[go: up one dir, main page]

JPS62271409A - Organic thin film capacitor - Google Patents

Organic thin film capacitor

Info

Publication number
JPS62271409A
JPS62271409A JP11358186A JP11358186A JPS62271409A JP S62271409 A JPS62271409 A JP S62271409A JP 11358186 A JP11358186 A JP 11358186A JP 11358186 A JP11358186 A JP 11358186A JP S62271409 A JPS62271409 A JP S62271409A
Authority
JP
Japan
Prior art keywords
film
thin film
monomolecular
substrate
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11358186A
Other languages
Japanese (ja)
Inventor
瀧本 清
河田 春紀
酒井 邦裕
佳紀 富田
宏 松田
謙治 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11358186A priority Critical patent/JPS62271409A/en
Priority to US07/051,368 priority patent/US4780790A/en
Priority to GB8711810A priority patent/GB2190792B/en
Publication of JPS62271409A publication Critical patent/JPS62271409A/en
Priority to GB9006910A priority patent/GB2231201B/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、電極と誘電体の双方に有機材料を用いて構成
されたコンデンサーに関するものであり、より詳くは単
分子膜累積法によって形成された薄膜コンデンサーに関
する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a capacitor constructed using organic materials for both electrodes and dielectric material. This invention relates to a thin film capacitor formed by a monolayer deposition method.

〔従来の技術〕[Conventional technology]

従来、回路素子の素材は、無機物の利用が極めて多く、
有機材の利用はわずかに絶縁体、誘電体に限られていた
。電子回路構成上必要な抵抗、コンデンサー等の受動素
子のうち、特に薄膜コンデンサーを無機物を用いて形成
するには従来、主として以下のような2種類の形成方法
があった。
Traditionally, inorganic materials have been used extremely often as materials for circuit elements.
The use of organic materials has been limited to insulators and dielectrics. Among passive elements such as resistors and capacitors necessary for configuring electronic circuits, there have conventionally been two main methods for forming thin film capacitors using inorganic materials.

(1)、金属薄膜上にシリコン酸化物、金属酸化物のご
とき誘電体薄膜を真空蒸着や反応性スパッタリング等の
方法で形成し、更にこの上に金属薄膜を形成する。
(1) A dielectric thin film such as silicon oxide or metal oxide is formed on a metal thin film by a method such as vacuum evaporation or reactive sputtering, and a metal thin film is further formed on this.

(2)、真空蒸着によって形成した金属薄膜の表面を酸
化して誘電体層とし、この上に金属電極を形成する。
(2) The surface of the metal thin film formed by vacuum evaporation is oxidized to form a dielectric layer, and a metal electrode is formed on this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記真空蒸着や反応性スパッタリングによ
り無機物質を誘電体層として形成する方法は、必ずしも
簡単な方法ではなかった。
However, the method of forming an inorganic material as a dielectric layer by vacuum evaporation or reactive sputtering is not necessarily an easy method.

ところで近年、有機素材の研究が活発に行なわれ、単結
晶状態で金属伝導性を示すもの、更に極低温で超伝導を
示す物質が報告されている。またど子導体としての性質
を示す物質も報告されており、様々の電気的特性を有機
物質のみで具現することができる状況に至った。
Incidentally, in recent years, research on organic materials has been actively conducted, and materials that exhibit metallic conductivity in a single-crystal state and substances that exhibit superconductivity at extremely low temperatures have been reported. Furthermore, there have been reports of substances exhibiting properties as double conductors, and we have reached a situation where various electrical properties can be realized only with organic substances.

具体的には近年、テトラシアノキノジメタン(TCNQ
 )を電子受容体とした有機金属化合物で、ビスーテト
ラシアノキノジメタンードコシルピリうに疎水性部位と
して長鎖アルキル基を持った両親媒性電荷移動錯体が水
面上で単分子膜を形成し、該単分子膜を一層ずつ累積す
ることにより単分子累積膜が作成できることが報告され
ている(絶縁材料電子材料合同研究会資料1985/I
t/15P、29)。該単分子累積膜は膜面に平行な方
向の電導度は0.157cmという大きな値であり、一
方膜に垂直な方向の電導度は10−” S/cm程度で
あり絶縁体としてふるまうことが観測されている。
Specifically, in recent years, tetracyanoquinodimethane (TCNQ)
) is an organometallic compound with bis-tetracyanoquinodimethane docosylpyri as an electron acceptor, and an amphiphilic charge transfer complex with a long-chain alkyl group as a hydrophobic moiety forms a monomolecular film on the water surface. It has been reported that a monomolecular cumulative film can be created by accumulating the monomolecular film layer by layer (Insulating Materials and Electronic Materials Joint Research Group Materials 1985/I
t/15P, 29). The monomolecular cumulative film has a large electrical conductivity of 0.157 cm in the direction parallel to the film surface, while the electrical conductivity in the direction perpendicular to the film is about 10-''S/cm, indicating that it behaves as an insulator. It has been observed.

上記の単分子累積膜はラングミュア−ブロジェット法(
LB法:新実験化学講座第18章498頁〜507頁、
丸善刊)により得られる。この方法の原理は下記のごと
くである。
The above monomolecular cumulative film is produced using the Langmuir-Blodgett method (
LB method: New Experimental Chemistry Course, Chapter 18, pages 498-507,
Maruzen Publishing). The principle of this method is as follows.

すなわち、親木基と疎水基とを併有する分子は、水面上
に展開しその面密度を適宜増してゆくと、親水性と疎水
性のバランスが適当な場合には、水面上で親木基な下に
向け、疎水基を上に向けて単分子膜を形成するに至る。
In other words, if a molecule that has both a parent wood group and a hydrophobic group spreads on the water surface and increases its areal density appropriately, if the balance between hydrophilicity and hydrophobicity is appropriate, the parent wood group will form on the water surface. A monomolecular film is formed with the hydrophobic groups facing downward and the hydrophobic groups facing upward.

つまり、このような分子は二次元粒子系として振舞い、
分子の面密度が低い場合には、一分子当りの面積(分子
占有面積)と表面積の間には二次元理想気体の状態方程
式が成り立つ”気体膜”であり、表面圧を上げ分子の面
密度を高くすると分子間の相互作用が強まり、二次元固
体の”凝縮膜(または固体膜)”となる。この状態は分
子の配列、配向がきれいにそろい、高度な秩序性及び均
一性を有している。
In other words, such molecules behave as a two-dimensional particle system,
When the areal density of molecules is low, a two-dimensional ideal gas equation of state holds true between the area per molecule (molecular occupied area) and the surface area, creating a "gas film", which increases the surface pressure and reduces the areal density of molecules. Increasing the value increases the interaction between molecules, resulting in a two-dimensional solid "condensed film (or solid film)". In this state, the molecules are neatly arranged and oriented, and have a high degree of order and uniformity.

このようにして形成される凝集膜はガラス等の基板に移
しとることができ、同一基板に重ねて複数回単分子膜を
移しとることによって、単分子累積膜が得られる。基板
への移しとりの方法としては垂直漫涜法、水平付着法、
回転ドラム法などが知られている。
The aggregated film thus formed can be transferred to a substrate such as glass, and a monomolecular cumulative film can be obtained by stacking and transferring the monomolecular film multiple times onto the same substrate. The methods of transferring to the substrate include the vertical attachment method, horizontal attachment method,
A rotating drum method is known.

このようなL8法は常温常圧下での薄膜作成法であると
ともに、累積膜の膜厚を累積回数によって制御できる点
に特徴がある。
The L8 method is a thin film forming method under normal temperature and normal pressure, and is characterized in that the cumulative film thickness can be controlled by the number of times of accumulation.

またトリフェニルメタン系色素単分子膜の複合系を用い
た単分子累積膜でのPN接合半導体の形成が報告されて
いる。
Furthermore, the formation of a PN junction semiconductor in a monomolecular cumulative film using a composite system of a triphenylmethane dye monomolecular film has been reported.

本発明は、上記のような経緯に鑑み成されたものであり
、その目的は誘電体層と導電層の両方が無機物質からな
り、その形成方法も簡単である有機薄膜コンデンサーを
提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to provide an organic thin film capacitor in which both the dielectric layer and the conductive layer are made of inorganic materials, and the method for forming the same is simple. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は、以下の本発明によって達成される
。すなわち本発明は、基板上に、親水性部位と疎水性部
位の両方をあわせ持つ有機分子の単分子膜またはその累
積膜を含む導電層と親水性部位と疎水性部位の両方をあ
わせ持つ有機分子の単分子またはその累積膜を含む誘電
体層が積層され、かつ2つの取り出し電極を有する有機
薄膜コンデンサーであって、該導電層のそれぞれが交互
に異なる取り出し電極に連結されていることを特徴とす
る有機薄膜コンデンサーである。
The above objects of the present invention are achieved by the present invention as follows. That is, the present invention provides a conductive layer containing a monomolecular film of organic molecules having both hydrophilic sites and hydrophobic sites or a cumulative film thereof, and an organic molecule having both hydrophilic sites and hydrophobic sites on a substrate. An organic thin film capacitor in which dielectric layers containing single molecules or cumulative films thereof are laminated and have two lead-out electrodes, each of the conductive layers being alternately connected to different lead-out electrodes. This is an organic thin film capacitor.

本発明の実施態様を第1図及び第2図に示しである。An embodiment of the invention is illustrated in FIGS. 1 and 2.

図中において、1は導電層、2は誘電体層、3は導電層
、4おあび5は電荷を蓄積する、あるいは蓄積されてい
る電荷を取り出すための取り出し電極であり、導電層1
.3のそれぞれが交互に異なる電極となるように、導電
層1は取り出し電極5に導電層3は取り出し電極4に連
結されており、6はガラス基板であり、導電層1.3と
誘電体層2はそれぞれLB法により形成されている。
In the figure, 1 is a conductive layer, 2 is a dielectric layer, 3 is a conductive layer, 4 and 5 are extraction electrodes for accumulating electric charge or taking out the accumulated electric charge, and the conductive layer 1
.. The conductive layer 1 is connected to the take-out electrode 5 and the conductive layer 3 is connected to the take-out electrode 4 so that each of the conductive layers 1 and 3 becomes a different electrode alternately, and 6 is a glass substrate, and the conductive layer 1.3 and the dielectric layer are connected to each other. 2 are each formed by the LB method.

上記のように導電層が対向電極となるコンデンサーが形
成されるために、静電容量は、対向する導電層の面積、
対向する導電層間の距離、誘電体層に用いた物質の誘電
率によって決まり、また絶縁耐圧は導電層間の距離、及
び誘電体層に用いた物質によって決まる。導電層間の距
離は誘電体累積膜の累積層数を変化させることによって
変えることができる。
Since a capacitor is formed in which the conductive layers serve as opposing electrodes as described above, the capacitance is determined by the area of the opposing conductive layers,
It is determined by the distance between opposing conductive layers and the dielectric constant of the material used for the dielectric layer, and the dielectric strength voltage is determined by the distance between the conductive layers and the material used for the dielectric layer. The distance between the conductive layers can be changed by changing the number of cumulative layers of the dielectric cumulative film.

本発明において、導電層1,3に用いる有機物質は親水
性部位及び疎水性部位の両方を有する両親媒性の物質で
あり、例えば、特開昭60−246357号公報に開示
された有機金属化合物が使用できる。
In the present invention, the organic substance used for the conductive layers 1 and 3 is an amphipathic substance having both hydrophilic sites and hydrophobic sites, such as an organometallic compound disclosed in JP-A No. 60-246357. can be used.

本発明において、誘電体層2に用いる有機物質は親水性
部位及び疎水性部位の両方を有する両親媒性の物質であ
り、例えば長鎖脂肪酸(例えば616〜C2゜の飽和、
不飽和脂肪酸)が使用できる。
In the present invention, the organic substance used for the dielectric layer 2 is an amphipathic substance having both hydrophilic and hydrophobic sites, such as long-chain fatty acids (e.g., 616-C2° saturated,
unsaturated fatty acids) can be used.

本発明の有機薄膜コンデンサーを作製するための装置を
第3a、3b図に示す。
An apparatus for producing the organic thin film capacitor of the present invention is shown in Figures 3a and 3b.

図中において、7は表面圧計であり、表面制御装置8に
つないで移動障壁9の移動制御を行ない一定の表面圧を
保つものである。lOは水相で純水あるいは金属イオン
を含む水である。11は成膜基板、12は成膜基板ホル
ダーで上下することができるようになっている。
In the figure, 7 is a surface pressure gauge, which is connected to a surface control device 8 to control the movement of the movable barrier 9 to maintain a constant surface pressure. IO is an aqueous phase, which is pure water or water containing metal ions. 11 is a film forming substrate, and 12 is a film forming substrate holder which can be moved up and down.

上記のような装置は下記のように操作される。A device as described above is operated as follows.

まず液面を清浄にし3、ベンゼン、クロロホルム、アン
ドントリル−ベンゼン(l対l)などの溶媒に溶かした
導電性分子または誘電性分子の溶液を液面上に滴下し、
気体膜を形成させる。次いで移動障壁8を除々に左側に
動かし分子が展開している液面の領域を次第に縮めて面
密度を増し、固体膜を形成させる。この単分子膜の状態
は表面圧センサー13によって液面上に展開されている
単分子膜の表面圧を測定することによって検知される。
First, the liquid surface is cleaned, and a solution of conductive or dielectric molecules dissolved in a solvent such as benzene, chloroform, andandhryl-benzene (1:1) is dropped onto the liquid surface.
Forms a gas film. Next, the moving barrier 8 is gradually moved to the left to gradually reduce the area of the liquid surface where the molecules are spread, thereby increasing the areal density and forming a solid film. The state of this monomolecular film is detected by measuring the surface pressure of the monomolecular film spread on the liquid surface using a surface pressure sensor 13.

前記、移動障壁9の左右の動きは、この表面圧センサー
の測定値に基づいて制御される。一般に成膜基板11へ
移しとるのに好適な単分子膜の表面圧は15〜30dy
n/cmとされているが、例えば膜構成物質に化学構造
、温度条件によっては好適な表面圧の値が上記範囲から
はみ出ることもあるので上記範囲は一応の目安である。
The horizontal movement of the movable barrier 9 is controlled based on the measured value of this surface pressure sensor. Generally, the surface pressure of a monomolecular film suitable for transferring to the film-forming substrate 11 is 15 to 30 dy.
n/cm, but the above range is only a rough guideline, as a suitable surface pressure value may be outside the above range depending on, for example, the chemical structure and temperature conditions of the membrane constituents.

上記状態下で成膜基板11を上下させることによって基
板の表面に当該固体膜となった単分子膜を付着させて移
し取ることができる。更に同一の成膜基板11に複数回
単分子膜を重ねて移し取ることによって単分子累積膜を
得ることができる。
By moving the film-forming substrate 11 up and down under the above conditions, the monomolecular film that has become a solid film can be attached to the surface of the substrate and transferred. Furthermore, a monomolecular cumulative film can be obtained by stacking and transferring a monomolecular film a plurality of times onto the same film-forming substrate 11.

上記成膜基板11の上下移動は通常0.1−1cm /
minの速度で行なわれる。
The vertical movement of the film forming substrate 11 is usually 0.1-1 cm/
This is done at a speed of min.

成膜基板IIが親水性の場合は、単分子膜は第4a図〜
第4C図に示すように移し取られる。
When the film-forming substrate II is hydrophilic, the monomolecular film is formed as shown in Fig. 4a~
It is transferred as shown in Figure 4C.

すなわち、第4a図に示されるように成膜基板11を液
面下より上昇させてくると単分子膜は、その膜構成分子
の親水性部位16を成膜基板11側にして基板11に付
着して移し取られる。次いで成膜基板11を下降させる
と第4b図に示されるように第2層目の単分子膜が、そ
の膜構成分子の疎水性部位17を基板ll側にして第1
層目の単分子上に付着して移し取られる。再び成膜基板
11を上昇させると第4C図に示されるように第3層目
の単分子膜が移し取られ、以下同様にして累積されるこ
とになる。
That is, when the film-forming substrate 11 is raised from below the liquid level as shown in FIG. and then transferred. Next, when the film-forming substrate 11 is lowered, the second layer monomolecular film is deposited on the first layer with the hydrophobic sites 17 of the film constituent molecules facing the substrate 11, as shown in FIG. 4b.
It attaches to the single molecules of the layer and is transferred. When the film-forming substrate 11 is raised again, the third layer of monomolecular film is transferred as shown in FIG. 4C, and is subsequently accumulated in the same manner.

ところで、上述のように液面上の単分子膜を成膜基板1
1に移し取ってゆくと、成膜基板11に移し取られた量
に応じて液面上の分子の面密度は低下し、表面圧も低下
してくることになる。これを放置すると液面上の単分子
膜が固体膜の状態を維持できなくなって基板11への移
し取りが不能となることも生じる。そこで、基板11へ
の単分子膜の移し取り操作中も前記圧力センサー13で
移動障壁9の左右の動きが制御され、液面上の単分子膜
の表面圧が所定の一定圧を保つことができるようになフ
ている。即ち移動障壁9は圧力センサーで測定された表
面圧の微小増減に応答して、それを打ち消す量だけ左右
に動かされるものである。
By the way, as mentioned above, the monomolecular film on the liquid surface is deposited on the film-forming substrate 1.
1, the surface density of molecules on the liquid surface decreases in accordance with the amount transferred to the film forming substrate 11, and the surface pressure also decreases. If this is left unattended, the monomolecular film on the liquid surface may no longer be able to maintain its solid film state, making it impossible to transfer it to the substrate 11. Therefore, even during the operation of transferring the monomolecular film to the substrate 11, the horizontal movement of the moving barrier 9 is controlled by the pressure sensor 13, so that the surface pressure of the monomolecular film on the liquid surface can be maintained at a predetermined constant pressure. I'm trying to do it now. That is, the movable barrier 9 responds to minute increases and decreases in the surface pressure measured by the pressure sensor, and is moved left and right by an amount that cancels out the slight increase or decrease in surface pressure.

導電層、誘電体層の層厚としては各々50人〜2鱗、よ
り好適には90人〜5000人である。
The thickness of each of the conductive layer and the dielectric layer is 50 to 2 layers, more preferably 90 to 5000 layers.

〔実施例〕〔Example〕

以下に本発明の具体的実施例を挙げる。 Specific examples of the present invention are listed below.

実施例1 第1図に示すような最も簡単な構成のコンデンサーを第
38.3b図に示すような装置を使用して形成した。
Example 1 A capacitor of the simplest construction as shown in Figure 1 was formed using an apparatus as shown in Figure 38.3b.

導電層1及び3の構成分子として、ビステトラシアノキ
ノジメタンートコシルピリジウムをアセトニトリルとベ
ンゼンの1対l混合溶媒にIB/mlの濃度で溶かした
後、XHCO3でp)16.8に調整されたCdCl2
濃度4 X 10−’ mol/1.水温17℃の第3
a図の装置の水相上に展開した。
As a constituent molecule of conductive layers 1 and 3, bis-tetracyanoquinodimethanetocosylpyridium was dissolved in a 1:1 mixed solvent of acetonitrile and benzene at a concentration of IB/ml, and then adjusted to p) 16.8 with XHCO3. CdCl2
Concentration 4 x 10-' mol/1. 3rd water temperature 17℃
It was developed on the aqueous phase of the apparatus shown in Figure a.

溶媒のアセトニトリル、ベンゼンを蒸発除去した後、表
面圧を20dyn/cmまで高め、単分子膜を形成した
。表面圧を一定に保ちながら、あらかじめ水相中に浸漬
してあった清浄なガラス基板(IOIIIIIIX 3
0mm)を水面を横切る方向に速度3mm/minで静
かに2011Iffi浸漬し、再び速度3mm/ll1
inで静かに20mm+引きあげ、3層の単分子膜を累
積して導電層1を形成した。
After the solvents acetonitrile and benzene were removed by evaporation, the surface pressure was increased to 20 dyn/cm to form a monomolecular film. A clean glass substrate (IOIIIIIIIX 3
0mm) was gently immersed in 2011Iffi at a speed of 3mm/min in the direction across the water surface, and again at a speed of 3mm/ll1.
The conductive layer 1 was formed by gently pulling up the conductive layer by 20 mm+ by inclining and stacking three monomolecular films.

次に水面を清浄にした後、濃度1 mg/m l  の
アラキシン酸クロロホルム溶液を水相上に展開し、クロ
ロホルムを蒸発除去した後、表面圧を30dyn/cm
まで高め、これを保持しながら、該基板上にアラキシン
酸カドミウム単分子膜、を累積した。基板速度は浸漬時
、引き上げ時ともに10mm/min  として、40
層のアラキシン酸カドミウム単分子膜を累積し、誘電体
層2を得た。更にディッピング方向に対する基板の上下
を逆転させたうえで導電層1を形成する場合と同じ条件
でビステトラシアノキノジメタンードコシルビリジニウ
ム単分子膜を2層累積し導電層3を形成した。
Next, after cleaning the water surface, a solution of alaxinic acid in chloroform with a concentration of 1 mg/ml was developed on the water phase, and after evaporating the chloroform, the surface pressure was adjusted to 30 dyn/cm.
A monolayer of cadmium araxinate was accumulated on the substrate while increasing the temperature to a certain temperature and holding it. The substrate speed was 10 mm/min both during dipping and pulling up, and the speed was set at 40 mm/min.
A dielectric layer 2 was obtained by accumulating layers of cadmium araxinate monolayer. Further, after the substrate was turned upside down with respect to the dipping direction, two bis-tetracyanoquinodimethane docosylpyridinium monomolecular films were accumulated to form a conductive layer 3 under the same conditions as in the case of forming the conductive layer 1.

次いで導電層1.3の端部に導電ペーストを用いて取り
出し電極を第1図に示すように設け、本発明の有機薄膜
コンデンサーを作成した。取り出し電極を外部回路と接
続し、静電容量を測定した結果、0.02μFの値を得
た。
Next, a lead-out electrode was provided at the end of the conductive layer 1.3 using a conductive paste as shown in FIG. 1, thereby producing an organic thin film capacitor of the present invention. The extraction electrode was connected to an external circuit and the capacitance was measured, and as a result, a value of 0.02 μF was obtained.

実施例2 第2図に示すような構成のコンデンサーを第3a、3層
図に示すような装置を使用して形成した。
Example 2 A capacitor having the structure as shown in FIG. 2 was formed using an apparatus as shown in FIG. 3a, a three-layer diagram.

実施例1で導電層3を形成したのち、再びアラキシン酸
カドミウム単分子膜を40層累積し、基板の上下を逆転
したのちビスーテトラシアノキノジメタンードコシルビ
リジニウム単分子膜を2層累積し、以下、同様の工程で
電極枚g&6の積層板ヲ作成した。成膜条件はすべて実
施例1と同じである。次いで実施例1と同様にして取り
出し電極を設け、本発明の有機薄膜コンデンサーを作成
した。静電容量を測定した結果、実施例1のほぼ5倍の
値が得られた。
After forming the conductive layer 3 in Example 1, 40 layers of a cadmium araxinate monolayer were again accumulated, and after the substrate was turned upside down, two layers of a bis-tetracyanoquinodimethane docosylviridinium monolayer were accumulated. Thereafter, a laminated plate of electrode sheets g & 6 was produced using the same process. All film forming conditions are the same as in Example 1. Next, a lead-out electrode was provided in the same manner as in Example 1 to produce an organic thin film capacitor of the present invention. As a result of measuring the capacitance, a value approximately five times that of Example 1 was obtained.

実施例3 実施例1において誘電体層として用いたアラキシン酸カ
ドミウム単分子膜の累積層数を80層、60層、40層
、30層、20層、10層と変化させた有機薄膜コンデ
ンサーを作成した。工程及び成膜条件はすべて実施例1
と同じものである。実施例1と同様にして取り出し電極
を設は静電容量を測定した結果、誘電体層の累積層数と
静電容量の間の逆比例関係か確認できた。しかしながら
、誘電体層の累積層数が10層の場合、絶縁耐圧は数ボ
ルト以下であった。
Example 3 Organic thin film capacitors were created in which the cumulative number of layers of the cadmium alaxinate monolayer used as the dielectric layer in Example 1 was changed to 80, 60, 40, 30, 20, and 10 layers. did. All processes and film forming conditions are the same as Example 1.
is the same as A lead-out electrode was set up in the same manner as in Example 1, and the capacitance was measured. As a result, it was confirmed that there was an inversely proportional relationship between the cumulative number of dielectric layers and the capacitance. However, when the cumulative number of dielectric layers was 10, the dielectric breakdown voltage was several volts or less.

実施例4 実施例1において導電層1及び3の累積層数をそれぞれ
11層、10層とした有機薄膜コンデンサーを作成した
。工程及び成膜条件はすべて実施例1と同じである。ま
た誘電体層として用いたアラキシン酸カドミウム単分子
膜の累積層数は40層である。実施例1と同様にして取
り出し電極を設け、電気的過渡特性を測定した。実施例
1において作成したものに比し、導電層の伝導度がより
高くなっているため、過渡特性を著しく向上させること
ができた。
Example 4 Organic thin film capacitors were prepared in Example 1 except that the cumulative number of conductive layers 1 and 3 was 11 and 10, respectively. All the steps and film-forming conditions are the same as in Example 1. Further, the cumulative number of layers of the cadmium araxinate monomolecular film used as the dielectric layer was 40 layers. An extraction electrode was provided in the same manner as in Example 1, and electrical transient characteristics were measured. Since the conductivity of the conductive layer was higher than that produced in Example 1, the transient characteristics could be significantly improved.

〔発明の効果〕〔Effect of the invention〕

本発明の有機薄膜コンデンサーは、導電層と誘電体層の
が有機物質だけからなり、常温常圧下でも容易に作成す
ることが可能であり、しかも電極間間隔のきわめて均一
なg膜を有するため、電極間にはきわめて均一な電撃が
得られ、その結果高い設計性が得られるという効果を有
する。
The organic thin film capacitor of the present invention has a conductive layer and a dielectric layer made only of organic materials, can be easily produced even at room temperature and pressure, and has a g-film with extremely uniform inter-electrode spacing. An extremely uniform electric shock can be obtained between the electrodes, resulting in the effect that high designability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

明の有機薄膜コンデンサーを作成するための装置であり
、第4a図〜第4C図は本発明の有機薄膜コンデンサー
の誘電体層、導電層を作成する方法を模式的に説明する
断面図である。 1:導電層 2:誘電体層 3:導電層 4:取り出し電極 5:取り出し電極 6:ガラス基板 7:表面圧針 8二表面圧制御装置 9:移動障壁 10:水相 11:成膜基板 12:成膜ホルダー 13:表面圧センサー 14:水槽 15:成膜分子 16:親水性部位 17:疎水性部位
4A to 4C are cross-sectional views schematically illustrating a method for producing a dielectric layer and a conductive layer of an organic thin film capacitor according to the present invention. 1: Conductive layer 2: Dielectric layer 3: Conductive layer 4: Take-out electrode 5: Take-out electrode 6: Glass substrate 7: Surface pressure needle 8 2 Surface pressure control device 9: Movement barrier 10: Water phase 11: Film forming substrate 12: Film forming holder 13: Surface pressure sensor 14: Water tank 15: Film forming molecule 16: Hydrophilic site 17: Hydrophobic site

Claims (1)

【特許請求の範囲】[Claims] 基板上に、親水性部位と疎水性部位の両方をあわせ持つ
有機分子の単分子膜またはその累積膜を含む導電層と親
水性部位と疎水性部位の両方をあわせ持つ有機分子の単
分子またはその累積膜を含む誘電体層が積層され、かつ
2つの取り出し電極を有する有機薄膜コンデンサーであ
って、該導電層のそれぞれが交互に異なる取り出し電極
に連結されていることを特徴とする有機薄膜コンデンサ
ー。
A conductive layer containing a monolayer of an organic molecule having both a hydrophilic site and a hydrophobic site or a cumulative film thereof, and a monolayer of an organic molecule having both a hydrophilic site and a hydrophobic site or its An organic thin film capacitor comprising a stack of dielectric layers including cumulative films and two lead-out electrodes, wherein each of the conductive layers is alternately connected to a different lead-out electrode.
JP11358186A 1986-05-20 1986-05-20 Organic thin film capacitor Pending JPS62271409A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11358186A JPS62271409A (en) 1986-05-20 1986-05-20 Organic thin film capacitor
US07/051,368 US4780790A (en) 1986-05-20 1987-05-19 Electric device
GB8711810A GB2190792B (en) 1986-05-20 1987-05-19 Electronic device.
GB9006910A GB2231201B (en) 1986-05-20 1990-03-27 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11358186A JPS62271409A (en) 1986-05-20 1986-05-20 Organic thin film capacitor

Publications (1)

Publication Number Publication Date
JPS62271409A true JPS62271409A (en) 1987-11-25

Family

ID=14615853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11358186A Pending JPS62271409A (en) 1986-05-20 1986-05-20 Organic thin film capacitor

Country Status (1)

Country Link
JP (1) JPS62271409A (en)

Similar Documents

Publication Publication Date Title
US9368290B2 (en) Charge storage device, method of making same, method of making an electrically conductive structure for same, mobile electronic device using same, and microelectronic device containing same
CN106463618B (en) Capacitor and method of making the same
US5359204A (en) Switching device
Portet et al. Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications
US8912522B2 (en) Nanodevice arrays for electrical energy storage, capture and management and method for their formation
US6174780B1 (en) Method of preparing integrated circuit devices containing isolated dielectric material
KR20100091998A (en) Deposits and electronic devices including them
US20150200058A1 (en) Nanodevice arrays for electrical energy storage, capture and management and method for their formation
US4780790A (en) Electric device
KR101479830B1 (en) Graphene/conducting polymer film for supercapacitor and method for preparing the same
US9165722B2 (en) Method for producing a capacitor including an array of nanocapacitors
US9406450B2 (en) Energy storage devices with at least one porous polycrystalline substrate
CN102709052A (en) Method for manufacturing nano capacitor
JPS62271409A (en) Organic thin film capacitor
Shigehara et al. Electronic properties of poly (fumarate) Langmuir-Blodgett films
JPH0777272B2 (en) Switching element and driving method thereof
EP0334676A2 (en) Method of driving device having MIM structure
Belaoui et al. Preparation of high specific surface mPSi/Al2O3/ZnO microcapacitors
JP2650387B2 (en) Manufacturing method of film capacitor
JP2741064B2 (en) Manufacturing method of solid capacitor
GB2231201A (en) Electronic device
JPS62281460A (en) organic thin film resistance element
JP2021503488A (en) Hein electron-polarizing compounds and their capacitors
JPH0210816A (en) Manufacture of capacitor
JPH0748575B2 (en) Switching device