JPS62268121A - Electrolyte for electrolytic capacitor - Google Patents
Electrolyte for electrolytic capacitorInfo
- Publication number
- JPS62268121A JPS62268121A JP11199886A JP11199886A JPS62268121A JP S62268121 A JPS62268121 A JP S62268121A JP 11199886 A JP11199886 A JP 11199886A JP 11199886 A JP11199886 A JP 11199886A JP S62268121 A JPS62268121 A JP S62268121A
- Authority
- JP
- Japan
- Prior art keywords
- polyethylene glycol
- generation voltage
- ethylene glycol
- spark generation
- electrolytic capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Primary Cells (AREA)
- Glass Compositions (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は電解コンデンサ用電解液に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an electrolytic solution for electrolytic capacitors.
(従来の技術)
アル°ミ等の電解コンデンサに用いられる電解液は、通
常、エチレングリコール主溶媒とし、これに各種の溶質
や添加剤を加えた組成となっている。(Prior Art) The electrolytic solution used in electrolytic capacitors made of aluminum or the like usually has a composition of ethylene glycol as a main solvent, to which various solutes and additives are added.
ところで、溶質として1,6−デカンジカルボン酸のよ
うな側鎖を持つジカルボン酸や、アゼライン酸やセバシ
ン酸のようなメチレン基(−CH2)が7以上の直鎖ジ
カルボン酸を溶解した電解液は、火花電圧が400V以
上と高く、従来、中高圧用電解液として用いられている
。By the way, an electrolytic solution in which a dicarboxylic acid with a side chain such as 1,6-decanedicarboxylic acid or a linear dicarboxylic acid with 7 or more methylene groups (-CH2) such as azelaic acid and sebacic acid is dissolved as a solute is , has a high spark voltage of 400 V or more, and has conventionally been used as a medium-high voltage electrolyte.
(発明が解決しようとする問題点)
しかし、この電解液を用いたコンデンサは初期静電容量
が低く、また、高温負荷試験においても静電容量が低下
する欠点があった。(Problems to be Solved by the Invention) However, capacitors using this electrolyte have a low initial capacitance, and also have the drawback that the capacitance decreases even in high-temperature load tests.
本発明の目的は、以上の欠点を改良し、コンデンサの静
電容量特性を向上しうる電解コンデンサ用電解液を提供
するものである。An object of the present invention is to provide an electrolytic solution for an electrolytic capacitor that can improve the above-mentioned drawbacks and improve the capacitance characteristics of the capacitor.
(問題点を解決するための1段)
本発明は、上記の目的を達成するために、エチレングリ
コールを主溶媒とし、ジカルボン酸あるいはその塩類を
含む電解コンデンサ用電解液において、ポリエチレング
リコールを添加することを特徴とする電解コンデンサ用
電解液を提供するものである。(First Step to Solve the Problems) In order to achieve the above object, the present invention uses ethylene glycol as the main solvent and adds polyethylene glycol to an electrolyte solution for electrolytic capacitors containing dicarboxylic acid or its salts. The present invention provides an electrolytic solution for an electrolytic capacitor characterized by the following.
(作用)
本発明によれば、ポリエチレングリコールを添加してい
るために、その表面活性作用により電解液が電極箔に良
く接触し、それ故、コンデンサの初期容量特性の低下や
高温負荷試験による容量特性を改善しうる。(Function) According to the present invention, since polyethylene glycol is added, the electrolytic solution comes into good contact with the electrode foil due to its surface active action, which reduces the initial capacitance characteristics of the capacitor and the capacitance during high temperature load tests. Characteristics can be improved.
(実施例) 以下、本発明を実施例に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on examples.
溶媒としてエチレングリコールを用い、溶質として1.
6−デカンジカルボン酸、アゼライン酸アンモニウム、
セバシン酸アンモニウム等を用い、これにポリエチレン
グリコールを添加して電解液とする。Using ethylene glycol as a solvent, 1. as a solute.
6-decanedicarboxylic acid, ammonium azelate,
Ammonium sebacate or the like is used, and polyethylene glycol is added to it to form an electrolyte.
各組成の成分は次の通り重量比(vt%〕とする。The weight ratio (vt%) of the components of each composition is as follows.
実施例1:(比抵抗550Ωcs/ 30℃、火花発生
電圧470V)エチレングリコール
691.6−デカンジカルボン酸 1
028%アンモニア水 1ポリ
エチレングリコール(分子量400) 20実施例2:
(比抵抗600Ωon/30℃、火花発生電圧480V
)エチレングリコール 691.6
−デカンジカルボン1 1028%アンモ
ニア水 1ポリエチレングリコ
ール(分子ff1600) 20実施例3:(比抵抗
450Ωon/ 30℃、火花発生電圧450V)エチ
レングリコール 70アゼライン
酸アンモニウム 8純水
2
ポリエチレングリコール(分子ff1200) 20
実施例4:(比抵抗640Ωczt/ 30℃、火花発
生電圧465V)エチレングリコール
64セバシン酸アンモニウム
4純水 2
ポリエチレングリコール(分子ff1200) 30
実施例5:(比抵抗8500cm/30℃、火花発生電
圧500v)エチレングリコール
691.6−デカンジカルボンW1 10
28%アンモニア水 1ポリエ
チレングリコール(分子11000)20また、上記の
各実施例と比較するために次の組成成分からなる従来例
を用いる。Example 1: (Specific resistance 550Ωcs/30°C, spark generation voltage 470V) Ethylene glycol
691.6-decanedicarboxylic acid 1
028% ammonia water 1 Polyethylene glycol (molecular weight 400) 20 Example 2:
(Specific resistance 600Ωon/30℃, spark generation voltage 480V
) Ethylene glycol 691.6
-Decanedicarbone 1 1028% ammonia water 1 Polyethylene glycol (molecular ff 1600) 20 Example 3: (Specific resistance 450Ωon/30°C, spark generation voltage 450V) Ethylene glycol 70 Ammonium azelaate 8 Pure water
2 Polyethylene glycol (molecule ff1200) 20
Example 4: (Specific resistance 640Ωczt/30°C, spark generation voltage 465V) Ethylene glycol
64 Ammonium sebacate
4 Pure water 2 Polyethylene glycol (molecule ff1200) 30
Example 5: (Specific resistance 8500cm/30°C, spark generation voltage 500v) Ethylene glycol
691.6-Decanedicarbone W1 10
28% ammonia water 1 polyethylene glycol (molecule 11000) 20 Moreover, in order to compare with each of the above examples, a conventional example consisting of the following composition components is used.
従来例1:(比抵抗800Ωcs/ 30℃、火花発生
電圧460V)エチレングリコール
80ホウ酸アンモニウム 20従
来例2:(比抵抗500Ωc11/30℃、火花発生電
圧455V)エチレングリコール
891.6−デカンジカルボン酸 1028
%アンモニア水 1従来例3:(
比抵抗430Ωcys/ 30℃、火花発生電圧430
V)エチレングリコール 90アゼ
ライン酸アンモニウム 8純水
2
従来例4:(比抵抗580Ωcx/ 30℃、火花発生
電圧440V)エチレングリコール ′93
セバシン酸アンモニウム 5純水
2
以上の実施例1〜4、従来例1〜4の各電解液をコンデ
ンサ素子に含浸した定格350V、1000μFのアル
ミ電解コンデンサにつき、初期静電容量及び高温負荷状
!(温度90℃、110℃、時間1000Hr)時の静
電容量及びその変化率を測定したところ表の通りの結果
が得られた。Conventional example 1: (Resistivity 800Ωcs/30℃, spark generation voltage 460V) Ethylene glycol
80 Ammonium borate 20 Conventional example 2: (Specific resistance 500Ωc11/30°C, spark generation voltage 455V) Ethylene glycol
891.6-decanedicarboxylic acid 1028
% Ammonia water 1 Conventional example 3: (
Specific resistance 430Ωcys/30℃, spark generation voltage 430
V) Ethylene glycol 90 Ammonium azelate 8 Pure water
2 Conventional example 4: (Specific resistance 580Ωcx/30℃, spark generation voltage 440V) Ethylene glycol '93 Ammonium sebacate 5 Pure water
2 Initial capacitance and high-temperature load conditions for aluminum electrolytic capacitors with a rating of 350 V and 1000 μF in which the capacitor element is impregnated with each of the electrolytes of Examples 1 to 4 and Conventional Examples 1 to 4! When the capacitance and its rate of change were measured (at temperatures of 90° C. and 110° C., and for 1000 hours), the results shown in the table were obtained.
表
この表から明らかな通り、本発明によれば初期静電容量
はほぼ定格を満たし、また、高温負荷試験後の静電容0
も初期値に対する変化率が−0゜1〜0.4(%)で、
はぼ一定となっている。これに対し、従来例は従来例1
LJ、外は初期静電容量が定格よりも68〜80(μF
)低く、また高温負荷試験後の値が−13,3〜−23
,5(%)低下しており、特に従来例1では防爆弁が作
動した。Table As is clear from this table, according to the present invention, the initial capacitance almost satisfies the rating, and the capacitance after the high temperature load test is 0.
The rate of change from the initial value is -0°1 to 0.4 (%),
has become more or less constant. On the other hand, the conventional example is conventional example 1.
LJ, the initial capacitance is 68 to 80 (μF) higher than the rated value.
) is low, and the value after high temperature load test is -13,3 to -23
, 5 (%), and especially in Conventional Example 1, the explosion-proof valve was activated.
なお、エチレングリコールと、1.6−デカンジカルボ
ンH10wt%、28%アンモニア水1wt%、ポリエ
チレングリコールからなる電解液において、ポリエチレ
ングリコールの添加量を変化した場合の火花発生電圧及
び比抵抗を求めたところ各々第1図及び第2図に示す通
りの結果が得られた。第1図からは、ポリエチレングリ
コールを添加することにより火花発生電圧が上昇するこ
とがわかる。また、第2図からは、添加量が50%を越
えると急激に比抵抗が上昇するので、50%以下が好ま
しいことがわかる。In addition, in an electrolytic solution consisting of ethylene glycol, 10 wt% 1,6-decanedicarbone H, 1 wt% 28% aqueous ammonia, and polyethylene glycol, the spark generation voltage and specific resistance were determined when the amount of polyethylene glycol added was changed. The results shown in FIGS. 1 and 2 were obtained. From FIG. 1, it can be seen that the spark generation voltage increases by adding polyethylene glycol. Furthermore, from FIG. 2, it can be seen that when the amount added exceeds 50%, the resistivity increases rapidly, so it is preferable that the amount is 50% or less.
また、第3図に、エチレングリコール6gwt%、1.
6−デカンジカルボンM10wt%、28%アンモニア
水1wt%、ポリエチレングリコール20X#t%の測
成成分からなる電解液について、ポリエチレングリコー
ルの分子量を変化した場合の火花発生電圧を求めた結果
を示した。この図から明らかな通り、ポリエチレングリ
コールの分子量が大きくなるほど火花発生電圧が高くな
る。しかし、ポリエチレングリコールの分子量が100
0以上となると、常温で固体となるために1000未満
である方が好ましく、200未満では効果が低いので2
00以上が好ましい。In addition, FIG. 3 shows ethylene glycol 6gwt%, 1.
The results of calculating the spark generation voltage when the molecular weight of polyethylene glycol was changed for an electrolytic solution consisting of 10 wt % of 6-decanedicarbone M, 1 wt % of 28% aqueous ammonia, and 20 x #t % of polyethylene glycol are shown. As is clear from this figure, the greater the molecular weight of polyethylene glycol, the higher the spark generation voltage. However, the molecular weight of polyethylene glycol is 100
If it is 0 or more, it becomes solid at room temperature, so it is preferably less than 1000, and if it is less than 200, the effect is low, so 2
00 or more is preferable.
(発明の効果)
以上の通り、本発明によればポリエチレングリコールを
添加剤として加えているために、その表面活性作用によ
り、初期静電容量や高温負荷試験後の静電容量変化率を
改善でき、また、火花発生電圧の高い電解コンデンサ用
電解液が得られる。(Effects of the Invention) As described above, according to the present invention, since polyethylene glycol is added as an additive, the initial capacitance and the rate of capacitance change after a high temperature load test can be improved due to its surface active action. Furthermore, an electrolytic solution for electrolytic capacitors having a high spark generation voltage can be obtained.
第1図はポリエチレングリコールの添加量に対する火花
発生電圧のグラフ、第2図はポリエチレングリコールの
添加量に対する比抵抗のグラフ、第3図はポリエチレン
グリコールの分子量に対する火花発生電圧のグラフを示
す。
特許出願人 日立コンデンサ株式会社
層税バ惨東ΣFIG. 1 is a graph of spark generation voltage versus the amount of polyethylene glycol added, FIG. 2 is a graph of specific resistance versus the amount of polyethylene glycol added, and FIG. 3 is a graph of spark generation voltage versus the molecular weight of polyethylene glycol. Patent applicant: Hitachi Capacitor Co., Ltd.
Claims (3)
あるいはその塩類を含む電解コンデンサ用電解液におい
て、ポリエチレングリコールを添加することを特徴とす
る電解コンデンサ用電解液。(1) An electrolytic solution for an electrolytic capacitor that uses ethylene glycol as a main solvent and contains a dicarboxylic acid or a salt thereof, which is characterized in that polyethylene glycol is added thereto.
00である特許請求の範囲第1項記載の電解コンデンサ
用電解液。(2) The molecular weight of polyethylene glycol is 200-10
The electrolyte solution for an electrolytic capacitor according to claim 1, which is 00.
下である特許請求の範囲第1項記載の電解コンデンサ用
電解液。(3) The electrolytic solution for an electrolytic capacitor according to claim 1, wherein the amount of polyethylene glycol added is 50 wt% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11199886A JPS62268121A (en) | 1986-05-16 | 1986-05-16 | Electrolyte for electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11199886A JPS62268121A (en) | 1986-05-16 | 1986-05-16 | Electrolyte for electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62268121A true JPS62268121A (en) | 1987-11-20 |
JPH0376776B2 JPH0376776B2 (en) | 1991-12-06 |
Family
ID=14575386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11199886A Granted JPS62268121A (en) | 1986-05-16 | 1986-05-16 | Electrolyte for electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62268121A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6432617A (en) * | 1988-06-07 | 1989-02-02 | Shinei Tsushin Kogyo Kk | Electrolytic solution for driving electrolytic capacitor |
JPS6432616A (en) * | 1987-03-09 | 1989-02-02 | Shinei Tsushin Kogyo Kk | Electrolytic solution for driving electrolytic capacitor |
US5507966A (en) * | 1995-03-22 | 1996-04-16 | Boundary Technologies, Inc. | Electrolyte for an electrolytic capacitor |
US6690573B2 (en) | 2001-12-18 | 2004-02-10 | Matsushita Electric Industrial Co., Ltd. | Aluminum electrolytic capacitor and method for producing the same |
US7760488B2 (en) * | 2008-01-22 | 2010-07-20 | Avx Corporation | Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor |
US7760487B2 (en) | 2007-10-22 | 2010-07-20 | Avx Corporation | Doped ceramic powder for use in forming capacitor anodes |
US7768773B2 (en) | 2008-01-22 | 2010-08-03 | Avx Corporation | Sintered anode pellet etched with an organic acid for use in an electrolytic capacitor |
US7852615B2 (en) | 2008-01-22 | 2010-12-14 | Avx Corporation | Electrolytic capacitor anode treated with an organometallic compound |
WO2011099261A1 (en) * | 2010-02-15 | 2011-08-18 | パナソニック株式会社 | Electrolytic capacitor |
US8203827B2 (en) | 2009-02-20 | 2012-06-19 | Avx Corporation | Anode for a solid electrolytic capacitor containing a non-metallic surface treatment |
WO2017056447A1 (en) * | 2015-09-28 | 2017-04-06 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4529258B2 (en) * | 2000-09-01 | 2010-08-25 | 日油株式会社 | Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4914300A (en) * | 1972-03-20 | 1974-02-07 | ||
JPS49123447A (en) * | 1973-03-31 | 1974-11-26 |
-
1986
- 1986-05-16 JP JP11199886A patent/JPS62268121A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4914300A (en) * | 1972-03-20 | 1974-02-07 | ||
JPS49123447A (en) * | 1973-03-31 | 1974-11-26 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6432616A (en) * | 1987-03-09 | 1989-02-02 | Shinei Tsushin Kogyo Kk | Electrolytic solution for driving electrolytic capacitor |
JPS6432617A (en) * | 1988-06-07 | 1989-02-02 | Shinei Tsushin Kogyo Kk | Electrolytic solution for driving electrolytic capacitor |
US5507966A (en) * | 1995-03-22 | 1996-04-16 | Boundary Technologies, Inc. | Electrolyte for an electrolytic capacitor |
US6690573B2 (en) | 2001-12-18 | 2004-02-10 | Matsushita Electric Industrial Co., Ltd. | Aluminum electrolytic capacitor and method for producing the same |
US7760487B2 (en) | 2007-10-22 | 2010-07-20 | Avx Corporation | Doped ceramic powder for use in forming capacitor anodes |
US7760488B2 (en) * | 2008-01-22 | 2010-07-20 | Avx Corporation | Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor |
US7768773B2 (en) | 2008-01-22 | 2010-08-03 | Avx Corporation | Sintered anode pellet etched with an organic acid for use in an electrolytic capacitor |
US7852615B2 (en) | 2008-01-22 | 2010-12-14 | Avx Corporation | Electrolytic capacitor anode treated with an organometallic compound |
US8203827B2 (en) | 2009-02-20 | 2012-06-19 | Avx Corporation | Anode for a solid electrolytic capacitor containing a non-metallic surface treatment |
US9208954B2 (en) | 2010-02-15 | 2015-12-08 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor |
US9966200B2 (en) | 2010-02-15 | 2018-05-08 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor and manufacturing method therefor |
JP5810292B2 (en) * | 2010-02-15 | 2015-11-11 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
WO2011099261A1 (en) * | 2010-02-15 | 2011-08-18 | パナソニック株式会社 | Electrolytic capacitor |
US9595396B2 (en) | 2010-02-15 | 2017-03-14 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor and manufacturing method therefor |
US11398358B2 (en) | 2010-02-15 | 2022-07-26 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor and manufacturing method therefor |
JP2017147466A (en) * | 2010-02-15 | 2017-08-24 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor manufacturing method and electrolytic capacitor |
JPWO2011099261A1 (en) * | 2010-02-15 | 2013-06-13 | パナソニック株式会社 | Electrolytic capacitor |
US10679800B2 (en) | 2010-02-15 | 2020-06-09 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor and manufacturing method therefor |
US10559432B2 (en) | 2010-02-15 | 2020-02-11 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor and manufacturing method therefor |
CN110993343A (en) * | 2015-09-28 | 2020-04-10 | 松下知识产权经营株式会社 | Electrolytic capacitor |
US10535472B2 (en) | 2015-09-28 | 2020-01-14 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor |
US10937601B2 (en) | 2015-09-28 | 2021-03-02 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor |
WO2017056447A1 (en) * | 2015-09-28 | 2017-04-06 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
US11508530B2 (en) | 2015-09-28 | 2022-11-22 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor |
Also Published As
Publication number | Publication date |
---|---|
JPH0376776B2 (en) | 1991-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62268121A (en) | Electrolyte for electrolytic capacitor | |
JPS6032345B2 (en) | Electrolyte for electrolytic capacitors | |
JP2529300B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP2921363B2 (en) | Electrolyte for electrolytic capacitors | |
US3518499A (en) | Electrolyte for electrolytic capacitors | |
JP3285991B2 (en) | Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same | |
JP2731250B2 (en) | Electrolyte for driving electrolytic capacitors | |
JP3749913B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JPH03225908A (en) | Electrolyte for electrolytic capacitor | |
JP3169625B2 (en) | Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same | |
JPH0775214B2 (en) | Aluminum electrolytic capacitor electrolyte | |
KR0152001B1 (en) | Electrolyte for a low-pressure electrolytic condenser | |
JPS62224919A (en) | Electrolyte for electrolytic capacitor | |
JPS6263416A (en) | Electrolyte for driving aluminum electrolytic condenser | |
JP3391196B2 (en) | Electrolyte for electrolytic capacitors | |
JPS629617A (en) | Electrolytic liquid for driving electrolytic capacitor | |
JPS6265406A (en) | Electrolyte for driving aluminum electrolytic condenser | |
JPH0722085B2 (en) | Electrolytic solution for driving aluminum electrolytic capacitors | |
JPS6366915A (en) | Electrolyte for driving aluminum electrolytic capacitor | |
JPH01106414A (en) | Electrolyte for driving electrolytic capacitor | |
JPH01103819A (en) | Electrolyte for driving electrolytic capacitor | |
JPS586298B2 (en) | Electrolyte for driving aluminum electrolytic capacitors | |
JPH04290418A (en) | Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the electrolyte | |
JPS6266615A (en) | Electrolyte for driving aluminum electrolytic condenser | |
JPS6269607A (en) | Electrolyte for driving aluminum electrolytic condenser |