JPS62268325A - Charging of electrochemical battery - Google Patents
Charging of electrochemical batteryInfo
- Publication number
- JPS62268325A JPS62268325A JP62107900A JP10790087A JPS62268325A JP S62268325 A JPS62268325 A JP S62268325A JP 62107900 A JP62107900 A JP 62107900A JP 10790087 A JP10790087 A JP 10790087A JP S62268325 A JPS62268325 A JP S62268325A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- voltage
- charging
- comparator
- parallel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims description 20
- 238000012544 monitoring process Methods 0.000 claims description 9
- 230000006378 damage Effects 0.000 claims description 7
- 230000001681 protective effect Effects 0.000 claims description 2
- 230000008034 disappearance Effects 0.000 claims 3
- 230000001419 dependent effect Effects 0.000 claims 1
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0016—Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、電気化学的な二次蓄電池の充電に係わる。本
発明は持に、上記のような電池の充電方法、並U・に電
池充電用の1呆黒デバイスに係わる。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the charging of electrochemical secondary batteries. The present invention particularly relates to a method for charging a battery as described above, and particularly to a blank device for charging the battery.
本発明の一局面によれば、少なくとも1個の電気化学的
二次蓄電池を充電する方法てあって、前記電池に充電電
力を供給し、該電池に充電電流を流すことと、電池の電
位が所定値にまで上昇したら充電を中1111iするこ
ととを含み、更に電池の電位をモニタすること、及び電
池の電位が所定電圧に上昇したら電池に並列な低インピ
ーダンス電路を確立し、この電路を電池に伺与される充
電電流の側路とすることを含む充電方法が提供される。According to one aspect of the invention, there is provided a method of charging at least one electrochemical secondary battery, comprising: supplying charging power to the battery and passing a charging current through the battery; when the potential of the battery increases to a predetermined voltage, the battery potential is further monitored, and when the battery potential rises to a predetermined voltage, establishing a low impedance electrical path parallel to the battery, and connecting this electrical path to the battery. A charging method is provided that includes shunting a charging current applied to the battery.
充電は、電池の電位が該電池の完全に充電された状態に
対応する所定値か、あるいは予め選択された値にまで上
昇すると中断され得る。Charging may be interrupted when the potential of the battery rises to a predetermined or preselected value corresponding to a fully charged state of the battery.
電池の電位のモニタは、電池の電位を検知して、検知電
圧を基準電圧と比較することによって行なわれ得る。Monitoring the battery potential may be performed by sensing the battery potential and comparing the sensed voltage to a reference voltage.
電池の電位は電池に並列に接続された電圧比較器によっ
て検知され、かつ基準電圧と比較され得、上記比較器は
電池電圧を、電池に並列に接続された分圧器を介して精
密電圧基準(直と比較する。比穀層からの出力信号は、
電池電圧が所定電圧まて上昇するどLM l’) 13
え手段を能動化して、電池に並列な低インピーダンス電
路を確立するように柘成され得る。分圧器は好まし・く
は、電池に対して並列に、かつ互いに対して直列に接続
された調節用の可変抵抗器並びに2個の固定抵抗器を含
む。精密電圧基?(!X値発生器は好ましくは、限流抵
抗器と直列に接続されている。精密電圧基準値発生器及
び限流抵抗器も電池に並列に接続され得る。The potential of the battery may be sensed and compared to a reference voltage by a voltage comparator connected in parallel to the battery, which comparator connects the battery voltage to a precision voltage reference ( The output signal from the grain layer is
When the battery voltage rises to a predetermined voltage, LM l') 13
The connecting means can be configured to establish a low impedance path in parallel to the battery. The voltage divider preferably includes an adjustable variable resistor and two fixed resistors connected in parallel with the battery and in series with each other. Precision voltage base? (!The X value generator is preferably connected in series with a current limiting resistor. A precision voltage reference value generator and a current limiting resistor can also be connected in parallel to the battery.
初めに、側路である低インピーダンス電路が確立される
と、その結果電池の電圧は所定値より低い値に低下する
。そこで本発明による方法は、低インピーダンス電路の
確立及び消失を周期的に行なうことを倉み得、各周期に
おいて低インピーダンス電路が確立されている期間は電
池の電位に従属して制御可能に変更される。即ち、比較
器からの出力信号はトランジスタの形態であり得る切り
替え手段に付与され得、その際切り替え手段としての1
〜ランジスタは電池に並列に接続されており、このトラ
ンジスタは比較器からの出力電圧が成る所定値を下回る
とオン状態に切り替えられる。電池に1−t−Ijされ
る充電電流か側路を流れると、電池の電圧が基準電圧未
満に低下する。このことは比較器によって検知され、そ
の結果比較器の出力電圧が増大することによって上記)
・ランジスクはオフ状態にされる。それによって、充電
が継続される場合電池の電圧は再び増大し、続いて上記
トランジスタのオン/オフ状態切り替えサイクルが再び
実施され、このような動作は間欠的に繰り返される。Initially, a bypass, low impedance path is established, which causes the battery voltage to drop below a predetermined value. Therefore, the method according to the present invention makes it possible to periodically establish and dissipate a low impedance line, and in each cycle, the period during which the low impedance line is established is controllably changed depending on the potential of the battery. Ru. That is, the output signal from the comparator may be applied to switching means, which may be in the form of a transistor, with one of the switching means being
- A transistor is connected in parallel to the battery, which transistor is switched on when the output voltage from the comparator falls below a predetermined value. If the charging current applied to the battery 1-t-Ij flows through the bypass, the voltage of the battery will drop below the reference voltage. This is detected by the comparator and the result is an increase in the output voltage of the comparator (see above).
- Ranjisk is turned off. Thereby, if charging continues, the voltage of the battery increases again, and then the on/off state switching cycle of the transistor is performed again, and such operation is repeated intermittently.
こうしてチョップ効果が得られ、電池の充電はfllj
l路の確立によって周期的に中断される。典型的には、
電池に供給される充電電流がトランジスタによって確立
された側路を流れる期間は側路確立の間隔より短・く、
従って電池は実際上細流充電される。電池の充電が進行
するにつれて側路確立の間隔は次第に短・くなり、その
結果充電電流が側路を流れる時間の比率が増大する。In this way, a chop effect is obtained, and the battery charge is fllj
It is periodically interrupted by the establishment of a path. Typically,
The period during which the charging current supplied to the battery flows through the shunt established by the transistor is shorter than the interval between shunt establishments;
The battery is therefore effectively trickle charged. As the charging of the battery progresses, the interval between bypass establishments becomes progressively shorter, so that the proportion of time that charging current flows through the bypass increases.
複数個の電池が互いに直列に接続されている場合、この
電池列中の任意個数の電池に関して上述のような側路確
立が同時に実施され看、その際側路が確立された電池は
互いに対しても、また側路か確立さhていない電池に対
しても実質的に影響を及ぼさない。互いに直列に接続さ
れた戊数個の電池の全部が実質的に完全に充電されて電
池列の電位が所定値まて上昇し、それに応答して充電が
中断されるまで、いずれの電池も過充電とはならない。If several batteries are connected in series with each other, the above-described shunt establishment can be performed simultaneously for any number of batteries in this battery string, with the shunt-established batteries having no relation to each other. It also has no substantial effect on cells that do not have a bypass established. None of the batteries is overloaded until all of the batteries connected in series with each other are substantially fully charged and the potential of the battery string rises to a predetermined value, in response to which charging is interrupted. It is not charging.
この点に関して、複数個の名目上回等の放電済み電池か
ら成る電池列が該電池列に付与される電位によって充電
される際に、例えば温度プロフィールを有するバラブリ
において異なる位置を占めることに起因する個々の電池
同士の温度の相違によって電池の内部抵抗に差が生じる
結果、幾つかの電池においては、他の電池がなお充電を
必要としており、電池列の電位は=亥電池列の全体が完
全に充電されたことに対応する所定値を未だ下回−)で
いる間に充電が完了し得るということが指摘される。上
記グ)ような状況下では、電池列の電位が上記所定値に
達した場合に充電を自動的に中断する充電器は充電を継
続し、充電の完了が早過ぎた電池に充電電流が流れ続け
る。充電の完了が早過さ゛た電池は、過充電となるため
にその内部抵抗が急激に増大し得、その結果甚だしい過
熟状態となって破壊する恐れがある。In this regard, when a battery bank consisting of several nominally discharged cells is charged by the potential applied to the battery bank, for example due to the fact that it occupies different positions in the battery with a temperature profile. As a result of differences in the internal resistance of the batteries due to differences in temperature between individual batteries, some batteries still require charging, and the potential of the battery string is = ᆬIt is pointed out that charging may be completed while the battery is still below a predetermined value corresponding to being charged to -). Under conditions like G) above, a charger that automatically interrupts charging when the potential of the battery string reaches the predetermined value above will continue charging, and charging current will flow to the battery that has finished charging too early. continue. A battery whose charge is completed prematurely may become overcharged and its internal resistance may rapidly increase, resulting in severe overage and risk of destruction.
好ましくは、比較器の出力は電池に並列に接続された抵
抗器に直列に接続されたスイッチングトランジスタを介
して、電池に直接並列に接続されたパワートランジスタ
を能動化し、実際上それによっ゛ζ側路の確立が為され
る。即ち、スイッチングトランジスタの出力はパワート
ランジスタを能動化し、また指示用トランジスタをも能
動(ヒし得る。この指示用I・ランジスクには電池に並
列に接続された発光ダイオード及び抵抗器が直列に接続
される。安全上の理由から、逆バイアスを掛けられた保
護タイオートを電池に並列に接続してもよい。Preferably, the output of the comparator, via a switching transistor connected in series with a resistor connected in parallel to the battery, activates a power transistor connected directly in parallel to the battery, thereby effectively A route is established. That is, the output of the switching transistor activates the power transistor and can also activate the indicating transistor.A light emitting diode connected in parallel to the battery and a resistor are connected in series to the indicating transistor. For safety reasons, a reverse biased protective tie-out may be connected in parallel to the battery.
充電電力は適当な電源から供給され得、この電源は定電
流電源であるか、あるいは限流の容易な電源でありt”
4る。Charging power may be supplied from any suitable power source, which may be a constant current power source or a power source that is easily current limited.
4 Ru.
本発明はまた、少なくとも1個の二次蓄電池の充電に用
いられる保護デバイスをも提供し、このデバイスは電池
に並列に接続され看る少なくとも1個の保護回路を含み
、この回路は電池の電圧をモニタするべく動作し得るモ
ニタ手段と、このモニタ手段に対して応答性であり、モ
ニタされる電圧が所定値まで上昇すると低インピーダン
ス電路を確立して電池に伺り−される充電電流の側路と
するべく動作し得る切り替え手段とを含む。The present invention also provides a protection device for use in charging at least one secondary battery, the device including at least one protection circuit connected in parallel to the battery and configured to monitor the voltage of the battery. and a monitoring means responsive to the monitoring means, which establishes a low impedance path when the monitored voltage rises to a predetermined value, and a side of the charging current directed to the battery. and switching means operable to provide a path.
モニタ手段は、電池に並列に接続され得る比較器と、比
較器に基準電圧を供給する精密電圧基準(直発生器と、
電池に並列に接続された可変抵抗器を3み釣る分圧回路
とを含み得る。比較器σ)出力は切り替え手段に接続さ
れ得、切り替え手段は充電電流の側路を確立するべく電
池に並列に接続され偶る。トランジスクを含み得る切り
替え手段は、モニタされる電池電圧が側路の確立に応答
して所定値より低い値に低下すると自動的に側路を消失
させるように構成され得る。The monitoring means includes a comparator that can be connected in parallel to the battery, a precision voltage reference (direct generator,
The battery may include a voltage divider circuit that includes three variable resistors connected in parallel to the battery. The output of the comparator σ) may be connected to switching means, the switching means being connected in parallel to the battery to establish a bypass of the charging current. The switching means, which may include a transistor, may be configured to automatically extinguish the shunt when the monitored battery voltage drops below a predetermined value in response to establishment of the shunt.
明り替え手段は、好ましくは電池に並列に接続された抵
抗器に直列に接続されたスイッヂンク1〜ラシリスクを
含み得、比較器の出力はこのスイッゾシクI・ランシス
クに接続され、また該スイッヂングトランジスクの出力
は、電池に直接並列に接続された、側路を確立するパワ
ートランジスタに接続されている。スイッチンクトラン
ジスクの出力は指示用1−ランジスタにも接続され得、
この指示用1ランシスクは電池に並列に接続された発光
ダイオード及び好ましくは抵抗器に直列に接続される。The switching means may preferably include a switching transistor connected in series with a resistor connected in parallel to the battery, the output of the comparator being connected to the switching transistor The output of is connected to a power transistor that establishes a bypass, connected directly in parallel to the battery. The output of the switching transistor may also be connected to an indicating transistor,
This indicator is connected in series with a light emitting diode connected in parallel with a battery and preferably with a resistor.
保護回路は、゛、ト池に並列に接続された保護グイオー
トも訃み18る。The protection circuit also includes a protection gate connected in parallel to the pond.
保護デバイスは、互いに直列に接続されノと複数個の電
池と恒常的に接続されて、上記電池から成るバッテリの
一部を構成し得るが、バッテリの質量が問題となる場合
はバッテリ充電器の−・部を好ましく構成する。上記い
ずれの場合も保護回路はブリ〉・1・配線基板上に設け
られたプリンI・配線てあり得、上記プリント配線基板
は、例えばバッテリ充電器の一部を成すサブフレームに
装着され得るユニットを実現するべくエツジコネクタを
有する。The protection device may be permanently connected to a plurality of cells connected in series with each other and may form part of a battery consisting of said cells, but may also be used in conjunction with a battery charger if the mass of the batteries is a concern. −・Part preferably constituted. In any of the above cases, the protection circuit can be a printed wiring board provided on a wiring board, and the printed wiring board is a unit that can be mounted on a subframe that forms part of a battery charger, for example. It has an edge connector to achieve this.
保護回路は、好ましくは各電池毎に設置される。A protection circuit is preferably installed for each battery.
各保護回路は充電電源と接続され得る1対の入力端子と
、関連する電池の端子に接続され得る1対の出力端子と
を有し爬−る。そこで切り暑え手段は、上記1対の出力
端子に並列に接続され得る。Each protection circuit has a pair of input terminals that can be connected to a charging power source and a pair of output terminals that can be connected to terminals of an associated battery. The heat cutting means may then be connected in parallel to the pair of output terminals.
指示用1ヘランジスタは充電のモニタに用いられ=12
−
るコンピュータに電池列中の個々の電池の充電状態に関
するデジタル信号を提供し得、このデジタル信号はバッ
テリ充電器の望ましい出方電流を31算するのに用いら
れ得ることが留意されるへきである。保護回路は、例え
ば電池端子からのアナログ出力をヂャートレコーダ等に
提供することもできる。The indicator 1 helangister is used to monitor charging = 12
- It is noted that the computer may be provided with a digital signal regarding the state of charge of the individual cells in the battery bank, which digital signal may be used to calculate the desired output current of the battery charger. be. The protection circuit may also provide an analog output from the battery terminals to, for example, a drag recorder.
本発明は更に、互いに直列に接続された複数個の再充電
可能な電気1ヒ学的蓄電池を含むバッテリを充電するバ
ッテリ充電シスデムを提供し、このシステムは互いに直
列に接続された複数個の上記電池によって構成されたバ
ッテリと、各電池に並列に接続された上述のような保護
デバイスとを含む。The present invention further provides a battery charging system for charging a battery including a plurality of rechargeable electrical storage batteries connected in series with each other, the system comprising a plurality of rechargeable electrical storage batteries connected in series with each other. It includes a battery constituted by cells and a protection device as described above connected in parallel to each cell.
このシステムにおいて、保護デバイスはバッテリ充電用
の充電器の一部を成し、かつ該充電器と一体に形成され
得、その際保護デバイスはバッテリに並列に接続され得
る。In this system, the protection device may form part of and be formed integrally with a charger for charging the battery, and the protection device may be connected in parallel to the battery.
本発明をその具体例によって、添付の概略的な図面を参
照しつつ以下に詳述する。The invention will be explained in more detail below by way of specific examples and with reference to the accompanying schematic drawings, in which: FIG.
ル限漣
第1図において、本発明による保護デバイスの一部を成
ず保護回路の全体を参照符号10で示す。In FIG. 1, a protection circuit which forms part of a protection device according to the invention is designated as a whole by the reference numeral 10.
本発明方法により1個の保護回路10が、直列に相互接
続された複数個の電気化学的二次蓄電池から成る電池列
の充電の際に該電池列の1個の電池を過充電から保護す
るのに用いられる。回路10は、バッテリ充電器(図示
せず)と接続され爬る入力端子11と、電池(やはり図
示せず)の正端子及び負端子と接続され祠る出力端子1
4及び16とを有する。In accordance with the method of the invention, a protection circuit 10 protects one cell of a battery bank from overcharging during charging of a battery bank of several electrochemical secondary batteries interconnected in series. used for. The circuit 10 includes an input terminal 11 that is connected to a battery charger (not shown) and an output terminal 1 that is connected to the positive and negative terminals of a battery (also not shown).
4 and 16.
バッテリ充電器は電池と、ライン18及び20によって
直接接続されている。The battery charger is connected directly to the battery by lines 18 and 20.
TL33]、CD比較器22の2個の入力端子(7,4
)は、ライン24及び26によってそれぞれライン18
及び20と接続されている。比較器22の別の入力端子
(2)はライン28によって、ライン18及び20間て
56k及び471(固定抵抗器32.34と直列に接続
された10に可変抵抗器30と接続されており、また比
較器22の更に別の入力端子(3)はライン36によっ
て、精密電圧基準値発生器を構成するLM385ツェナ
ダイオード38と2に2固定限流抵抗器40との間に接
続されている。TL33], two input terminals of the CD comparator 22 (7, 4
) are connected to line 18 by lines 24 and 26, respectively.
and 20. Another input terminal (2) of the comparator 22 is connected by a line 28 with a variable resistor 30 to 56k and 471 (10 connected in series with a fixed resistor 32, 34) between lines 18 and 20; A further input terminal (3) of the comparator 22 is also connected by a line 36 between an LM385 Zener diode 38 and a 2 to 2 fixed current limiting resistor 40, which constitute a precision voltage reference value generator.
比較器22の出力(6)はライン42によって2N30
53スイツヂング1〜ランジスタ44の入力に接続され
ており、その際ライン42は3に3固定バイアス抵抗器
46を介してラインJ8とも接続されており、1〜ラン
ジスタ44はライ〉′18と、またライン48及び10
1(固定抵抗器50を介してライン20と接続されてい
る。The output (6) of comparator 22 is connected to 2N30 by line 42.
53 is connected to the input of switching 1 to transistor 44, in which case line 42 is also connected to line J8 via a fixed bias resistor 46; lines 48 and 10
1 (connected to line 20 via fixed resistor 50).
I・う〉・ジスタ44からライン52/\の出力は、う
、イン18及び20間に直接接続されたMJ802パワ
ー1〜ランンスク54の入力に送られる。2N2222
指示用トランシスク56の入力はライン52と接続され
ており、このトランジスタ56はライン18及び20間
て発光ダイオード58及び220オーム抵抗器60と直
列に接続されている。The output on line 52/\ from the I/U register 44 is sent to the input of the MJ802 Power 1-Lance 54 which is connected directly between the I/U registers 18 and 20. 2N2222
The input of indicator transisk 56 is connected to line 52, and transistor 56 is connected in series between lines 18 and 20 with a light emitting diode 58 and a 220 ohm resistor 60.
バッテリ充電器を入力端子11に誤った極性で接続する
ことによってもたらされる損傷を回避するべく、逆バイ
アスを掛けられた保護ダイオード62がライン18及び
20間に接続されている。A reverse biased protection diode 62 is connected between lines 18 and 20 to avoid damage caused by connecting the battery charger to input terminal 11 with the wrong polarity.
回路10は、電池端子14.16間の電圧が2.695
Vを決して越えないように選択される。比較器22はそ
の動作電圧が2vであるように選択され、電圧基準値発
生器38は2.695Vに設定される。Circuit 10 has a voltage of 2.695 across battery terminals 14.16.
It is chosen to never exceed V. Comparator 22 is selected such that its operating voltage is 2V, and voltage reference generator 38 is set to 2.695V.
使用時、電池が放電状態にあるとまず比較器22が、端
子14.16間の電圧が基準値発生器38の設定値2.
695Vを下回ることを検知して、トランジスタ44と
、従ってトランジスタ54とをオフ状態に維持する電圧
信号をライン42へ送出する。電池の充電が進行するに
つれて電池の端子14.16間の電圧は2.7vに近付
き、バッテリの充電か完了する前に上記電圧が基準値発
生器38の設定値に等し・くなると、比較器22からラ
イン42へ送られる出力電圧信号が減小して1〜ランジ
スタ44はオン状態に切り替えられる。オシ状止となっ
たトランジスタ44がらライン52’\送出された出力
信号はトランジスタ54をオシ状態に切り替え、それに
よってトランジスタ54は低・fンピータンス電路を確
立して、電池にイ」与される充電電流の側路を構成する
。In use, when the battery is in a discharged state, the comparator 22 first detects that the voltage across the terminals 14.16 is equal to the set value 2.
Sensing the drop below 695V sends a voltage signal on line 42 that maintains transistor 44 and therefore transistor 54 off. As battery charging progresses, the voltage across battery terminals 14,16 approaches 2.7V, and before battery charging is complete, said voltage equals the set value of reference value generator 38; The output voltage signal sent from transistor 22 to line 42 decreases and transistors 1 to 44 are switched on. The output signal sent from the turned off transistor 44 to the line 52' switches the transistor 54 into the turned on state, thereby causing the transistor 54 to establish a low f-impedance path to charge the battery. Configures a current bypass.
電池への充電電流が側路に流れるやいなや端子14.1
6間の電圧が低下して、比較器22からライン42)\
送られる13号はトランジスタ44をオフ状態にLJJ
すBえる値にまで増大し、オフ状態となったI・ランジ
スク44はトランジスタ54をオフ状態に切り替えて、
側路を消失さぜる。端子14.16間の電圧は再び漸次
増大し始め、このようにして切り替え一す−・rクルは
電池列の充電の間中繰り返される。As soon as the charging current to the battery flows through the bypass terminal 14.1
The voltage across line 42) decreases from comparator 22 to line 42)\
The sent No. 13 turns off the transistor 44 to LJJ.
The I.Landisk 44, which has increased to a value of
The side road disappears. The voltage across terminals 14,16 begins to increase gradually again and the switching cycle is thus repeated throughout the charging of the battery bank.
電池への充電電流に働くチョップ効果が惹起され、ぞの
際電池の充電の度合が高まるにつれて、連続的に起こる
側路の確立の間隔は次第に短くなり、最終的に側路の確
立は多少とも間断無く生起して、その結果電池は細流充
電され、やが°ζ電池列の充電は[1斜断される。A chop effect acting on the charging current to the battery is induced, and as the degree of charge of the battery increases, the interval between successive establishments of a bypass becomes shorter and shorter, and eventually the establishment of a bypass becomes more or less occurs without any interruption, resulting in a trickle charge of the battery, until the charging of the battery bank is cut off by [1].
用いられるバッテリ充電器が、電池列(バッテリ)の電
圧が所定値まで上昇するやいなや自動的に充電を中断す
るべく設計されている特別の場合において、本発明の方
法及びデバ・イスは、電池列の総ての一ト池が実質的に
完全に充電され得るという特別の利点を有する。先に述
バ、たような、他の電池への充電′、[流か側路へ流さ
れる前に完全に充電され′ζしよった電池に付与される
充電電流、即ちそのような電池の充電は、より遅く充電
の完了する電池か充電され続けている間有効に中止され
る(但し細流充電は続く)。総ての電池が実質的に完全
に充電されると、(いずれの電池への充電電流も瞬間的
に側路へ流れない貼)電池列の電圧は充電器に充電を自
動的に中断させる値に上昇する。In the special case where the battery charger used is designed to automatically interrupt charging as soon as the voltage of the battery string (battery) rises to a predetermined value, the method and device of the invention can be used to has the particular advantage that all batteries can be substantially fully charged. Charging of other batteries, as mentioned above, [the charging current applied to a battery that has been fully charged before being diverted to the stream, i.e. Charging is effectively discontinued while the battery continues to be charged (although trickle charging continues) if the battery completes charging later. When all batteries are substantially fully charged (in which case the charging current to none of the batteries is momentarily diverted), the voltage in the battery string is set to a value that causes the charger to automatically interrupt charging. rise to
本発明の方法を用いなりれば、電池列中の、例えばバッ
テリが温度プロフィールを有する場合温度差に起因して
生じる内部抵抗差の故に他の電池J:り先に充電カイ完
了してしまう電池は、上記他の電池が完全に充電される
前に過充電となり得る。If the method of the present invention is used, for example, if a battery in a battery string has a temperature profile, it is possible for a battery to complete charging before another battery due to the internal resistance difference caused by the temperature difference. may become overcharged before the other batteries are fully charged.
充電が早1]に、即ち全電池が完全に充電される前に中
断されなυれば電池の成るものは過充電となり、その結
果固体電解質の被毒、液体電解質の分解といった電位に
関する幾つかの問題が生起し、また側路が確立されない
ため完全に充電されたあるいに過充電された電池に充電
電流の全体が流れることからして、過熱に起因する電池
の甚たしい損(Lあるいは破壊ら実際上起こる。If charging is not interrupted prematurely, i.e. before all the cells are fully charged, the battery components will be overcharged, resulting in potential problems such as poisoning of the solid electrolyte and decomposition of the liquid electrolyte. problems occur, and since no shunt is established, the entire charging current flows to a fully charged or overcharged battery, resulting in significant battery loss (L) due to overheating. Or destruction actually occurs.
本発明によれば、各電池か過充電によるいずれの電池の
損傷も伴わずに完全に充電され得るのてバッテリ容量は
完全に活用され、また過充電による損傷かJJト除され
ないとしても低減されるので保全はより容易となる。バ
ッテリ質量が問題となる場#j 、 ’IW 護テハイ
スは充電器の−・部を構成し得る。According to the invention, the battery capacity is fully utilized as each battery can be fully charged without damage to any of the batteries due to overcharging, and damage due to overcharging is reduced, if not eliminated. This makes maintenance easier. If the battery mass is a concern, the 'IW protection device may form part of the charger.
他の場合には、保護デバイスはバッテリの一部を構成し
得、比較器の動作電圧の選択並びに基準電圧の設定は、
保護回路か電池に恒常的に接続されている場合該回路を
当該電池に対して実質的に1〜ランスペアレントにする
値において為され得る(例えば第1図に示した回路では
それぞれ2v及び2.695V)。In other cases, the protection device may form part of the battery, and the selection of the operating voltage of the comparator as well as the setting of the reference voltage
If a protection circuit is permanently connected to a battery, it can be done at values that make the circuit substantially 1 to 1.0 volts transparent to the battery (eg, 2 volts and 2 volts, respectively, in the circuit shown in FIG. 1). 695V).
第1図に示した回路を、約250℃で機能する高温型の
電気化学的蓄′S池であって、それぞれ約2.3〜2.
6■の開回路電圧を有する6個の蓄電池を名目」二同等
に相互接続した電池列を用いて試験した。各電池は、溶
融すトリウムアノ−1”と、内部抵抗が温度怒応性であ
るヘータアルミナセバレータと、このセパレータによっ
てす1ヘリウムから隔てられたNaAlC1,液体電解
質と、液体電解質と接触状態にある活性カソード物質と
してのFe/FeCl2とを有した。The circuit illustrated in FIG.
Six accumulators with an open circuit voltage of 6 µm were tested using a nominally 2-equally interconnected battery bank. Each cell consists of a molten thorium anno-1'', a heta-alumina separator whose internal resistance is temperature sensitive, NaAlC1 separated from the helium by this separator, a liquid electrolyte, and an active material in contact with the liquid electrolyte. Fe/FeCl2 as cathode material.
上記6個の電池の充放電を、本発明の方法を用いずに数
サイクル実施した。約12−15Vの電位か電池列に掛
かるようにして6個の電池に共通の充電電流を流し、直
列に接続されたこれらの電池を充電したところ、このよ
うな場合に一般的であるように幾つかの電池は電池の充
電度に差を生じる互いに異なる内部抵抗を示した。The six batteries described above were charged and discharged for several cycles without using the method of the present invention. When we charged these batteries connected in series by applying a common charging current to the six batteries with a potential of about 12-15V applied to the battery string, we found that, as is common in such cases, Some of the cells exhibited different internal resistances which caused differences in the degree of charge of the cells.
第五の充電サイクルにおいて初めて本発明方法を適用し
、かつ第六の充電サイクルの間継続した。The method of the invention was applied for the first time in the fifth charging cycle and continued for the sixth charging cycle.
その際、第1図の保護回路を各電池に1個ずつ接続した
。第2図は、6個の電池の第六の充電サイクル並びに第
六の放電サイクルにおけるこれら6個の電池の電圧の、
バッテリ全体の容量(All)に関する変化を示すグラ
フである。この図から明らかなように、4個の電池は残
りの2個より先に完全に充電されたく約25Atl後)
。しかし保護回路が、先に充電の完了した4個の電池の
電圧を、残りの2個の電池が(約40AH後の電池電圧
上昇が示すように)完全に充電されるまで2.75V未
満の安全な値に維持した。At that time, one protection circuit shown in FIG. 1 was connected to each battery. FIG. 2 shows the voltages of the six batteries at the sixth charging cycle as well as the sixth discharging cycle of the six batteries.
It is a graph showing changes in the capacity (All) of the entire battery. As can be seen from this figure, the four batteries are fully charged before the remaining two (after about 25 Atl).
. However, a protection circuit keeps the voltage of the four previously charged batteries below 2.75V until the remaining two batteries are fully charged (as indicated by the battery voltage rise after about 40 AH). maintained at a safe value.
本発明の方法を更に第七及び第への充電ザイクルにも適
用した。第3図に、第への充電サイクルを第への放電ザ
・fクルと共に示す。第3図からは、本発明方法による
充電サイクルを数回実施した後6個の電池が実質的に互
いにより類似した充電特性を示し、個々の電池の充電特
性が同しである理想の場合に近(=1いたという驚くべ
き利点が明らかとなる。差は、いずれにせよ約3 s
A Hflcにしか現れない(第2図の約25 A I
fと比戟されたい)。更に、バッテリ容量は第六の放電
ザイクルから第への放電サイクルまて著しく改善された
。バッテリは完全に放電し、また放電電圧が9vに低下
すると再充電を必要とするく第4図参照)ことから、第
六の放電サイクルては約33八11が放電され、第への
放電サイクルでは約40Δ11が放電された。The method of the invention was further applied to the seventh and seventh charging cycles. FIG. 3 shows the charging cycle for the first battery along with the discharge cycle for the second battery. From FIG. 3 it can be seen that after several charging cycles according to the method of the invention, the six batteries exhibit charging characteristics that are substantially more similar to each other than in the ideal case where the charging characteristics of the individual cells are the same. The surprising advantage of being close to (=1) becomes clear.
Appears only in A Hflc (approximately 25 A I in Figure 2)
be compared to f). Furthermore, the battery capacity improved significantly from the sixth discharge cycle to the sixth discharge cycle. Since the battery is fully discharged and requires recharging when the discharge voltage drops to 9V (see Figure 4), approximately 33811 times are discharged during the sixth discharge cycle, and the battery is discharged until the second discharge cycle. In this case, approximately 40Δ11 was discharged.
第4図は、第四の放電サイクル(本発明方法適用前)、
第への放電サイクル、並びに第六及び第への充電サイク
ルにおけるバッテリ全体の電圧の、バッテリ全体の容量
に関する変化を示す第2図及び第3図に類似のグラフで
ある。このグラフからは、バッテリ全体についてみた時
、本発明の方法及びデバイスを用いることによって充電
電圧が低くなり、容量は実質的に増加し、また個々の電
池が過充電されるのを防止することに固有な、電池の損
傷の低減並びに電池寿命の延長という利点が得られるこ
とが明らかである。FIG. 4 shows the fourth discharge cycle (before application of the method of the present invention);
3 is a graph similar to FIGS. 2 and 3 showing the change in overall battery voltage with respect to overall battery capacity during the first discharge cycle and the sixth and sixth charge cycles; FIG. This graph shows that for the battery as a whole, the method and device of the present invention reduces the charging voltage, substantially increases the capacity, and prevents individual batteries from being overcharged. It is clear that the inherent advantages of reduced battery damage and increased battery life are obtained.
最後に、本明細書では本発明を互いに直列に接続された
複数個の電池に関して説明したが、本発明は互いに直列
/並列に接続された複数個の電池にも等しく適用され、
即ち例えば複数個のバッテリかバッテリ充電器の端子間
に互いに並列に接続され、これらのバッテリが一度に充
電される場合にも用いられると了解される。更に、本発
明による保護回路は、単一の電池をその容量一杯まで細
流充電するのにも使用され得ると了解される。Finally, although the invention has been described herein with respect to a plurality of batteries connected in series with each other, the invention applies equally to a plurality of batteries connected in series/parallel with each other;
That is, it is understood that it can also be used, for example, when a plurality of batteries are connected in parallel to each other between the terminals of a battery charger and these batteries are charged at once. Furthermore, it is understood that the protection circuit according to the invention can also be used to trickle charge a single battery to its full capacity.
第1図は本発明にJ:る保護デバイスの一部を成す保護
回路の回路図、第2図は本発明方法によって充電される
電池列に関して、選択された充電/放電ザ、イクルにお
りる電池電圧のバッテリ容量に関する変化を示すグラフ
、第3図は第2図の充電/放電サイクルより後の充電/
放電サイクルにお()る上記電圧変化を示す第2図に類
似のグラフ、第4図は電池列全体に関して、選択された
充電サイクルあるいは放電ザイクルにおける電圧変化を
示ず第2図及び第3図に類似のグラフである。
2.3.4.7.1.1・・・・・入力端子、6・・・
・・・出力、1o・・・・・・保護回路、14.16・
・・・・・出力端子、18,20,24,26゜28.
36,42,48.52・・・・・ライン、22−・・
山比穀層、3o・・・・・可変抵抗器、32,34.5
0・・ 固定抵抗器、38・・山ツェナダイオード、4
0・・・・・限流抵抗器、44・・・・スイッヂングト
う〉′ジスタ、46・・・・バイアス抵抗器、54・・
・・・・バワートランンスク、56・・・・・指示用j
・ランジスタ、58・−発光ダイオード、6o・・・・
・・抵抗器、62・・・・・保護グイオート。
代理人弁理士 中 村 至FIG. 1 is a circuit diagram of a protection circuit forming part of a protection device according to the invention; FIG. A graph showing the change in battery voltage with respect to battery capacity.
A graph similar to FIG. 2 showing the voltage changes over a discharge cycle; FIG. 4 is a graph similar to FIG. This is a graph similar to . 2.3.4.7.1.1... Input terminal, 6...
...Output, 1o...Protection circuit, 14.16.
...Output terminal, 18, 20, 24, 26° 28.
36, 42, 48.52... line, 22-...
Yamabi grain layer, 3o...variable resistor, 32, 34.5
0...Fixed resistor, 38...Mountain Zener diode, 4
0... Current limiting resistor, 44... Switching resistor, 46... Bias resistor, 54...
...Power trunk, 56...For instructions
・Lansistor, 58・-Light emitting diode, 6o・・・・
...Resistor, 62...Protection guide. Representative Patent Attorney Itaru Nakamura
Claims (15)
る方法であって、前記電池に充電電力を供給し、該電池
に充電電流を流すことと、電池の電位が所定値にまで上
昇したら充電を中断することとを含み、更に電池の電位
をモニタすること、及び電池の電位が所定電圧に上昇し
たら電池に並列な低インピーダンス電路を確立し、この
低インピーダンス電路を電池に付与される充電電流の側
路とすることを含む充電方法。(1) A method for charging at least one electrochemical secondary storage battery, comprising: supplying charging power to the battery, passing a charging current through the battery, and when the potential of the battery rises to a predetermined value; suspending charging, further monitoring the potential of the battery, and establishing a low impedance path in parallel to the battery when the potential of the battery rises to a predetermined voltage; A charging method including shunting current.
知電圧を基準電圧と比較することによって行なわれるこ
とを特徴とする特許請求の範囲第1項に記載の方法。(2) The method according to claim 1, wherein the monitoring of the battery potential is performed by sensing the battery voltage and comparing the detected voltage with a reference voltage.
れた電圧比較器によって比較が行なわれることを特徴と
する特許請求の範囲第2項に記載の方法。3. The method of claim 2, wherein the comparison is performed by a voltage comparator configured to compare the battery voltage with a precision voltage reference value.
、それによって電池に並列な低インピーダンス電路を確
立するように構成されていることを特徴とする特許請求
の範囲第3項に記載の方法。(4) The method of claim 3, wherein the output signal from the comparator is configured to activate the switching means, thereby establishing a low impedance path in parallel to the battery. .
行なわれ、各周期において低インピーダンス電路が確立
されている期間は電池の電位に従属して制御可能に変更
されることを特徴とする特許請求の範囲第1項に記載の
方法。(5) A patent claim characterized in that the establishment and disappearance of the low-impedance circuit are performed periodically, and the period during which the low-impedance circuit is established in each cycle is controllably changed depending on the potential of the battery. The method described in item 1 of the scope.
電され、低インピーダンス電路は個々の電池毎に当該電
池の充電状態に従属して選択的に確立されることを特徴
とする特許請求の範囲第1項に記載の方法。(6) A patent claim characterized in that a plurality of batteries connected in series are charged simultaneously, and a low impedance circuit is selectively established for each individual battery depending on the state of charge of the battery. The method described in Scope No. 1.
保護デバイスであって、電池に並列に接続され得る少な
くとも1個の保護回路を含み、この保護回路は電池の電
圧をモニタするべく動作し得るモニタ手段と、このモニ
タ手段に対して応答性であり、かつモニタされる電圧が
所定値まで上昇すると低インピーダンス電路を確立して
電池に付与される充電電流の側路とするべく動作し得る
切り替え手段とを含む保護デバイス。(7) A protection device used for charging at least one secondary storage battery, including at least one protection circuit that can be connected in parallel to the battery, the protection circuit operating to monitor the voltage of the battery. monitoring means responsive to the monitoring means and operable to establish a low impedance path to bypass charging current applied to the battery when the monitored voltage rises to a predetermined value; and a protective device comprising switching means.
、比較器に基準電圧を供給する精密電圧基準値発生器と
、電池に並列に接続され得、かつ電池の電圧に比例する
入力信号を比較器に与える分圧回路とを含むことを特徴
とする特許請求の範囲第7項に記載のデバイス。(8) a comparator, the monitoring means of which may be connected in parallel to the battery, a precision voltage reference value generator supplying a reference voltage to the comparator, and an input signal which may be connected in parallel to the battery and is proportional to the voltage of the battery; 8. A device according to claim 7, characterized in that it includes a voltage divider circuit that provides a comparator with .
力信号を発生する可変抵抗器を含むことを特徴とする特
許請求の範囲第8項に記載のデバイス。9. The device of claim 8, wherein the voltage divider includes a variable resistor that produces an adjustable variable input signal proportional to the voltage of the battery.
び消失を周期的に実現するべく制御され、その際前記確
立及び消失の期間はモニタされた電池電圧の所定値との
関係に従属して各周期毎に様々であることを特徴とする
特許請求の範囲第7項に記載のデバイス。(10) The switching means is controlled to periodically realize the establishment and disappearance of the low impedance circuit, the period of said establishment and disappearance being dependent on the relationship with a predetermined value of the monitored battery voltage for each period. 8. Device according to claim 7, characterized in that the device varies from one to the other.
イッチングトランジスタと、このスイッチングトランジ
スタに対して応答性であり、かつ低インピーダンス電路
の一部分を構成するパワートランジスタとを含むことを
特徴とする特許請求の範囲第7項に記載のデバイス。(11) A patent characterized in that the switching means includes a switching transistor responsive to a comparator and a power transistor responsive to the switching transistor and forming a part of a low impedance circuit. A device according to claim 7.
得る指示手段を更に含むことを特徴とする特許請求の範
囲第7項に記載のデバイス。12. The device of claim 7, further comprising indicating means operable to indicate that the battery is being charged.
とによって惹起される損傷を最小限に留どめるべく動作
し得る逆バイアスを掛けられた保護ダイオードを更に含
むことを特徴とする特許請求の範囲第7項に記載のデバ
イス。(13) A patent claim further comprising a reverse-biased protection diode operable to minimize damage caused by connecting the protection device with the battery in the wrong polarity. The device according to scope 7.
電気化学的蓄電池を含むバッテリを充電するバッテリ充
電システムであって、互いに直列に接続された複数個の
前記電池によって構成されたバッテリと、各電池に並列
に接続された特許請求の範囲第7項に記載の保護デバイ
スとを含むバッテリ充電システム。(14) A battery charging system for charging a battery comprising a plurality of rechargeable electrochemical storage batteries connected in series with each other, the battery comprising a plurality of said batteries connected in series with each other; , and a protection device according to claim 7 connected in parallel to each battery.
テリ充電器を更に含み、保護デバイスはこのバッテリ充
電器と一体に形成されていることを特徴とする特許請求
の範囲第14項に記載のシステム。(15) The protection device is integrally formed with the battery charger, further comprising a battery charger operable to supply charging current to the battery. system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA86/3245 | 1986-04-30 | ||
ZA863245 | 1986-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62268325A true JPS62268325A (en) | 1987-11-20 |
Family
ID=25578385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62107900A Pending JPS62268325A (en) | 1986-04-30 | 1987-04-30 | Charging of electrochemical battery |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS62268325A (en) |
DE (1) | DE3714511A1 (en) |
GB (1) | GB2189951A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8812586D0 (en) * | 1988-05-27 | 1988-06-29 | Lilliwyte Sa | Electrochemical cell |
FR2639485A1 (en) * | 1988-11-23 | 1990-05-25 | Calan Guy De | Electronic device for recharging a cadmium-nickel accumulator (nickel-cadmium battery) |
EP0539640A1 (en) * | 1991-10-30 | 1993-05-05 | Texas Instruments Limited | Improvements in or relating to batteries |
GB2444658B (en) * | 2004-12-17 | 2008-09-03 | Sigmatel Inc | System, method and semiconductor device for charging a secondary battery |
US7501794B2 (en) | 2004-12-17 | 2009-03-10 | Sigmatel, Inc. | System, method and semiconductor device for charging a secondary battery |
GB2444659B (en) * | 2004-12-17 | 2008-09-03 | Sigmatel Inc | System, method and semiconductor device for charging a secondary battery |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3148322A (en) * | 1961-03-13 | 1964-09-08 | Mallory & Co Inc P R | Rechargeable battery with means to prevent overcharging |
US3237078A (en) * | 1963-03-14 | 1966-02-22 | Mallory & Co Inc P R | Rechargeable batteries and regulated charging means therefor |
US3393355A (en) * | 1965-08-09 | 1968-07-16 | Mallory & Co Inc P R | Semiconductor charge control through thermal isolation of semiconductor and cell |
US3496442A (en) * | 1968-04-10 | 1970-02-17 | Michael D Carlisle | Automatic battery charger |
GB1338256A (en) * | 1971-04-19 | 1973-11-21 | Emi Ltd | Battery powered circuits |
US4303877A (en) * | 1978-05-05 | 1981-12-01 | Brown, Boveri & Cie Aktiengesellschaft | Circuit for protecting storage cells |
US4238721A (en) * | 1979-02-06 | 1980-12-09 | The United States Of America As Represented By The United States Department Of Energy | System and method for charging electrochemical cells in series |
DE2948700C2 (en) * | 1979-12-04 | 1983-10-20 | Brown, Boveri & Cie Ag, 6800 Mannheim | Circuit for securing memory cells |
-
1987
- 1987-04-23 GB GB08709639A patent/GB2189951A/en not_active Withdrawn
- 1987-04-30 JP JP62107900A patent/JPS62268325A/en active Pending
- 1987-04-30 DE DE19873714511 patent/DE3714511A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
GB8709639D0 (en) | 1987-05-28 |
DE3714511A1 (en) | 1987-11-05 |
GB2189951A (en) | 1987-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3917990A (en) | Battery charging control using temperature differential circuit | |
CN110710081B (en) | Precharge Resistors Protect Devices | |
US5963019A (en) | Battery pack with battery protection circuit | |
EP0440756B1 (en) | Battery assembly and charging system | |
US4061955A (en) | Multi-cell battery protection system | |
CN101459267B (en) | Battery pack | |
JP3665574B2 (en) | Charge / discharge control circuit and rechargeable power supply | |
JPH09140066A (en) | Secondary battery pack | |
US5886502A (en) | Cell balance circuit having rechargeable cells | |
JPH10341535A (en) | Battery pack, control thereof, and recording medium | |
JPH06276696A (en) | Over-discharge protective circuit of secondary battery | |
JPS62268325A (en) | Charging of electrochemical battery | |
JPH10312832A (en) | Charge control device | |
US5280230A (en) | Automatic nickel cadmium battery cycler | |
JP3249261B2 (en) | Battery pack | |
JP7215657B2 (en) | Parallel multipack system output control device and method | |
JPH11332116A (en) | Charging/discharging control circuit and charging-type power supply device | |
US20070063673A1 (en) | Method and device for equalizing the float voltage of a battery cell | |
JP2000356656A (en) | Terminal voltage detector for battery | |
JP2001339867A (en) | Electric apparatus with built-in battery and motor | |
JP3177405B2 (en) | Secondary battery charge / discharge control method and device | |
JPS61277328A (en) | Two-terminal type charging method and apparatus | |
JPH05299123A (en) | Short-circuit protective circuit of rechargeable secondary battery pack with remaining capacity display function | |
JP2004080949A (en) | Battery power supply device and battery voltage detecting method | |
JPH10304593A (en) | Charging method and charging equipment of battery pack |