[go: up one dir, main page]

JPS62272852A - Motor - Google Patents

Motor

Info

Publication number
JPS62272852A
JPS62272852A JP11260586A JP11260586A JPS62272852A JP S62272852 A JPS62272852 A JP S62272852A JP 11260586 A JP11260586 A JP 11260586A JP 11260586 A JP11260586 A JP 11260586A JP S62272852 A JPS62272852 A JP S62272852A
Authority
JP
Japan
Prior art keywords
motor
rotor
rotor magnet
shaft
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11260586A
Other languages
Japanese (ja)
Inventor
Saburo Kazama
風間 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11260586A priority Critical patent/JPS62272852A/en
Publication of JPS62272852A publication Critical patent/JPS62272852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To obtain rotational power of two sets or more with a device of small size and light weight, by a method wherein two rotors or more are constituted independently within the same shaft. CONSTITUTION:A center shaft is projected at side of upper and lower surfaces, and one flat motor is arranged to each of both portions. As the motor therefor, a brushless motor to rotate and drive each of rotor magnets 18, 18' by control power supply to each of stator coils 21, 21' is used. Respective motors have rotary bodies 4, 4', rotor magnets 18, 18', stator coils 21, 21', rotary yokes 22, 22', wiring circuit boards 25, 25', sensors 40, 40', and signal of the sensors 40, 40', FG signal and the like are inputted to an electronic circuit connected at outside and control power supply is performed to each of the stator coils 21, 21', whereby rotational drive power is generated independently to each of the rotor magnets 18, 18'.

Description

【発明の詳細な説明】 5、発明の詳細な説明 〔産業上の利用分野〕 本発明は小形モータ構造に係り、特に小形軽量コンパク
トで多機能化・高性能化を実現できる構造に関する。
Detailed Description of the Invention 5. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a small motor structure, and particularly to a structure that is small, lightweight, and compact, and can realize multiple functions and high performance.

〔従来の技術〕[Conventional technology]

同一軸内の複数箇所から回転動力を得るモータの構造例
としては特公昭57−40574号記載の構造がある。
An example of the structure of a motor that obtains rotational power from multiple locations on the same shaft is the structure described in Japanese Patent Publication No. 57-40574.

本構造は同一軸線上に、第1の回転子を固定した第1の
回転出力軸と第2の回転子を固定した第2の回転出力軸
とを有し、第1の回転子をこれに対応するモータ固定子
への給電により励磁して回転せしめ、第2の回転子は第
1の回転子の一部に電磁的にカップリングさせ上記第1
の回転子に追随させて回転させる構成である。従って本
構造は第1のモータ回転子の回転力から第1の回転軸出
力と第2の回転軸出力との両方を得る構成であり各出力
を別個に分離して得ることはできないし回転制御も難し
い。また5回転部として1個の回転子と1個の回転軸と
から成る結合体を単位構体としてこれを2個設けるため
各回転結合体間の同心度等組み込み精度を高めることが
困難である。また電磁カップリング部での損失が特に大
きいと考えられ第1の回転子動力を発生するためのモー
タの消費電力が増大する。さらに第2の回転子の速度制
御性が低く定速制御が難しい。モータ規模も大形化し易
く小形化に限界がある。
This structure has a first rotary output shaft to which a first rotor is fixed and a second rotary output shaft to which a second rotor is fixed on the same axis, and the first rotor is attached to this. The second rotor is electromagnetically coupled to a part of the first rotor, and the second rotor is electromagnetically coupled to a part of the first rotor.
It is configured to rotate following the rotor of. Therefore, this structure is configured to obtain both the first rotating shaft output and the second rotating shaft output from the rotational force of the first motor rotor, and it is not possible to obtain each output separately and control the rotation. It's also difficult. In addition, since two combined bodies each consisting of one rotor and one rotating shaft are provided as a unit structure as a five-rotation unit, it is difficult to improve assembly precision such as concentricity between each rotating combined body. Further, it is thought that the loss in the electromagnetic coupling portion is particularly large, and the power consumption of the motor for generating the first rotor power increases. Furthermore, the speed controllability of the second rotor is poor and constant speed control is difficult. The motor scale also tends to be large, and there is a limit to miniaturization.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は1個のモータの回転力から第1の回転出
力と、カップリングを利用して第2の回転出力とを得る
構成であるため、大幅に回転数の異なる負荷駆動装置へ
の適用や回転の高制御性。
The above conventional technology is configured to obtain a first rotational output from the rotational force of one motor and a second rotational output using a coupling, so it cannot be applied to load drive devices with significantly different rotational speeds. and high controllability of rotation.

高精度組み立て性、小形軽量化、高効率化等については
配慮されておらずこれらの大幅改善を図ることは本構造
では不可能である。
High-precision assemblability, compactness and weight reduction, high efficiency, etc. are not considered, and it is impossible to achieve significant improvements in these aspects with this structure.

本発明の目的は上記従来技術の欠点を改善し小形・高効
率・高制御性の多機能モータを提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the drawbacks of the prior art described above and to provide a small, highly efficient, and highly controllable multifunctional motor.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を実現するために本発明のモータでは中心軸に
対し長さ方向に同心状に複数のモータを配列し該モータ
構成として少くともこのうちの1個のモータを、固定子
コイルをはさみ回転子マグネットと回転ヨーク、または
第1回転子マグネットと第2回転子マグネットから成る
対状回転子を有する構造とし、該モータ固定子内での鉄
損の発生の防止、コギングトルクの発生の防止、軸受に
対するマグネット吸引力の除去等によりモータ効率の向
上、低回転むら化、サーボ制御性の向上を図り、また固
定軸上への複数モータの同心状配列構造により小形コン
パクト構造化、高効率化、高制御性化等を実現する。
In order to achieve the above object, in the motor of the present invention, a plurality of motors are arranged concentrically in the length direction with respect to the central axis, and at least one of the motors is rotated with a stator coil in between. The motor has a structure having a paired rotor consisting of a child magnet and a rotating yoke, or a first rotor magnet and a second rotor magnet, and prevents the occurrence of iron loss in the motor stator and the occurrence of cogging torque. By eliminating the magnetic attraction force on the bearing, etc., we aim to improve motor efficiency, reduce uneven rotation, and improve servo controllability.In addition, the concentric arrangement structure of multiple motors on a fixed shaft allows for a small and compact structure, high efficiency, Realizes high controllability, etc.

〔作用〕[Effect]

(1)  中心軸上に複数モータを同心状に配列する構
造では、同一軸上から独立に別個の軸出力を容易に取り
出せるし個々の制御も容易である。被駆動負荷も含め全
体を大幅小形化できる。また軸を共有する構造のため部
品点数を削減できかつ組み込み易いため低コスト化を図
れる。
(1) In a structure in which a plurality of motors are arranged concentrically on a central axis, outputs from individual shafts can be easily obtained independently from the same axis, and individual control is also easy. The entire structure, including the driven load, can be significantly downsized. In addition, since the structure shares a common shaft, the number of parts can be reduced, and it is easy to assemble, so costs can be reduced.

(2)  空心状固定子コイルをはさみ対状回転子とし
た構造では、回転子マグネットの回転によっても固定子
内に鉄損を発生しないしコギングトルクも発生しない。
(2) In the structure in which the air-core stator coil is used as a scissor-paired rotor, no iron loss is generated in the stator even when the rotor magnet rotates, and no cogging torque is generated.

また回転子マグネットの吸引力は回転子内のみに作用し
固定子側に作用しないため回転体支承部の軸受にかかる
荷重も大幅に軽減される。
Furthermore, since the attractive force of the rotor magnet acts only within the rotor and does not act on the stator side, the load applied to the bearing of the rotor support is also significantly reduced.

〔実施例〕〔Example〕

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図は本発明のモータの第1実施例図である。FIG. 1 is a diagram showing a first embodiment of the motor of the present invention.

中心軸1は固定ベース3のボス部に圧入等により固定し
である。本実施例は固定ペース3の上下面側に中心軸を
突出させ画部分に1個づつ扁平モータを配列した構造で
、モータとしては各固定子コイル21.21’への制御
給電により各回転子マグネッ) 18.18’を回転駆
動するブラシレスモータを用いである。固定ベース3の
上面側に配した第1のモータでは回転子マグネット(第
1回転子マグネット)18は磁性材より成る回転ヨーク
19を介し第1の回転構体4に固定しておる。固定子コ
イル(第1固定子コイル)21はその外周縁部において
ねじ12により固定ベース3の上面に固定しである。回
転構体4は第1固定子コイル21の中心孔を貫通してお
りその下面部には第1回転ヨーク22ヲ固定しである。
The central shaft 1 is fixed to a boss portion of a fixed base 3 by press fitting or the like. This embodiment has a structure in which the central axis protrudes from the upper and lower surfaces of the fixed pace 3 and flat motors are arranged one at a time in each image area. A brushless motor is used to rotate the magnet (18.18'). In the first motor arranged on the upper surface side of the fixed base 3, a rotor magnet (first rotor magnet) 18 is fixed to the first rotating structure 4 via a rotating yoke 19 made of a magnetic material. The stator coil (first stator coil) 21 is fixed to the upper surface of the fixed base 3 by screws 12 at its outer peripheral edge. The rotating structure 4 passes through the center hole of the first stator coil 21, and a first rotating yoke 22 is fixed to the lower surface thereof.

該回転ヨーク22の下面には円周方向に所定の極数を有
するFG (周波数発電器)用薄形マグネット51を固
定しである。さらにその下面の固定ペース面上にはFG
信号発生用のパターン状導体をその表面に有するFG基
板26を設けである。回転構体4の上部には負荷回転体
としてのティスフ7を固定してあり、該回転構体4はそ
の中心部で軸受5α、5Aを介し中心固定軸1に回転自
在に係合している。6は軸受5α、5bに予圧を与える
予圧片である。回転子マグネット18の回転によりこれ
ら回転部は一体的に回転する。第1固定子コイル21の
裏面(第1回転ヨーク22側)上にはコイル端末やセン
サ40の端末等を配線するための薄い配線基板25を設
けである。35はその端末引き出し部である。固定ベー
ス3の下面側に設けた第2のモータも上記第1のモータ
とほぼ同じ構造で、4′は回転構体、18′は第2回転
子マグネッ)、21’は第2固定子コイル、22′は第
2回転ヨーク、25′は配線基板、40′はセンサ、1
1はプーリ、5c、5dは軸受、6′は予圧片である。
A thin magnet 51 for an FG (frequency generator) having a predetermined number of poles in the circumferential direction is fixed to the lower surface of the rotating yoke 22. Furthermore, on the fixed pace surface on the bottom surface is the FG
An FG substrate 26 having a patterned conductor for signal generation on its surface is provided. A tisf 7 as a load rotating body is fixed to the upper part of the rotating structure 4, and the rotating structure 4 is rotatably engaged with the central fixed shaft 1 through bearings 5α and 5A at its center. 6 is a preload piece that applies preload to the bearings 5α and 5b. As the rotor magnet 18 rotates, these rotating parts rotate integrally. A thin wiring board 25 is provided on the back surface (first rotation yoke 22 side) of the first stator coil 21 for wiring the coil terminal, the terminal of the sensor 40, and the like. 35 is the terminal drawer part. The second motor provided on the lower surface side of the fixed base 3 has almost the same structure as the first motor, 4' is a rotating structure, 18' is a second rotor magnet), 21' is a second stator coil, 22' is a second rotating yoke, 25' is a wiring board, 40' is a sensor, 1
1 is a pulley, 5c and 5d are bearings, and 6' is a preload piece.

センサ40,40’の信号、FG倍信号を外部に接続し
た電子回路に入力し各固定子コイル21 、21 ’に
制御給電することにより各回転子マグネット18.18
’に独立に回転駆動力を発生させ各回転体を独立に回転
させる。各センサ4Q、4Q’は各回転子マグネッ) 
18.18’の磁極回転位置を検出するもので、ホール
素子等が適する。第2のモータのFGは本構造では第2
固定子コイル21′中または配線基板25′の面上にパ
ターン状導体等で構成されるとし第2回転子マグネット
18′の磁界変化で発電するものとする。第1モータ及
び第2モータとも各FG倍信号より速度を検知し所定の
目標速度に定速制御する。第1のモータ内のFG基板2
6の下部に薄い鉄板等磁性材を固定すると該FGの出力
電圧を高められる。固定子コイル21 、21 ’とし
てはメッキやエツチング等でパターン状にコイル導体を
形成したシート状コイルでも導線を巻き回して成る巻線
式コイルでもよい。巻線式コイルの場合にはプラスチッ
クモールド技術等を併用しコイルの平面剛性を上げた構
造が本構造では実用的である。
By inputting the signals of the sensors 40, 40' and the FG multiplied signal to an externally connected electronic circuit and controllingly supplying power to each stator coil 21, 21', each rotor magnet 18.18
' generate rotational driving force independently to rotate each rotating body independently. Each sensor 4Q, 4Q' is each rotor magnet)
It detects the magnetic pole rotation position of 18.18', and a Hall element or the like is suitable. In this structure, the FG of the second motor is
It is assumed that the stator coil 21' is formed of a patterned conductor or the like on the surface of the wiring board 25', and power is generated by changes in the magnetic field of the second rotor magnet 18'. The speed of both the first motor and the second motor is detected from each FG multiplier signal, and constant speed control is performed to a predetermined target speed. FG board 2 in the first motor
If a magnetic material such as a thin iron plate is fixed to the lower part of the FG, the output voltage of the FG can be increased. The stator coils 21, 21' may be sheet-like coils in which a coil conductor is formed in a pattern by plating or etching, or wire-wound coils formed by winding conductive wire. In the case of a wire-wound coil, a structure in which the planar rigidity of the coil is increased by using plastic molding technology etc. is practical for this structure.

本実施例構造によれば。According to the structure of this embodiment.

(1)  固定軸1の軸上に2個のモータを独立に構成
しであるため2種の回転動力を独立に容易に取り出せる
。また被駆動部(負荷部)を含む動力伝達系全体の占有
スペースを減らし小形のセットを構成できる。
(1) Since two motors are independently configured on the fixed shaft 1, two types of rotational power can be easily extracted independently. Furthermore, the space occupied by the entire power transmission system including the driven part (load part) can be reduced, allowing a compact set to be constructed.

(2)  軸固定式構造のため回転振動が少なく低回転
むらにできる。軸のねじり振動等もなくせる。
(2) Due to the fixed shaft structure, there is little rotational vibration and uneven rotation can be achieved. Eliminates torsional vibration of the shaft.

(3)第1モータ及び第2モータとも空心状固定子コイ
ル21.21’をはさみ回転子マグネット磁極に対向さ
せたヨーク22.22’ t−該回転子マグネット18
.18’と対状にして一体回転させるため固定子内の鉄
損をなくしモータ効率を向上できる。また回転子マグネ
ッ) 18.18’の吸引力はそれぞれヨーク22.2
2’との間に作用し軸受5g、5b、5c、5dには一
切作用しないため各軸受の負荷荷重を大幅に軽減でき回
転時の摩擦損失を減らしモータ効率を向上できる。起動
立上がり時間も短縮できるしまた組み立て作業もし易く
軸受を損傷することもない。軸受の予圧波は等のトラブ
ルもなくせるため軸受予圧値も大幅に軽減できこの点か
らも低摩擦化される。さらにまた回転子マグネットによ
るコギングトルクもなくすことができ低回転むらにでき
る。
(3) Both the first motor and the second motor include a yoke 22.22' sandwiching the air-core stator coil 21.21' and facing the rotor magnet magnetic poles t-the rotor magnet 18
.. Since it is paired with 18' and rotated integrally, iron loss in the stator can be eliminated and motor efficiency can be improved. Also, the attraction force of rotor magnet) 18.18' is yoke 22.2, respectively.
2' and does not act at all on the bearings 5g, 5b, 5c, and 5d, the load on each bearing can be significantly reduced, friction loss during rotation can be reduced, and motor efficiency can be improved. The start-up time can be shortened, assembly work is easy, and bearings are not damaged. Since troubles such as bearing preload waves can be eliminated, the bearing preload value can be significantly reduced, and from this point of view, friction can also be reduced. Furthermore, cogging torque caused by the rotor magnet can also be eliminated, resulting in low rotational unevenness.

(4)  ヨーク22.22″、FGマグネット51を
回転させる構造であるため回転慣性を増大できこの点か
らも制御性を向上して低回転むらにできる。
(4) Since the structure is such that the yoke 22.22'' and the FG magnet 51 are rotated, rotational inertia can be increased, and controllability can also be improved from this point of view, making it possible to reduce unevenness in rotation.

(5)  軸1上に第1及び第2のモータの電磁部を近
接させて配列しであるため磁気漏洩を防止し易い。
(5) Since the electromagnetic parts of the first and second motors are arranged close to each other on the shaft 1, magnetic leakage can be easily prevented.

(6)  軸や固定ベースを2モ一タ間で共有できるた
め部品点数や組み込み工数を減らすことができ低コスト
・高精度にできる。
(6) Since the shaft and fixed base can be shared between two monitors, the number of parts and assembly man-hours can be reduced, resulting in low cost and high accuracy.

(7)  回転部の動的釣り合いとり作業において試駆
機・治具等のセツティングが簡単で作業し易い。
(7) Setting up test drive machines, jigs, etc. for dynamic balancing of rotating parts is simple and easy.

(8)・負荷回転体を減速駆動する場合1本モータは比
較的高速回転で用いるためモータ1回転当たりのFG信
号レートを低くできる。このためFGマグネットの磁極
分割数やFG基板上のFGAターン導体数を減らし発生
するFG倍信号精度を高められる。また負荷軸換算の回
転慣性をも増大できるため上部FG信号精度の改善とに
よりサーボ性能を向上でき低回転むらにできる、等の効
果がある。
(8) When decelerating the load rotating body, one motor is used at relatively high speed rotation, so the FG signal rate per motor rotation can be lowered. Therefore, the number of magnetic pole divisions of the FG magnet and the number of FGA turn conductors on the FG board can be reduced to improve the accuracy of the generated FG signal. Furthermore, since the rotational inertia in terms of the load shaft can be increased, the accuracy of the upper FG signal is improved, thereby improving servo performance and reducing rotational unevenness.

第2図は本発明のモータの第2実施例図で、上記第1実
施例中における第1及び第2回転ヨーク22.22’の
かわりにそれぞれ第1補助回転子マグネット18b、第
2補助回転子マグネット186′を用いた構成である。
FIG. 2 is a diagram showing a second embodiment of the motor of the present invention, in which the first auxiliary rotor magnet 18b and the second auxiliary rotor magnet 18b are replaced with the first and second rotating yokes 22 and 22' in the first embodiment, respectively. This configuration uses a child magnet 186'.

18αは第1主回転子マグネット。18α is the first main rotor magnet.

18aは第2主回転子マグネットー 19a 119 
b + 19’a +19′には各回転子ヨークである
。第1主回転子マグネット18αと第1補助回転子マグ
ネット18bは各円周方向に偶数に等分割した磁極を有
し互に異極性磁極を対向させである。同様に第2主回転
子マグネット18αと第2補助回転子マグネット186
′も互に異極性磁極を対向させである。
18a is the second main rotor magnet 19a 119
b+19'a+19' is each rotor yoke. The first main rotor magnet 18α and the first auxiliary rotor magnet 18b have magnetic poles equally divided into even numbers in each circumferential direction, and have magnetic poles of different polarity facing each other. Similarly, the second main rotor magnet 18α and the second auxiliary rotor magnet 186
′ also has magnetic poles of different polarity facing each other.

本実施例構造によれば上記の第1実施例の効果に加えさ
らに (1)  空心固定子コイルをはさんで2個のマグネッ
ト磁極を互に異極性になるよう対向させるため2個のマ
グネットの磁極間で形成される磁気回路の磁路長を短く
してパーミアンス係数を増大できこのため固定子コイル
に鎖交する磁束量を大幅に増大でき、モータ定数を高め
て大トルクを発生できる。、また低コストの低磁気エネ
ルギのマグネットを用いても所定の磁束量を容易に得る
ことができる。
According to the structure of this embodiment, in addition to the effects of the first embodiment described above, (1) the magnetic poles of the two magnets are made to face each other so that they have different polarities across the air-core stator coil; By shortening the magnetic path length of the magnetic circuit formed between the magnetic poles, the permeance coefficient can be increased, and as a result, the amount of magnetic flux linked to the stator coil can be significantly increased, and the motor constant can be increased to generate large torque. Furthermore, a predetermined amount of magnetic flux can be easily obtained even by using a low-cost, low-magnetic-energy magnet.

(2)  磁極間磁場分布を円周方向、半径方向、軸方
向ともにその均一度を高められ発生トルクを低リップル
にできる、等の効果が得られる。
(2) The uniformity of the magnetic field distribution between the magnetic poles in the circumferential direction, radial direction, and axial direction can be increased, and the ripples of the generated torque can be reduced.

第3図は本発明のモータの第3実施例図で、固定ペース
3の上部にさらに固定材60を固定しこれに第3のモー
タ固定子を取り付は第3のモータを付加した構造である
。本第3モータも下部の第1及び第2モータと同様、空
心状固定子コイル21#をはさんで回転子マグネット1
8#と回転ヨーク22′とから成る対状回転子を有する
。40#はセンサ。
FIG. 3 shows a third embodiment of the motor of the present invention, which has a structure in which a fixing member 60 is further fixed on the upper part of the fixed pace 3, a third motor stator is attached to this, and a third motor is added. be. Similar to the first and second motors at the bottom, this third motor also has an air-core stator coil 21# sandwiched between the rotor magnet 1 and the rotor magnet 1.
It has a pair of rotors consisting of an 8# and a rotating yoke 22'. 40# is a sensor.

25#は配線基板、11aはプーリ、5・、5fは軸受
である。本実施例構造によれば前記第1実施例の緒効果
に加えさらに独立にもう1個の回転出力を得られる新効
果がある。
25# is a wiring board, 11a is a pulley, and 5., 5f is a bearing. According to the structure of this embodiment, in addition to the first effect of the first embodiment, there is a new effect that one more rotational output can be obtained independently.

第4図は本発明のモータの第4実施例図である。FIG. 4 is a diagram showing a fourth embodiment of the motor of the present invention.

第1のモータとしては第1固定子コイル21をはさみ第
1回転子マグネット18と第1回転ヨーク22から成る
対状回転子のモータを用い、第2のモータとしては第2
固定子コイル22をはさみ第2主回転子マグネット18
;と第2補助回転子マグネット18b′とから成る対状
回転子のモータを用いた構成である。第2のモータのブ
ー1月1にはベルト150を掛は負荷プーリ160に接
続し、これを駆動するようにしである。100は負荷回
転軸、170は負荷回転体、50は軸受ハウジング部、
6,6 は軸受予圧片である。本実施例構造によれば、
負荷の回転数・トルク値等に対応させモータ定数等モー
タ仕様を変化させ容易にこれに対応させ得る利点がある
As the first motor, a paired rotor motor consisting of a first rotor magnet 18 and a first rotating yoke 22 sandwiching a first stator coil 21 is used, and as a second motor, a second rotor motor is used.
The stator coil 22 is sandwiched between the second main rotor magnet 18
; and a second auxiliary rotor magnet 18b'. A belt 150 is connected to the second motor's boot 1 and connected to a load pulley 160 to drive it. 100 is a load rotating shaft, 170 is a load rotating body, 50 is a bearing housing part,
6, 6 are bearing preload pieces. According to the structure of this embodiment,
There is an advantage that the motor specifications such as motor constants can be easily changed to correspond to the rotational speed, torque value, etc. of the load.

第5図は本発明のモータの第5実施例図で、第1のモー
タ及び第2のモータの軸受として軸1の外局に軸受転動
体(ボール)用の溝71a、71A、71c。
FIG. 5 shows a fifth embodiment of the motor of the present invention, in which grooves 71a, 71A, and 71c for bearing rolling elements (balls) are provided on the outer shaft of the shaft 1 as the bearings of the first motor and the second motor.

71dを設け、外輪部75α、乃り、75C,75dと
組み合わせた構造としたものである。モータ電磁部構成
は前記第1実施例の場合とほぼ同様でらる。
71d is provided and combined with the outer ring portion 75α, or 75C, and 75d. The structure of the motor electromagnetic section is almost the same as that of the first embodiment.

本実施例構造によれば。According to the structure of this embodiment.

(11従来のボール軸受を用いる構造に比べ軸受外輪外
径寸法を小形にできるためモータ寸法等を小形化できる
(11) Since the outer diameter of the outer ring of the bearing can be made smaller compared to a structure using a conventional ball bearing, the dimensions of the motor, etc. can be made smaller.

(2)  またボールの転動ピッチ円直径を小さくでき
るため軸受振動を低減できる。
(2) Also, since the rolling pitch circle diameter of the balls can be made smaller, bearing vibration can be reduced.

(3)  さらに軸材として軸受鋼等高剛性・硬度の材
料を用いるため軸径も細くでき、この点からも小形・低
摩擦化を図れる。
(3) Furthermore, since a material with high rigidity and hardness such as bearing steel is used as the shaft material, the shaft diameter can be made thinner, and from this point of view, it is also possible to achieve a smaller size and lower friction.

(4)  内輪を用いない構造であるため回転構体4の
軸1に対する振れ精度等組み込み精度を大幅に向上でき
る。
(4) Since the structure does not use an inner ring, it is possible to greatly improve the assembly accuracy such as the runout accuracy of the rotating structure 4 with respect to the axis 1.

(5)軸と軸受を一体化しであるため従来のボール軸受
等の場合における軸〜軸受間のはめ合い公差の管理・選
別等の工程をなくせる1等作業性も改善できる。
(5) Since the shaft and the bearing are integrated, it is possible to improve first-class workability by eliminating the process of managing and selecting fit tolerances between the shaft and the bearing in the case of conventional ball bearings.

(6)低コストにできる1等の効果がある。他の効果は
上記諸実施例の場合と同様である。
(6) It has the first effect of being able to reduce costs. Other effects are the same as in the above embodiments.

第6図は本発明の第6実施例図で、固定軸1をしてその
上部と下部とで軸径を変化せしめた構造例である。比較
的大形の第1のモータは太軸部1aにその回転部を係合
し、一方小形の第2のモータは細軸部1bにその回転部
を係合する。本構造によればモータ寸法として小形から
大形のものまでを自由に構成でき目的に合致した最適化
を図れる。
FIG. 6 is a diagram showing a sixth embodiment of the present invention, which is a structural example in which a fixed shaft 1 is used and the shaft diameter is changed between its upper and lower parts. The relatively large first motor engages its rotating portion with the thick shaft portion 1a, while the small second motor engages its rotating portion with the thin shaft portion 1b. According to this structure, the motor size can be freely configured from small to large and can be optimized to meet the purpose.

第7図は本発明における固定軸の他の構造例で固定ベー
ス6に対し2本の軸1.1′ft、同心状に固定しであ
る。本構造によれば軸長の短い軸1,1′を用いても上
記第1〜第6実施例と同様の軸構造にできる。
FIG. 7 shows another example of the structure of the fixed shaft according to the present invention, in which two shafts are fixed concentrically to the fixed base 6 with a length of 1.1' ft. According to this structure, even if shafts 1 and 1' having short shaft lengths are used, the same shaft structure as in the first to sixth embodiments can be obtained.

上記諸実施例はいずれも扁平状プラスレスモータを同軸
上に複数個配列する構成としているが、この細円筒状ブ
ラシレスモータとしたりまたはブラシレスモータ以外の
他の方式のモータを組み合わせて用いる構造や同心状に
配列した複数のモータのうちの1台または数台に固定子
コイルをはさんで磁気回路を形成した構造の対状回転子
を用いたものを用いる構造でもよい。
The above embodiments all have a structure in which a plurality of flat brushless motors are arranged on the same axis, but there are also structures in which this thin cylindrical brushless motor or a combination of motors of other types other than brushless motors are used. A structure using a pair of rotors having a structure in which a stator coil is sandwiched between one or more of a plurality of motors arranged in a shape to form a magnetic circuit may also be used.

第8図は本発明の第7実施例図で円筒状モータの実施例
図である。円筒状の固定子コイル21.21’をはさみ
回転子マグネット18.18’と回転ヨーク22゜22
′を配列しである。本実施例構造によればモータ直径を
縮少できる他、固定子コイル21.21’は予め固定ペ
ースs上に固定した状態でモータ回転子と組み合わせて
組み立てできるため組み立て・分解・調整等の作業をし
易い。
FIG. 8 is a seventh embodiment of the present invention, and is a diagram of an embodiment of a cylindrical motor. A cylindrical stator coil 21.21' is sandwiched between a rotor magnet 18.18' and a rotating yoke 22°22.
′ is arranged. According to the structure of this embodiment, in addition to being able to reduce the motor diameter, the stator coils 21 and 21' can be assembled in combination with the motor rotor with the stator coils 21 and 21' fixed on the fixed pace s in advance, so that assembly, disassembly, adjustment, etc. Easy to do.

以上の諸実施例構造では固定子コイルとして磁性材を含
まない空心状コイルとしたが、この他。
In the structures of the various embodiments described above, the stator coil is an air-core coil that does not contain a magnetic material, but there are other examples.

固定子コイル内の一部に磁性材を含み回転子マグネット
との間に弱い吸引力が作用するようにした構成や、さら
にまた特に回転子として2枚のマグネット(主回転マグ
ネット、補助回転子マグネット)を互に磁極を対向させ
て用いる構成では、実施例に述べた異極性磁極対向構造
と空心状固定子コイルの組み合わせ構成の他、異極性磁
極対向構造と一部に磁性材をはり合わせたり、または中
に含む構造の固定子コイルとの組み合わせ構成や。
A part of the stator coil contains a magnetic material to create a weak attractive force between it and the rotor magnet, and two magnets (main rotor magnet, auxiliary rotor magnet) are used as the rotor. ) with their magnetic poles facing each other, in addition to the combination of the different-polarity magnetic pole opposing structure and the air-core stator coil described in the example, the different-polarity magnetic pole opposing structure and a part of the structure may be partially laminated with magnetic material. , or a combination configuration with a stator coil of the structure containing it.

同極性磁極対向構造と空心状固定子コイルまたは磁性材
を内部に有する固定子コイルとの組み合わせ構成も本発
明の範囲内である。
A combination configuration of a same-polarity magnetic pole facing structure and an air-core stator coil or a stator coil having a magnetic material inside is also within the scope of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば。 According to the invention.

(1)  同軸内に2個以上の回転子を独立に構成でき
るため同時に2個以上の回転動力を得ることができ負荷
を含む全体を小形軽量化できる。従って小形軽量コンパ
クトなセットを実現できる。
(1) Since two or more rotors can be configured independently within the same shaft, rotational power of two or more rotors can be obtained at the same time, and the entire structure including the load can be made smaller and lighter. Therefore, a small, lightweight and compact set can be realized.

(2)  軸固定式構造のため回転体の振動が少なく回
転が安定である。
(2) Due to the fixed shaft structure, there is little vibration of the rotating body and rotation is stable.

(3)  固定子コイルをはさみ回転子マグネット磁極
に対向させたヨーク(回転ヨーク)または第2回転子マ
グネットを該回転子マグネットと対状にして一体化回転
させるため鉄損をなくレモータ効率を大幅に向上できる
。また回転体を支承する軸受に回転子マグネットの吸引
力が作用しないため軸受の回転摩擦を大幅に軽減できこ
の点からも効率を向上できる。起動も速い。さらに組み
立て作業もし易く吸引力等により軸受を損傷したりする
こともない。また回転子マグネットによるコギングトル
クもなくすことができ低回転むらにできる。
(3) A yoke (rotating yoke) sandwiching the stator coil and facing the magnetic poles of the rotor magnet or a second rotor magnet paired with the rotor magnet and rotated integrally eliminates iron loss and greatly increases remotor efficiency. can be improved. Furthermore, since the attraction force of the rotor magnet does not act on the bearing that supports the rotating body, the rotational friction of the bearing can be significantly reduced, and efficiency can also be improved from this point of view. Starts up quickly too. Furthermore, assembly work is easy and the bearings are not damaged by suction force or the like. Additionally, cogging torque caused by the rotor magnet can be eliminated, resulting in low rotational unevenness.

(4)  回転子の慣性を増大できるためこの点からも
低回転むら化できる。
(4) Since the inertia of the rotor can be increased, rotational unevenness can also be reduced from this point of view.

(5)同一直線上に複数のモータ電磁部をまとめて配列
するため磁気漏洩を防止し易い。
(5) Since a plurality of motor electromagnetic parts are arranged together on the same straight line, magnetic leakage can be easily prevented.

(6)  部品点数及び組み立て工数の削減が可能なた
め低コストにできる。
(6) Costs can be reduced because the number of parts and assembly man-hours can be reduced.

(7)  同一直線軸上に各回転部を備えた構造のため
回転部の動的釣り合いどり作業において試験機・治具等
の交換が不要で能率的な作業ができる。
(7) Since the structure has each rotating part on the same linear axis, there is no need to replace testing machines, jigs, etc. during dynamic balancing work of the rotating parts, allowing efficient work.

(8)本モータで負荷回転体を減速回転させる場合はモ
ータを高速させるためモータの1回転当たりの速度制御
用信号周波数を低くでき信号精度を高くできるし負荷軸
換算の回転慣性を高められるためサーボ性能を高められ
負荷回転体を低回転むらにできる等の優れた効果が得ら
れる。
(8) When using this motor to decelerate and rotate a load rotating body, the motor speeds up, so the speed control signal frequency per rotation of the motor can be lowered, signal accuracy can be increased, and rotational inertia converted to the load shaft can be increased. Excellent effects such as improved servo performance and less uneven rotation of the loaded rotating body can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のモータの第1実施例図、第2図は同第
2実施例図、第3図は同第5実施例図。 第4図は第4実施例図、第5図は同第5実施例図第6図
は同第6実施例図、第7図は軸固定方法の他の実施例図
、第8図は第7実施例図である。
FIG. 1 is a diagram showing a first embodiment of the motor of the present invention, FIG. 2 is a diagram of a second embodiment of the same, and FIG. 3 is a diagram of a fifth embodiment of the same. Fig. 4 is a diagram of the fourth embodiment, Fig. 5 is a diagram of the fifth embodiment, Fig. 6 is a diagram of the sixth embodiment, Fig. 7 is a diagram of another embodiment of the shaft fixing method, and Fig. 8 is a diagram of the sixth embodiment. FIG. 7 is a diagram of a seventh embodiment.

Claims (1)

【特許請求の範囲】[Claims] 1、固定中心軸の周りに同心状に各独立に回転可能に係
合した複数個のモータ回転子を備え、少くとも該回転子
のうち1個は固定子コイルをはさみ回転子マグネットと
回転ヨーク、または第1回転子マグネットと第2回転子
マグネットの組み合わせから成る対状回転子構成とした
ことを特徴とするモータ。
1. Equipped with a plurality of motor rotors concentrically and independently rotatably engaged around a fixed central axis, at least one of the rotors sandwiching a stator coil between a rotor magnet and a rotating yoke. , or a motor having a paired rotor configuration consisting of a combination of a first rotor magnet and a second rotor magnet.
JP11260586A 1986-05-19 1986-05-19 Motor Pending JPS62272852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11260586A JPS62272852A (en) 1986-05-19 1986-05-19 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11260586A JPS62272852A (en) 1986-05-19 1986-05-19 Motor

Publications (1)

Publication Number Publication Date
JPS62272852A true JPS62272852A (en) 1987-11-27

Family

ID=14590911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11260586A Pending JPS62272852A (en) 1986-05-19 1986-05-19 Motor

Country Status (1)

Country Link
JP (1) JPS62272852A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034990A1 (en) * 2007-09-14 2009-03-19 Shin-Etsu Chemical Co., Ltd. Permanent magnet rotating machine
US8319469B2 (en) 2007-04-26 2012-11-27 Seiko Epson Corporation Brushless electric machine
US20170187251A1 (en) * 2015-12-28 2017-06-29 Filip Sammak Electric Motor Assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319469B2 (en) 2007-04-26 2012-11-27 Seiko Epson Corporation Brushless electric machine
US8581459B2 (en) 2007-04-26 2013-11-12 Seiko Epson Corporation Brushless electric machine
WO2009034990A1 (en) * 2007-09-14 2009-03-19 Shin-Etsu Chemical Co., Ltd. Permanent magnet rotating machine
JP2009072009A (en) * 2007-09-14 2009-04-02 Shin Etsu Chem Co Ltd Permanent magnet rotating machine
US8497612B2 (en) 2007-09-14 2013-07-30 Shin-Etsu Chemical Co., Ltd. Permanent magnet rotating machine
US20170187251A1 (en) * 2015-12-28 2017-06-29 Filip Sammak Electric Motor Assembly
US10122224B2 (en) * 2015-12-28 2018-11-06 Filip Sammak Electric motor assembly

Similar Documents

Publication Publication Date Title
US4125792A (en) Brushless D-C motor
US20060273676A1 (en) Axial gap motor
JPH01114356A (en) Brushless dc motor
US20050029880A1 (en) Brushless vibration motor
JP2002335658A (en) Motor
US6222288B1 (en) Electric motor
JPS62272852A (en) Motor
US5028829A (en) Compact motor mount for cassette drive
US5796204A (en) Brushless motor with a stator core integral with a holder
JP2657796B2 (en) Brushless motor
JPS5855747B2 (en) Brushless rotary motor
JP3283710B2 (en) Multi-axis synchronous reversing drive motor
JP2004215397A (en) Stepping motor
JP2021122171A (en) Stepping motor
JPS63277455A (en) Hybrid motor
JP3214913B2 (en) Radial type outer rotor type brushless motor
JPS61236348A (en) motor
JPH02155452A (en) Motor
JP2631461B2 (en) Drive for information recording device
JPH0678506A (en) Radial type outer rotor type brushless motor
JPH0145249Y2 (en)
JPH02207192A (en) Fan device
JPS5953071A (en) Frequency generator for brushless dc motor
JP2535719Y2 (en) Brushless motor
JPH0678507A (en) Radial type outer rotor type brushless motor