JPS62271308A - superconducting cable conductor - Google Patents
superconducting cable conductorInfo
- Publication number
- JPS62271308A JPS62271308A JP61114458A JP11445886A JPS62271308A JP S62271308 A JPS62271308 A JP S62271308A JP 61114458 A JP61114458 A JP 61114458A JP 11445886 A JP11445886 A JP 11445886A JP S62271308 A JPS62271308 A JP S62271308A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- conductor
- wire
- cable conductor
- alloy layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 title claims description 35
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 7
- 229910017060 Fe Cr Inorganic materials 0.000 claims description 5
- 229910002544 Fe-Cr Inorganic materials 0.000 claims description 5
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 claims description 5
- 229910000599 Cr alloy Inorganic materials 0.000 description 10
- 230000008878 coupling Effects 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 238000005859 coupling reaction Methods 0.000 description 9
- 230000000087 stabilizing effect Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910017755 Cu-Sn Inorganic materials 0.000 description 2
- 229910017927 Cu—Sn Inorganic materials 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
3、発明の詳細な説明
し産業上の利用分野]
この発明は、高磁界発生に用いられる超電導ケーブル導
体に関するものである。[Detailed Description of the Invention] 3. Detailed Description of the Invention and Field of Industrial Application] This invention relates to a superconducting cable conductor used for generating a high magnetic field.
[従来の技術]
核融合ボロイダルコイルやエネルギ貯蔵用マグネット・
では、パルスモードで運転されるため、変動磁界におい
てロスの小さい高磁界大容堡導体が要求されている。こ
のような高磁界大容匿導体としては、超電導素線を撚り
合わせたケーブル構造の導体が一般的に用いられている
。このようなケーブル構造の導体が用いられている理由
は、導体を素線に分割し、素線のツイストビッヂを減少
させることにより、変動磁界により誘起されるロスの低
減を図ることができることにある。[Conventional technology] Nuclear fusion boloidal coils and energy storage magnets
Since the system is operated in pulse mode, a high-field, large-capacity conductor with low loss in a fluctuating magnetic field is required. As such a high-magnetic-field, large-capacity shielding conductor, a conductor having a cable structure in which superconducting wires are twisted together is generally used. The reason why a conductor with such a cable structure is used is that by dividing the conductor into strands and reducing the twist bits of the strands, it is possible to reduce loss induced by a fluctuating magnetic field.
[発明が解決しようとする問題点]
しかしながら、このようなケーブル導体では、超電!!
素線間に結合電流が誘起されて流れるため、損失を生じ
るという問題点があった。このような結合電流を低下さ
Uるため、従来素線のまわりを電気絶縁性のフィルムで
被覆するなどの方法が採用されている場合もあるが、こ
の方法ではiII間の金属的カップリングがなくなり、
安定化材を有効に機能させる上で好ましくない。[Problems to be solved by the invention] However, with such a cable conductor, superelectric! !
There is a problem in that a coupling current is induced and flows between the strands, resulting in loss. In order to reduce such coupling current, methods such as coating the wire with an electrically insulating film have been used in some cases, but this method reduces the metallic coupling between the wires. gone,
This is not preferable for the effective functioning of the stabilizing material.
結合電流が、IP4電導素線間に流れると、その損失に
よる発熱で導体の温度が上界して、超電導導体から常電
導状態へ転移するため、超電導の安定性が悪いという問
題点も生じる。When a coupling current flows between the IP4 conductive strands, the temperature of the conductor rises due to heat generation due to the loss, and the conductor transitions from a superconducting state to a normal conductive state, resulting in the problem of poor superconducting stability.
さらに、従来のJIB電導素線は、外周部が安定化材で
あり、強度の低いCUのみから構成されているため、変
動磁界に伴う繰返し電磁力によって、表面に疲労クラッ
クを発生しやすいという欠点もあった。Furthermore, the conventional JIB conductive wire has a stabilizing material on the outer periphery and is composed only of CU, which has low strength, so it has the disadvantage that fatigue cracks are likely to occur on the surface due to repeated electromagnetic force caused by fluctuating magnetic fields. There was also.
それ小えに、この発明の目的は、結合電流による1q失
が著しく低減され、かつ疲労強度が高められた超電導ケ
ーブル導体を提供することにある。In addition, it is an object of the present invention to provide a superconducting cable conductor in which 1q loss due to coupling current is significantly reduced and fatigue strength is increased.
[問題点を解決するための手段]
この発明のffl電導ケーブル導体では、実施例の第1
図および第2図に示すように化合物系超電導素線の外周
部に5m里%以上25重量%以下のCrを含有したFe
−Cr合金層を設けている。ここで、l”e−Cr合金
層のCr濃度を5重塁%以上25取出%以下に限定した
のは、5重量%未満では極低温における電気抵抗値が十
分大きくなく、結合電流による損失の低減が不十分にな
り、25重母%を越えると押出しや伸線の際の加工性が
低下するためである。[Means for solving the problems] In the ffl conductive cable conductor of the present invention, the first embodiment
As shown in Fig. 2 and Fig. 2, Fe containing 5 mri% or more and 25% by weight or less of Cr in the outer periphery of the compound superconducting strand.
-A Cr alloy layer is provided. Here, the reason why the Cr concentration in the l"e-Cr alloy layer was limited to 5% to 25% by weight is because if it is less than 5% by weight, the electrical resistance value at extremely low temperatures is not large enough, and the loss due to the coupling current is This is because if the reduction becomes insufficient and exceeds 25% by weight, processability during extrusion or wire drawing will decrease.
[作用1
この発明の超rfi導ケーブル導体は、その外周部にF
c−Cr合金層が設けられている。該「e −Cr合金
層は、電気抵抗が大ぎいので、超電導ん線間を流れる結
合電流を小さくでき、その損失を茗しく低減さぼること
ができる。[Function 1] The ultra-RFI cable conductor of the present invention has F on its outer periphery.
A c-Cr alloy layer is provided. Since the e-Cr alloy layer has a high electrical resistance, the coupling current flowing between the superconducting wires can be reduced, and the loss can be reduced in a gentle manner.
また、疲労クラックは通常、超XS素線表面で発生し内
部へ伝播するが、この発明の導体ではその表面がFe−
Cr合金層で補強されているためクラックが発生しない
。第2図のように、Fe −Cr合金層の外側に?A度
の低いCuの部分を設けた場合であっても、クラックは
l”c−Cr合金層で止まり、それ以上内部へは伝播し
ない。Furthermore, fatigue cracks usually occur on the surface of a super-XS wire and propagate internally, but in the conductor of this invention, the surface is Fe-
No cracks occur because it is reinforced with a Cr alloy layer. As shown in Figure 2, outside the Fe-Cr alloy layer? Even when a Cu portion with a low degree of A is provided, cracks stop at the l''c-Cr alloy layer and do not propagate further inside.
[実施例]
第1図は、この発明の一実施例を示す断面図である。第
1図において、超電導素線1はCu −Sn合金をマト
リックスとしたNb s Sn多芯線部2と、該Nb5
Sn多芯線部2のまわりに配置する安定化Cu部3と、
該安定化CLI部3のまわりに設けられる’i:a−C
r合金層4から構成されている。[Embodiment] FIG. 1 is a sectional view showing an embodiment of the present invention. In FIG. 1, a superconducting wire 1 includes an Nb s Sn multifilamentary wire portion 2 with a Cu-Sn alloy as a matrix, and the Nb5
a stabilizing Cu section 3 disposed around the Sn multifilamentary wire section 2;
'i:a-C provided around the stabilizing CLI section 3
It is composed of an r-alloy layer 4.
第2図は、この発明の他の実施例を示す断面図である。FIG. 2 is a sectional view showing another embodiment of the invention.
第2図に示すように、この発明では、Fe−Cr合金層
4を、内側の安定化CLI部3aと外側の安定化011
部3bの間に設けることもできる。As shown in FIG. 2, in this invention, the Fe-Cr alloy layer 4 is divided into an inner stabilized CLI portion 3a and an outer stabilized CLI portion 011.
It can also be provided between the portions 3b.
この発明の超電導ケーブル導体は、たとえば複合ビレッ
トを押出し伸線加工する方法から作成することができる
。以下、この作成方法の実験例について説明する。The superconducting cable conductor of the present invention can be produced, for example, by extrusion and wire drawing of a composite billet. An experimental example of this creation method will be described below.
内側のCuパイプと外側のCuパイプの間に、1:e−
13m用%Cr合金バイブを挿入し、次に内側のCI+
バイブの中に六角形断面のCu−13m用%Sn合金を
マトリックスとしたNb多芯線(Nb芯55本)を15
1本稠密充瑣した。充填後、真空チャンバ中で内部を真
空引きし、上下に藷を電子ビーム溶接して複合ごレット
を得た。なお、この曳合ビレットでは、CuパイプとC
1l −3n合金マトリックスNl)多芯線部との間に
、Cu−Sn合金中のSnがCuバイブ中へ拡散するの
を防ぐ目的で、多層に巻い1こNbシートをI+1人し
た。Between the inner Cu pipe and the outer Cu pipe, 1:e-
Insert the %Cr alloy vibrator for 13m, then insert the inner CI+
Inside the vibrator, there are 15 Nb multifilamentary wires (55 Nb cores) with a hexagonal cross-section Cu-13m %Sn alloy matrix.
One bottle was densely packed. After filling, the inside was evacuated in a vacuum chamber, and the upper and lower portions were electron beam welded to obtain a composite pellet. In addition, in this combined billet, Cu pipe and C
1l -3n alloy matrix Nl) In order to prevent the Sn in the Cu-Sn alloy from diffusing into the Cu vibe, one Nb sheet (I+1) was wound in multiple layers between the multifilamentary wire part and the Nl-3n alloy matrix.
複合ビレットを押出した褒、中間軟化を繰返しながら仲
線加工し、1,2111111φの線材とした。線材断
面を金属顕微鏡で検査したところ、素線外周部のFe−
Cr合金層は、均一に塑性加工されており、局部破所淳
の欠陥は認められなかった。After extruding the composite billet, it was processed into a wire rod while repeating intermediate softening to obtain a wire rod with a diameter of 1,2111111φ. When the cross section of the wire was inspected with a metallurgical microscope, Fe-
The Cr alloy layer was uniformly plastically worked, and no defects such as local breakage were observed.
得られた超電導素線は、第3図に示すようなバンドル型
導体と第4図に示すような成型平角撚撚導体に作製した
。バンドル型導体は、素線を3×3X3X7本撚りして
、撚り線導体6とし、ステンレスのコンジットチューブ
5中に挿入し、コンジットチューブ5内のボイド率が4
0%どなるように1471 付は加工し作成した。The obtained superconducting strands were fabricated into a bundle type conductor as shown in FIG. 3 and a shaped rectangular twisted conductor as shown in FIG. The bundle type conductor is made by twisting 3 x 3 x 3 x 7 wires to form a stranded wire conductor 6, which is inserted into a stainless steel conduit tube 5, and the void ratio in the conduit tube 5 is 4.
1471 was processed and created so that it would be 0%.
また、成型平角撚撚尋体は、素線を7本撚りして撚り線
導体6とし、ステンレスの帯状補強材7の上に30本平
角撚りした後、ローラ成形し作製した。In addition, the molded rectangular twisted body was produced by twisting seven strands of wire to form a stranded wire conductor 6, twisting 30 flat wires onto a stainless steel strip reinforcing material 7, and then roller-forming.
いずれの導体についても撚り加工性は良好であった。ま
た撚り!!II後の導体から素線を取出し、顕微鏡検査
したところ何ら欠陥は認められなかった。The twisting processability of all the conductors was good. Twisting again! ! When the wire was removed from the conductor after II and inspected under a microscope, no defects were found.
これらの導体からコイルを作成し、通電して磁界を発生
させたところ、変動磁界中において損失が小さく、また
連電導の安定性の良いことが確認された。When coils were made from these conductors and energized to generate a magnetic field, it was confirmed that the loss was small in a fluctuating magnetic field, and the stability of continuous conduction was good.
この発明での結合電流による損失の低減効果を評価する
ため、第2図に示す断面構造のNb * Sn超電導素
線(11mφ)を作成し、3X3X4本撚り合わせバン
ドル型導体のケーブルとした。素線の充填率を変えるこ
とにより、バンドル型導体内の液体ヘリウム充填率を2
0〜50重ω%に変化させ、ケーブルとしての電流損失
を測定した。In order to evaluate the effect of reducing loss due to coupling current in the present invention, Nb*Sn superconducting strands (11 mφ) having the cross-sectional structure shown in FIG. 2 were prepared, and a 3×3×4 bundle-type conductor cable was prepared. By changing the filling factor of the strands, the liquid helium filling factor in the bundle type conductor can be increased by 2.
The current loss as a cable was measured by varying the weight from 0 to 50 ω%.
損失時定数を素線の損失時定数で規格化して第5図に示
した。比較として、Fe−Cr合金層を設けていない従
来のケーブルについても同様にして測定した。この結果
も第5図に合わせて示した。The loss time constant is normalized by the loss time constant of the wire and is shown in FIG. For comparison, a conventional cable without an Fe-Cr alloy layer was also measured in the same manner. This result is also shown in FIG.
第5図から明らかなように、この発明のケーブル導体を
用いたものは、従来に比べ、ケーブル化による損失の増
大が著しく小さなものとなることが確認された。As is clear from FIG. 5, it has been confirmed that the cable conductor of the present invention has a significantly smaller increase in loss due to cable construction than the conventional cable.
以上の説明では、化合物系超電導素線として、Nb 3
Sn超?[in素線を用いて説明したが、■。In the above explanation, Nb 3 is used as the compound superconducting wire.
Sn super? [Although the explanation was made using an in wire, ■.
Qa超電導素線およびNb、All超電導素線を化合物
系超電導素線として用いた場合にも同様にして作成する
ことができ、また同様の効果を発揮するものである。When a Qa superconducting strand and a Nb or All superconducting strand are used as a compound superconducting strand, it can be produced in the same manner, and the same effect can be achieved.
この発明の超電導ケーブル導体は、その外周部に電気抵
抗の大きいl”e−Cr合金層を設けているため、素線
間を流れる結合電流による損失が著しく低減され得る。Since the superconducting cable conductor of the present invention is provided with the l''e-Cr alloy layer having high electrical resistance on its outer periphery, loss due to coupling current flowing between the strands can be significantly reduced.
したがって、変eJliti界中において損失が小さく
、超電導の安定性も優れている。Therefore, the loss is small in the modified eJliti field, and the stability of the superconductor is also excellent.
また、超電導素線の外周部には)”e−Cr合金層が設
けられ補強されるため、疲労強度の増大も図ることがで
きる。Furthermore, since an e-Cr alloy layer is provided on the outer periphery of the superconducting wire for reinforcement, fatigue strength can also be increased.
第1図は、この発明の一実施例を示す断面図である。第
2図は、この発明の他の実施例を示す断面図である。第
3図は、バンドル型導体の一例を示す断面図である。第
4図は、成型平角撚撚導体の一例を示す断面図である。
第5図は、この発明のケーブル導体および従来のケーブ
ル導体における液体ヘリウム充填率と通電の際の損失時
定数比との関係を示す図である。
図において、1は超電導素線、2は多芯線部、3は安定
化Cub、4はFe−Cr合金層を示す。FIG. 1 is a sectional view showing an embodiment of the present invention. FIG. 2 is a sectional view showing another embodiment of the invention. FIG. 3 is a sectional view showing an example of a bundle type conductor. FIG. 4 is a sectional view showing an example of a molded rectangular twisted conductor. FIG. 5 is a diagram showing the relationship between the liquid helium filling rate and the loss time constant ratio during energization in the cable conductor of the present invention and the conventional cable conductor. In the figure, 1 is a superconducting wire, 2 is a multifilamentary wire portion, 3 is a stabilizing Cub, and 4 is a Fe-Cr alloy layer.
Claims (4)
重量%以下のCrを含有したFe−Cr合金層を設けた
ことを特徴とする、超電導ケーブル導体。(1) At least 5% by weight25 on the outer periphery of the compound-based superconducting wire
A superconducting cable conductor, characterized in that it is provided with an Fe-Cr alloy layer containing not more than % by weight of Cr.
線であることを特徴とする、特許請求の範囲第1項記載
の超電導ケーブル導体。(2) The superconducting cable conductor according to claim 1, wherein the compound-based superconducting strand is a Nb_3Sn superconducting strand.
であることを特徴とする、特許請求の範囲第1項記載の
超電導ケーブル導体。(3) The superconducting cable conductor according to claim 1, wherein the compound-based superconducting strand is a V_3Ga superconducting strand.
線であることを特徴とする、特許請求の範囲第1項記載
の超電導ケーブル導体。(4) The superconducting cable conductor according to claim 1, wherein the compound-based superconducting strand is a Nb_3Al superconducting strand.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61114458A JPS62271308A (en) | 1986-05-19 | 1986-05-19 | superconducting cable conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61114458A JPS62271308A (en) | 1986-05-19 | 1986-05-19 | superconducting cable conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62271308A true JPS62271308A (en) | 1987-11-25 |
JPH0570887B2 JPH0570887B2 (en) | 1993-10-06 |
Family
ID=14638236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61114458A Granted JPS62271308A (en) | 1986-05-19 | 1986-05-19 | superconducting cable conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62271308A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02152111A (en) * | 1988-12-05 | 1990-06-12 | Junkosha Co Ltd | Superconducting cable |
JPH0427522U (en) * | 1990-06-29 | 1992-03-04 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57196405A (en) * | 1981-05-28 | 1982-12-02 | Kogyo Gijutsuin | Al stabilized superconductive wire |
JPS58107477A (en) * | 1981-12-21 | 1983-06-27 | Kobe Steel Ltd | High strength and high tenacity non-magnetic steel for extremely low temperature |
JPS6013022A (en) * | 1983-07-04 | 1985-01-23 | Kobe Steel Ltd | Production of nonmagnetic steel plate |
JPS60190516A (en) * | 1984-03-09 | 1985-09-28 | Kobe Steel Ltd | Manufacturing method of non-magnetic steel plate for fusion reactor superconducting magnet structure |
JPS61288052A (en) * | 1985-06-17 | 1986-12-18 | Kawasaki Steel Corp | Precipitation hardening type high-mn nonmagnetic steel having high strength and high toughness and its production |
JPS62156258A (en) * | 1985-12-27 | 1987-07-11 | Kobe Steel Ltd | Nonmagnetic cold rolled steel sheet for sheath of superconductive wire having superior cold workability |
JPS62270721A (en) * | 1986-05-19 | 1987-11-25 | Kobe Steel Ltd | Production of high-mn austenitic stainless steel for cryogenic service |
-
1986
- 1986-05-19 JP JP61114458A patent/JPS62271308A/en active Granted
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57196405A (en) * | 1981-05-28 | 1982-12-02 | Kogyo Gijutsuin | Al stabilized superconductive wire |
JPS58107477A (en) * | 1981-12-21 | 1983-06-27 | Kobe Steel Ltd | High strength and high tenacity non-magnetic steel for extremely low temperature |
JPS6013022A (en) * | 1983-07-04 | 1985-01-23 | Kobe Steel Ltd | Production of nonmagnetic steel plate |
JPS60190516A (en) * | 1984-03-09 | 1985-09-28 | Kobe Steel Ltd | Manufacturing method of non-magnetic steel plate for fusion reactor superconducting magnet structure |
JPS61288052A (en) * | 1985-06-17 | 1986-12-18 | Kawasaki Steel Corp | Precipitation hardening type high-mn nonmagnetic steel having high strength and high toughness and its production |
JPS62156258A (en) * | 1985-12-27 | 1987-07-11 | Kobe Steel Ltd | Nonmagnetic cold rolled steel sheet for sheath of superconductive wire having superior cold workability |
JPS62270721A (en) * | 1986-05-19 | 1987-11-25 | Kobe Steel Ltd | Production of high-mn austenitic stainless steel for cryogenic service |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02152111A (en) * | 1988-12-05 | 1990-06-12 | Junkosha Co Ltd | Superconducting cable |
JPH0427522U (en) * | 1990-06-29 | 1992-03-04 |
Also Published As
Publication number | Publication date |
---|---|
JPH0570887B2 (en) | 1993-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4200767A (en) | Superconductor covered with reinforced aluminum matrix | |
JP2009211880A (en) | Nb3Sn SUPERCONDUCTING WIRE ROD MADE BY USING INTERNAL Sn METHOD, AND PRECURSOR THEREFOR | |
WO2007099820A1 (en) | PRECURSOR FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE ROD, AND Nb3Sn SUPERCONDUCTING WIRE ROD | |
US5929385A (en) | AC oxide superconductor wire and cable | |
US3643001A (en) | Composite superconductor | |
US3836404A (en) | Method of fabricating composite superconductive electrical conductors | |
JPS62271308A (en) | superconducting cable conductor | |
US4094059A (en) | Method for producing composite superconductors | |
Murase et al. | Multifilament niobium-tin conductors | |
JP4013335B2 (en) | Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method | |
JP4237341B2 (en) | Nb3Sn compound superconducting wire and manufacturing method thereof | |
US4982497A (en) | Process for manufacture of a superconductor | |
JP2002163944A (en) | Aluminum stabilized superconducting wire and superconducting conductor | |
JP3425018B2 (en) | Nb3Al-based multi-core superconducting wire | |
Isono et al. | Development of a (NbTi)/sub 3/Sn strand for the ITER CS scalable model coil | |
JPS58169712A (en) | Method of producing composite superconductive wire | |
JPS6381709A (en) | Superconductor | |
EP0169078A2 (en) | Superconductor prepared from Nb3Sn compound | |
JP3603535B2 (en) | Method for producing Nb3Al-based superconducting conductor | |
Scanlan et al. | Multifilamentary Nb 3 Sn for superconducting generator applications | |
JP3330267B2 (en) | Superconducting connection structure | |
JPH0696626A (en) | Ac superconductive wire and manufacture thereof | |
JPH06150737A (en) | Nb multicore superconducting cable and manufacture thereof | |
JPH0143410B2 (en) | ||
JPH087681A (en) | A3b type compound superconductive wire rod and manufacture thereof |