiを形成させた後、酸処理を行なって分相を溶
解除去し、多孔質体とすることによって本発明水素分離
用媒体を製造することもでき、又化学メッキ法に代えて
スパッタリング法、気相法によってPd膜を形成させて
もよ<、PdとAgの合金のようなPdを主体とする膜
を使用することにより、低温における水性脆性を改善す
ることもできる。
Note that the hydrogen separation medium of the present invention can be produced by forming Pd1ii on glass that has been subjected to phase separation treatment by chemical plating, and then performing acid treatment to dissolve and remove the phase separation to form a porous body. It is also possible to form a Pd film by sputtering or vapor phase method instead of chemical plating.By using a Pd-based film such as an alloy of Pd and Ag, water-based Brittleness can also be improved.

(作 用) 多孔質体の表面開口部を覆ってPd膜を形成させ、多孔
質体をPd15Iの支持体として利用することにより、
薄いPd[を破損の恐れなく支持する。
(Function) By forming a Pd film covering the surface openings of the porous body and using the porous body as a support for Pd15I,
Supports thin Pd without fear of damage.

[実施例1] 5i(1249wt%−B10:I 18wt%、 C
a013wt%、   AfL20i  9wt%、 
  Ha、0 5wt%、 に、02wt%、 MgO
4wt%なる組成を有する硝子製の厚み0.5 am、
内径foam、長さ500IIImの円筒体を710°
Cに20hr加熱して(:aO、B、03を主体とする
相を分相せしめ、2%HF溶液で30m1nエツチング
し、次いで80℃のHilN溶液中に16hr浸漬して
CaO、820:Iを主体とする′相を溶解除去して小
孔径:l、100 Aの多孔質体を得た。ついで、トリ
クロロエチレンとエタノールによる超音波洗浄を行なっ
た。トリクロロエチレンによる洗浄は、主に脱脂及びご
みやガラスに残留している粉の除去を目的として30分
間行なった。エタノールによる洗浄は脱脂効果もあるが
、主に水にほとんど不溶のトリクロロエチレンとの置換
を目的として同様に30分間行なった。以上の洗浄工程
ののちに、真空乾燥を約4〜5時間行った。この時5間
は多孔質ガラスにエタノールの臭いかほとんどしなくな
る程度の時間である0以上の工程の後に次の表面活性化
処理をおこなった。
[Example 1] 5i(1249wt%-B10:I 18wt%, C
a013wt%, AfL20i 9wt%,
Ha, 05wt%, 02wt%, MgO
0.5 am thick made of glass having a composition of 4 wt%,
A cylindrical body with an inner diameter of foam and a length of 500IIIm is rotated at 710°.
The phase mainly composed of (:aO, B, and 03) was separated by heating at C for 20 hr, and then etched for 30 ml with a 2% HF solution. A porous body with a small pore size of 1 and 100 A was obtained by dissolving and removing the main phase. Next, ultrasonic cleaning was performed using trichlorethylene and ethanol. Cleaning with ethanol has a degreasing effect, but the cleaning with ethanol was also carried out for 30 minutes with the purpose of replacing it with trichlorethylene, which is almost insoluble in water. After the process, vacuum drying was carried out for about 4 to 5 hours.At this time, the next surface activation treatment was carried out after the process of 0 or more, which is enough time for the porous glass to have almost no smell of ethanol. I did it.

基板表面の活性化は二液型でおこなった。すなわち(S
n(:iz  ・2H201g/ l + 37%tt
ci1mu/i)およびPd(:JLa活性化処理(P
dC120,1g/ i+ 37zHC文0.I  l
lnl文)である0表面のパラジウム核をできるだけ密
にするために、各浸漬時間を1分として、交互に10回
おこなった。(各溶液から引きあげた後におのおの充分
な純水による洗浄をおこなった。)なお、これらの処理
は外面のみにメッキを施す目的のため、上下をメッキ用
テープ(スコッチ社製)で目かくしをして管内部に液が
はいりこまないように工夫した0表面活性化を行なった
多孔質ガラスは、上下の目かくしをしたテープをはりか
え、エタノール中に浸漬し、純水で洗浄した後1文中に
[Pd(883) 4]  CJL 、 HzOを5.
4 gr、2 NaEDTAを67.2g 、 811
40)1を350 gr、 HJ NH* ・[20を
0.4  tan含有する50℃のメッキ液に17h「
浸漬した。
Activation of the substrate surface was performed using a two-component method. That is, (S
n(:iz ・2H201g/l + 37%tt
ci1mu/i) and Pd(:JLa activation treatment (P
dC120,1g/i+ 37zHC sentence 0. I l
In order to make the palladium nuclei on the 0 surface as dense as possible, each dipping time was 1 minute, and the dipping was repeated 10 times alternately. (After each sample was removed from the solution, it was thoroughly washed with pure water.) Since the purpose of these treatments was to plate only the outer surface, the top and bottom were covered with plating tape (manufactured by Scotch). The porous glass, which has undergone zero surface activation to prevent liquid from entering the tube, is immersed in ethanol after replacing the upper and lower blinding tape and washing with pure water. [Pd(883) 4] CJL, HzO 5.
4 gr, 67.2 g of 2 NaEDTA, 811
40) 350 gr of 1 and 0.4 tan of HJ NH* 20 were added to a plating solution at 50°C for 17 hours.
Soaked.

なお、このメッキ液はメッキ速度をなるべく一定とする
ため1時間に1回交換した。所定の時間メッキをおこな
った多孔質ガラスは、上下の目かくしをした部分を切断
し、切口をととのえて長さ25.4cmとした。その後
純水、及びエタノールで超音波洗浄後真空乾燥し水素分
離用媒体を得た。
Note that this plating solution was replaced once every hour in order to keep the plating speed as constant as possible. The porous glass that had been plated for a predetermined period of time was cut at the upper and lower blind portions, and the cut edges were trimmed to have a length of 25.4 cm. Thereafter, it was ultrasonically cleaned with pure water and ethanol, and then vacuum dried to obtain a hydrogen separation medium.

この水素分離用媒体lを0リング2て、ステンレス鋼製
外管3に固定し第1図に示す試験装置とした。なお、加
熱は試験装置外側を雲母で絶縁し、その上にニクロム線
を巻き、ざらにカオールで保温しておこなった。実験温
度は内管の中心部(上下の0リングから12cmのとこ
ろ)で測定した。
This hydrogen separation medium 1 was fixed to an outer tube 3 made of stainless steel using an O-ring 2 to form a test apparatus as shown in FIG. For heating, the outside of the test device was insulated with mica, a nichrome wire was wound on top of the insulator, and the test equipment was kept warm with Kaoru. The experimental temperature was measured at the center of the inner tube (12 cm from the upper and lower O-rings).

供給孔4からH2/Nt ” 1 (モル)の混合ガス
を連続的に供給し、排出孔5からブリードガスを排出し
、下部の取出孔6から純粋な99.99%以上のl k
g/cゴの圧力を有する水素を得ることができた。
A mixed gas of H2/Nt'' 1 (mol) is continuously supplied from the supply hole 4, a bleed gas is discharged from the discharge hole 5, and a pure lk of 99.99% or more is supplied from the lower extraction hole 6.
It was possible to obtain hydrogen with a pressure of g/c.

なお7はパージ用の純水素の供給孔、8はサーモカップ
ルである。
Note that 7 is a supply hole for pure hydrogen for purging, and 8 is a thermocouple.

第2図は混合ガスの圧力(kg/cゴ)(水素分圧はこ
の局である)を横軸とし水素透過速度(+a1/重in
)を縦軸とした水素透過速度と圧力の関係を示すグラフ
、第3図はガスの組成(水素モル分率)を縦軸とし、混
合ガスの圧力を横軸としたガス組成と圧力の関係を示す
グラフで、直線aは得られた水素ガス、曲線すはブリー
ドガスの組成を示す。
Figure 2 shows the pressure of the mixed gas (kg/c) (hydrogen partial pressure is at this point) on the horizontal axis, and the hydrogen permeation rate (+a1/kg/cm).
) is a graph showing the relationship between hydrogen permeation rate and pressure on the vertical axis. Figure 3 shows the relationship between gas composition and pressure with gas composition (hydrogen mole fraction) on the vertical axis and mixed gas pressure on the horizontal axis. In this graph, the straight line a shows the composition of the obtained hydrogen gas, and the curved line shows the composition of the bleed gas.

混合ガスの圧力が大となる程ブリートガス中の水素のモ
ル分率は小即ち水素の分取率は大となり、又水素の透過
速度は大となることが判明する。なお得られた水素は常
に99.99%以上であった。
It has been found that as the pressure of the mixed gas increases, the molar fraction of hydrogen in the bleed gas decreases, that is, the fractionation rate of hydrogen increases, and the permeation rate of hydrogen increases. The hydrogen content obtained was always 99.99% or more.

尚Pd膜の厚みはほぼ0.001mm程度であった。The thickness of the Pd film was approximately 0.001 mm.

(実施例2) Si0250 wt%、  B、0.20wt%、 (
:ao 1 jwt%、  AlzOx 10wt%、
  Na2O4wt%、K、01wt%、Mg01wt
%なる組成を有する硝子を使用し実施例1と同様な実験
を行ない純度99.99%以上の水素ガスを得ることが
できた。実施例2においては分相を行なわせるための加
熱温度を720℃、加熱時間を20hr、メッキ時間を
25h「とした以外は実施例1と同様である。
(Example 2) Si0250 wt%, B, 0.20 wt%, (
:ao 1 jwt%, AlzOx 10wt%,
Na2O4wt%, K, 01wt%, Mg01wt
An experiment similar to that in Example 1 was conducted using glass having a composition of 99.99% or higher, and hydrogen gas with a purity of 99.99% or higher was obtained. Example 2 is the same as Example 1 except that the heating temperature for phase separation was 720° C., the heating time was 20 hours, and the plating time was 25 hours.

第4図は水素圧力差5kg/cゴ温度400℃、に3い
て混合ガスが含む水素ガスの供給量(+Jl /win
)を縦軸とし、得られた水素ガスの量(膳立/ll1n
)を縦軸としたグラフである0両者は比例関係にあり、
水素透過速度が混合ガス中のH2分圧に依存することが
判明する。
Figure 4 shows the amount of hydrogen gas supplied (+Jl/win) contained in the mixed gas at a hydrogen pressure difference of 5 kg/c and a temperature of 400°C.
) is the vertical axis, and the amount of hydrogen gas obtained (zentate/ll1n
) is the vertical axis, and the two are in a proportional relationship,
It turns out that the hydrogen permeation rate depends on the H2 partial pressure in the gas mixture.

尚Pd@(1)厚みは&IC!O,GOLmm程度であ
った。
Furthermore, Pd@(1) thickness is &IC! It was about O.GOLmm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明水素分離媒体の使用方法を示す説明図、
第2図は混合ガスの圧力と水素透過速度の関係を示すグ
ラフ、第3図は混合ガスの圧力とガスの組成の関係を示
すグラフ、第4図はガスの供給量と、水素ガスの取得量
の関係を示すグラフである。 なお図中1は水素分離用媒体、4は供給孔、5は排出孔
、6は取出孔を示す。 第2図 第3図
FIG. 1 is an explanatory diagram showing how to use the hydrogen separation medium of the present invention,
Figure 2 is a graph showing the relationship between mixed gas pressure and hydrogen permeation rate, Figure 3 is a graph showing the relationship between mixed gas pressure and gas composition, and Figure 4 is the gas supply amount and hydrogen gas acquisition. It is a graph showing the relationship between quantities. In the figure, 1 is a hydrogen separation medium, 4 is a supply hole, 5 is a discharge hole, and 6 is an extraction hole. Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)多数の小孔を有する耐熱性多孔質体の表面に、該
小孔の表面側開孔部を覆うPdを主体とする膜を形成せ
しめたことを特徴とする水素分離用媒体。
(1) A hydrogen separation medium characterized in that a film mainly composed of Pd is formed on the surface of a heat-resistant porous body having a large number of small pores to cover the openings on the surface side of the small pores.
(2)多孔質体は多孔質硝子であることを特徴とする特
許請求の範囲第1項記載の水素分離用媒体。
(2) The hydrogen separation medium according to claim 1, wherein the porous body is porous glass.
(3)小孔の大きさは20〜30,000Åであること
を特徴とする特許請求の範囲第1項又は第2項記載の水
素分離用媒体。
(3) The medium for hydrogen separation according to claim 1 or 2, wherein the small pores have a size of 20 to 30,000 Å.
JP11357586A 1986-05-20 1986-05-20 Medium for separating hydrogen Pending JPS62273029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11357586A JPS62273029A (en) 1986-05-20 1986-05-20 Medium for separating hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11357586A JPS62273029A (en) 1986-05-20 1986-05-20 Medium for separating hydrogen

Publications (1)

Publication Number Publication Date
JPS62273029A true JPS62273029A (en) 1987-11-27

Family

ID=14615715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11357586A Pending JPS62273029A (en) 1986-05-20 1986-05-20 Medium for separating hydrogen

Country Status (1)

Country Link
JP (1) JPS62273029A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271901A (en) * 1989-04-12 1990-11-06 Agency Of Ind Science & Technol Production of hydrogen separating medium
US5259870A (en) * 1990-08-10 1993-11-09 Bend Research, Inc. Hydrogen-permeable composite metal membrane
EP0715880A1 (en) * 1994-06-28 1996-06-12 Ngk Insulators, Ltd. Gas separator and method for producing the same
US5980989A (en) * 1993-03-31 1999-11-09 Ngk Insulators, Ltd. Gas separator and method for preparing it
US5989319A (en) * 1996-07-08 1999-11-23 Ngk Insulators, Ltd. Gas separator
US6541676B1 (en) * 1998-12-02 2003-04-01 Massachusetts Institute Of Technology Integrated palladium-based micromembranes for hydrogen separation and hydrogenation/dehydrogenation reactions
JP2008246316A (en) * 2007-03-29 2008-10-16 Ngk Spark Plug Co Ltd Hydrogen separator and fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271901A (en) * 1989-04-12 1990-11-06 Agency Of Ind Science & Technol Production of hydrogen separating medium
US5259870A (en) * 1990-08-10 1993-11-09 Bend Research, Inc. Hydrogen-permeable composite metal membrane
US5980989A (en) * 1993-03-31 1999-11-09 Ngk Insulators, Ltd. Gas separator and method for preparing it
EP0715880A1 (en) * 1994-06-28 1996-06-12 Ngk Insulators, Ltd. Gas separator and method for producing the same
EP0715880A4 (en) * 1994-06-28 1996-12-27 Ngk Insulators Ltd Gas separator and method for producing the same
US5989319A (en) * 1996-07-08 1999-11-23 Ngk Insulators, Ltd. Gas separator
US6541676B1 (en) * 1998-12-02 2003-04-01 Massachusetts Institute Of Technology Integrated palladium-based micromembranes for hydrogen separation and hydrogenation/dehydrogenation reactions
US6810899B2 (en) 1998-12-02 2004-11-02 Massachusetts Institute Of Technology Integrated palladium-based micromembranes for hydrogen separation and hydrogenation/dehydrogenation reactions
JP2008246316A (en) * 2007-03-29 2008-10-16 Ngk Spark Plug Co Ltd Hydrogen separator and fuel cell

Similar Documents

Publication Publication Date Title
CN1327942C (en) Composite metal palladium membrane or alloy palladium membrane and its preparing method
JPH05121390A (en) Removing method for acid
JPS62273030A (en) Preparation of hydrogen separating medium
US20110177232A1 (en) Method for the Fabrication of Composite Palladium and Palladium-Alloy Membranes
JPS62273029A (en) Medium for separating hydrogen
US3135591A (en) Separation of helium from a gaseous mixture by means of a novel selective diffusion barrier
CN106179211A (en) A kind of for going the preparation method of the active carbon adsorption material of a good appetite suddenly appearing in a serious disease low concentration formaldehyde
JPS63295402A (en) Production of hydrogen
US4318770A (en) Surface etching before electroding zirconia exhaust gas oxygen sensors
CN105233701B (en) A kind of method that macropore carrier surface prepares palladium film
CN101825593A (en) Method for preparing room-temperature chlorine gas sensitive material with porous hierarchical structure
JP2005013853A (en) Hydrogen separation body and its production method
JPH0832296B2 (en) Method for manufacturing hydrogen separation membrane
JPH01164419A (en) Production of hydrogen separating membrane
US3734802A (en) Apparatus for leaching glass films
JP2002153740A (en) Method for producing Pd-based hydrogen separation membrane
JP4112856B2 (en) Method for producing gas separator
JP2005167087A (en) Cleaning method and semiconductor manufacturing apparatus
US20160318011A1 (en) Ceramic-based catalyst and a method for synthesizing the same
JPH08266876A (en) Production of gas separating body
JPH039074B2 (en)
JP2009255031A (en) Treatment method of ceramic porous film
CN113564652B (en) Treatment method for surface modification texturing of tungsten and tungsten alloy before electroplating
RU2268953C2 (en) Method of revealing structure of monocrystalline super-alloys
US1278744A (en) Alloy and method of purifying same.