[go: up one dir, main page]

JPS62266470A - Peak value detection circuit - Google Patents

Peak value detection circuit

Info

Publication number
JPS62266470A
JPS62266470A JP10958986A JP10958986A JPS62266470A JP S62266470 A JPS62266470 A JP S62266470A JP 10958986 A JP10958986 A JP 10958986A JP 10958986 A JP10958986 A JP 10958986A JP S62266470 A JPS62266470 A JP S62266470A
Authority
JP
Japan
Prior art keywords
diodes
peak value
value detection
diode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10958986A
Other languages
Japanese (ja)
Other versions
JPH0690237B2 (en
Inventor
Masahiro Goto
眞宏 後藤
Seigo Naito
内藤 清吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP61109589A priority Critical patent/JPH0690237B2/en
Publication of JPS62266470A publication Critical patent/JPS62266470A/en
Publication of JPH0690237B2 publication Critical patent/JPH0690237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To eliminate the dependence on temperature of a peak value detection output voltage, by connecting a peak value detection diode and a temperature compensation diode of the same type in series to an output terminal of a peak value detection circuit in the polarity opposite to each other. CONSTITUTION:Diodes D1 and D2 for detecting peak values and diodes D3 and D4 for compensating temperature of the same type are connected in series to an output terminal of a peak value detection circuit which applies a fixed DC bias current to the diodes D1 and D2 for detecting peak values to detect a peak value of an input signal and an output terminal 2 is set on the non- connection side of the diodes D3 and D4 for compensating temperature. When a DC bias current is applied to the diodes D3 and D4 for compensating temperature with the amount thereof the same as that of the diodes D1 and D2 for detecting peak values, the forward voltages of these diodes will be equal as these diodes are the same in the type. When the forward voltage of these diodes come equal, they cancel one another since the diodes D1 and D2 and the diodes D3 and D4 are connected in series in the polarity opposite to each other. Thus, the forward voltages of the diodes having dependence on temperature are removed from a voltage developing at an output terminal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はピーク値検出回路に係り、特にピーク値検出用
ダイオードの温度特性を改善したものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a peak value detection circuit, and particularly to a peak value detection diode with improved temperature characteristics.

[従来の技術] 第4図は良く知られている従来のクランプ形ピーク値検
出回路である。この回路から得られるピーク1偵検出出
力電圧■0は、 Vo =VinDD−(VrDI +VFO2)となる
。但し、VinDDは入力信号のピーク対ピーク電圧、
VFDl 、 VFD2はピーク値検出用ダイオードD
+ 、D2の順方向電圧である。
[Prior Art] FIG. 4 shows a well-known conventional clamp type peak value detection circuit. The peak detection output voltage 0 obtained from this circuit is Vo = VinDD - (VrDI + VFO2). However, VinDD is the peak-to-peak voltage of the input signal,
VFDl, VFD2 are peak value detection diodes D
+ is the forward voltage of D2.

マタ、VFDI 、 VFD2は、 と表わせる。Mata, VFDI, VFD2, It can be expressed as

ここで、に :ボルツマン定数(1,38xlo−’J
/K) q :電子の電荷(1,f3x10  C)T :温度
(K> IO=ダイオードD+ 、D2の逆方向飽和電流(A)
(温度依存性あ り) 11 :ダイオードD+ 、D2に流れる電流(A> 上式から分るようにVFDI 、 VFD2は温度依存
性を有する。したがって、出力電圧VOはV FDI+
 V FD2の温度依存性と同じ温度依存性を持つ。
Here, : Boltzmann constant (1,38xlo-'J
/K) q: Electron charge (1, f3x10 C) T: Temperature (K> IO = diode D+, reverse saturation current of D2 (A)
(Temperature dependence) 11: Current flowing through diodes D+ and D2 (A> As can be seen from the above equation, VFDI and VFD2 have temperature dependence. Therefore, the output voltage VO is V FDI+
It has the same temperature dependence as VFD2.

このようにピーク値出力電圧VOに温度依存性があると
、入力信号振幅を検出する場合に温度変化による誤差を
生じる。したがって、従来のピーク値検出回路を利用し
て自動利19調整(AGC)を行う場合、粘度の高いA
GCができない。
If the peak value output voltage VO has temperature dependence in this way, an error due to temperature change will occur when detecting the input signal amplitude. Therefore, when performing automatic gain adjustment (AGC) using a conventional peak value detection circuit,
GC is not possible.

[発明が解決しようとする問題点1 上記したように、温度依存性を有するピーク値検出用ダ
イオードの順方向電圧を出力電圧の要素に持つ従来のピ
ーク値検出回路では、温度変化により誤差を生じるため
正しい入力信号振幅を検出できないという問題点があっ
た。
[Problem to be Solved by the Invention 1] As mentioned above, in the conventional peak value detection circuit in which the forward voltage of the peak value detection diode, which has temperature dependence, is an element of the output voltage, errors occur due to temperature changes. Therefore, there was a problem that the correct input signal amplitude could not be detected.

したがって本発明の目的は、ピーク1M検出出力電圧に
湿度依存性の無いピーク値検出回路を提供することであ
る。
Therefore, an object of the present invention is to provide a peak value detection circuit in which the peak 1M detection output voltage does not depend on humidity.

[問題点を解決するための手段] 本発明のピーク値検出回路は、ピーク値検出用ダイオー
ドに一定の直流バイアス電流を加えて入力信号のピーク
値を検出するピーク値検出回路の出力端子に、ピーク値
検出用ダイオードと同種の温度補償用ダイオードを極性
を逆す向にして直列接続する。そして、温度補償用ダイ
オードの非接続側を回路の出力端子とすると共に、温度
補償用ダイオードにピーク値検出用ダイオードと同じ量
のUWバイアス電流を加えるようにしたものである。
[Means for Solving the Problems] The peak value detection circuit of the present invention detects the peak value of an input signal by applying a constant DC bias current to a peak value detection diode. A temperature compensation diode of the same type as the peak value detection diode is connected in series with the polarity reversed. The non-connected side of the temperature compensation diode is used as the output terminal of the circuit, and the same amount of UW bias current as that of the peak value detection diode is applied to the temperature compensation diode.

[作 用1 ピーク値検出用ダイオードと渇瓜補噴用ダイオードに同
じ昂の直流バイアス電流が流れると、各ダイオードは同
種なのでこれらの順方向電圧は等しくなる。また、ピー
ク値検出用ダイオードと温度補償用ダイオードとは極性
を逆方向にして直列接続されているため、順方向電圧が
等しくなると、これらがHいに打ち消されて出力端子に
現われる出力電圧から、温度依存性を有するダイオード
の順方向電圧が除かれる。
[Function 1] When the same direct current bias current flows through the peak value detection diode and the dehydration auxiliary injection diode, the forward voltages of these diodes become equal because each diode is of the same type. Also, since the peak value detection diode and the temperature compensation diode are connected in series with opposite polarities, when the forward voltages become equal, they are canceled out and the output voltage appearing at the output terminal becomes The forward voltage of the diode, which is temperature dependent, is eliminated.

[実施例] 本発明の実施例を第1図〜第3図に基づいて説明すれば
以下の通りである。
[Example] An example of the present invention will be described below based on FIGS. 1 to 3.

第1図は本発明のピーク値検出回路の原理図を示す。FIG. 1 shows a principle diagram of the peak value detection circuit of the present invention.

ピーク値検出回路の前段は従来と全く同一構成の一種の
18電圧整流回路であり、極性を同方向にして直列接続
すると共に、一定の直流バイアス電流を加える1組のピ
ーク値検出用ダイオードD+ 。
The preceding stage of the peak value detection circuit is a type of 18-voltage rectifier circuit with exactly the same configuration as the conventional one, with a pair of peak value detection diodes D+ connected in series with the same polarity and applying a constant DC bias current.

D2の直列接続点に、信号入力端子1に入力した入力信
号を直流成分カット用コンデンサC1を介して供給し、
一方のピーク値検出用ダイオードD2の非接続側出力端
子(カソード)から倍電圧を発生させ、これをピーク保
持用コンデンサC2に保持するように構成されている。
The input signal input to the signal input terminal 1 is supplied to the series connection point of D2 via the DC component cutting capacitor C1,
A voltage doubler is generated from the non-connection side output terminal (cathode) of one peak value detection diode D2, and is held in the peak holding capacitor C2.

このように構成された前段回路の出力端子に、上記した
1!lのピーク値検出用ダイオードD+ 。
The above-mentioned 1! diode D+ for detecting the peak value of l.

D2の順方向電圧を打ち消すために、一定の直流バイア
ス電流を加える1組の温度補に用ダイオードD3 、D
4から成る後段回路が接続されている。
In order to cancel the forward voltage of D2, a set of temperature compensation diodes D3 and D are added that apply a constant DC bias current.
A post-stage circuit consisting of 4 is connected.

この後段回路を構成する1絹の温度補償用ダイオードD
J、D4は11]のピーク値検出用ダイオードD+ 、
D2と同種、即ち同一の特性で極性を同方向にして」!
°【列接続されており、これを111のピーク値検出用
ダイオードD+ 、D2と極性を逆方向にして直列接続
させ(6りる。即ち、各組の同一極性の電極(ここでは
カソード)を互いに向い合わせて共通に接続しである。
One piece of temperature compensation diode D that constitutes this latter stage circuit
J, D4 is 11] peak value detection diode D+,
It is the same type as D2, that is, it has the same characteristics and the polarity is in the same direction.''
°[This is connected in series with the peak value detection diodes D+ and D2 of 111 with the polarity reversed (6 R). In other words, each set of electrodes (cathode in this case) of the same polarity is They face each other and are commonly connected.

ぞして、後段回路の出力となる1組の温度補償用ダイオ
ードの非接続側端子(温度補償用ダイオードD4のアノ
ード)を回路のピーク1M検出出力電圧2とする。
Therefore, the non-connection side terminals (anodes of the temperature compensation diodes D4) of a set of temperature compensation diodes that serve as the output of the subsequent stage circuit are set as the peak 1M detection output voltage 2 of the circuit.

また、このピーク1訂検出出力端子2に直流電流源4を
接続することににって1組の温度補償用ダイオードD:
l 、Daに上記した一定の直流バイアス電流を加え、
1[1のピーク値検出用ダイオードD+ 、D2 と温
度補償用ダイオードD3 、D4との直列接続点に別な
直流電流源3を接続することによって1相の温度補噴用
ダイオードD3 、 D4に上記した一定の直流バイア
ス電流を加えている。
In addition, by connecting the DC current source 4 to this peak 1st correction detection output terminal 2, a set of temperature compensation diodes D:
Adding the above-mentioned constant DC bias current to l and Da,
By connecting another DC current source 3 to the series connection point of the peak value detection diodes D+, D2 of 1 [1] and the temperature compensation diodes D3, D4, the above-mentioned one-phase temperature compensation injection diodes D3, D4 are connected. A constant DC bias current is applied.

ここで、2つの直流電流源3.4の各電流値I+ 、I
2を、 11=2I2                   
 [1)なる関係に設定しである。このように設定する
とダイオード[)+ 、D2 、D3 、D4に流れる
電流はすべてI2に等しくなる。各ダイオードに流れる
電流がすべて等しくなると各ダイオードの順方向電圧も
等しくなり、 Vr =VFD1 =VF[12−VF[]3 =VF
D4となる。この関係は温度と無関係に成立する。
Here, each current value I+, I of the two DC current sources 3.4
2, 11=2I2
[1] The relationship is set as follows. With this setting, the currents flowing through the diodes [)+, D2, D3, and D4 are all equal to I2. When the currents flowing through each diode are all equal, the forward voltage of each diode is also equal, and Vr = VFD1 = VF[12-VF[]3 = VF
It becomes D4. This relationship holds true regardless of temperature.

したがって、(1)式が成立するときピーク値検出出力
端子2の出力電圧VOは、 Vo =Vinl)(1−(VFDl +VFD2 )
 +VFD3+ V FD4 =  V  1npp               
             (31となり、各組のダイ
オード01〜o4の順方向電圧は相互に打ち消され、温
度に依存しない出力電圧が得られる。その結果、これを
利用して例えばAGCを行う場合、AGCアンプ(光受
信器)を制御する△GC電圧の温度依存性を゛無くずこ
とができ、その精度を大幅に向上することが可能どなる
Therefore, when formula (1) holds true, the output voltage VO of the peak value detection output terminal 2 is Vo = Vinl) (1-(VFDl + VFD2)
+VFD3+VFD4=V1npp
(31, and the forward voltages of each set of diodes 01 to o4 cancel each other out, resulting in an output voltage that does not depend on temperature. As a result, when performing AGC using this, for example, the AGC amplifier (optical receiver) It is possible to eliminate the temperature dependence of the △GC voltage that controls the GC voltage, making it possible to significantly improve its accuracy.

第2図は、第1図の原理を具体化した第1の実施例を示
し、第1図の直流電流源3,4を抵抗R1と電圧v1の
直流電圧源5.抵抗R2と電圧2の直流電圧源6の組に
それぞれ置き換えたものである。
FIG. 2 shows a first embodiment embodying the principle of FIG. 1, in which the DC current sources 3 and 4 of FIG. 1 are replaced by a resistor R1 and a DC voltage source 5. In this case, the resistor R2 and the DC voltage source 6 of voltage 2 are each replaced.

ここで、抵抗R+ 、R2に流れる電流をそれぞれる電
流は 1+ −12 となり、ダイオードD3 、D4に流れる電流はとなる
ので、次の関係式が得られる。
Here, the currents flowing through the resistors R+ and R2 are 1+-12, and the currents flowing through the diodes D3 and D4 are as follows, so the following relational expression is obtained.

タタシ、VFDI =VFD2 、 VFD3 =VF
D4である。
Tatashi, VFDI = VFD2, VFD3 = VF
It is D4.

ここで、V+ 、 V2 >VFDI 、 VF口2.
VFD3゜■「04とすると、(4)式から が1うられる。
Here, V+, V2 > VFDI, VF port 2.
If VFD3゜■ is set to 04, then 1 can be obtained from equation (4).

ところで、VFDl =VFD2 =VF口3=VFD
4とするためには、 すなわち であるから、(5)式より とすればよい。
By the way, VFDl = VFD2 = VF port 3 = VFD
In order to obtain 4, it is necessary to use equation (5).

[F])式の条件を満足するように抵抗、直流電圧を設
定すれば、第1図に示した原理が成立し、温度依存性の
無いクランプ形ピーク値検出回路が得られる。
If the resistance and DC voltage are set so as to satisfy the conditions of the equation [F]), the principle shown in FIG. 1 is established, and a clamp type peak value detection circuit without temperature dependence can be obtained.

第3図は第2図の変形例を示し、第2図の抵抗R2にダ
イオードD5 、Daを直列接続したものである。
FIG. 3 shows a modification of FIG. 2, in which diodes D5 and Da are connected in series to the resistor R2 in FIG.

ここで、抵抗R+ 、R2に流れる電流をそれぞただし
、VFDl =VFD2 、 VFD3 =V「D4 
=V「05−VrD6であるから、(7)式ハとなる。
Here, the currents flowing through the resistors R+ and R2 are expressed as follows: VFDl = VFD2, VFD3 = V'D4
=V"05-VrD6, so Equation (7) is obtained.

ところで、V[Dl =VFD3 トスルタメニハ、+
81式より とすればよく、またこのとき であるから、 VI=V2              aaとすれば
、(9)式より R2=2R1on が1qられる。
By the way, V[Dl = VFD3 Tosultameniha, +
It is sufficient to use formula 81, and since this is the case, if VI=V2 aa, R2=2R1on can be calculated by 1q from formula (9).

このQG、iID式の条件を満足するように抵抗。Resist so that the conditions of this QG and iID formula are satisfied.

直流電圧を設定すれば、yQ=vinppとなり温度依
存性の無い出力電圧が本回路からも得られ、しかも、第
2図の場合と比較して、V+ 、V2>VFDI 、 
VrD2 、 VFD3 、 VFD4 トイうヨウな
近似を必要としないため、より精度が高い。
If the DC voltage is set, yQ=vinpp, and an output voltage with no temperature dependence can be obtained from this circuit. Moreover, compared to the case of FIG. 2, V+, V2>VFDI,
VrD2, VFD3, VFD4 They do not require fancy approximations, so they are more accurate.

[発明の効果コ 以上型するに本発明によれば、ピーク値検出用ダイオー
ドにこれと同秤の温度補償用ダイオードを逆方向に直列
接続し、これらのダイオードに同じ母の直流バイアス電
流を加えるように構成したことにより、各ダイオードの
順方向電圧が互いに打ち潤されてピーク値検出出力電圧
にダイオードに起因する温度依存性が無くなるため、温
度変化による誤差を生じない正確なビーク1直が1qら
れる。
[Effects of the Invention] To summarize, according to the present invention, a temperature compensation diode of the same scale is connected in series with the peak value detection diode in the opposite direction, and the same DC bias current is applied to these diodes. With this configuration, the forward voltages of each diode are compensated for by each other, and the peak value detection output voltage is free from temperature dependence caused by the diodes. Therefore, the accurate peak 1 shift without causing errors due to temperature changes can be made in 1q. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のピーク値検出回路の原理図、第2図は
同じく本発明の一実施例に係るピーク値検出回路の構成
図、第3図は同じく伯の実施例に係るピーク値検出回路
の構成図、第4図は従来例を示す回路構成図である。 図中、1は信号入力端子、2はピーク1直検出出力端子
、3.4は直流バイアス電源、D+ 、D2はピーク値
検出用ダイオード、D:l 、D4は温度補償用ダイオ
ードである。
FIG. 1 is a principle diagram of a peak value detection circuit according to the present invention, FIG. 2 is a configuration diagram of a peak value detection circuit according to an embodiment of the present invention, and FIG. 3 is a peak value detection circuit according to an embodiment of the present invention. FIG. 4 is a circuit diagram showing a conventional example. In the figure, 1 is a signal input terminal, 2 is a peak 1 direct detection output terminal, 3.4 is a DC bias power supply, D+ and D2 are peak value detection diodes, and D:l and D4 are temperature compensation diodes.

Claims (1)

【特許請求の範囲】[Claims] 一定の直流バイアス電流をピーク値検出用ダイオードに
加えて入力信号のピーク値を検出するピーク値検出回路
の出力端子に、上記ピーク値検出用ダイオードと同種の
温度補償用ダイオードを逆方向に直列接続し、上記温度
補償用ダイオードの非接続側を出力端子とすると共に該
温度補償用ダイオードに上記ピーク値検出用ダイオード
と同じ量の直流バイアス電流を加えるように構成したこ
とを特徴とするピーク値検出回路。
A temperature compensation diode of the same type as the above peak value detection diode is connected in series in the opposite direction to the output terminal of the peak value detection circuit that detects the peak value of the input signal by applying a constant DC bias current to the peak value detection diode. peak value detection characterized in that the non-connected side of the temperature compensation diode is configured as an output terminal and the same amount of DC bias current as the peak value detection diode is applied to the temperature compensation diode. circuit.
JP61109589A 1986-05-15 1986-05-15 Peak value detection circuit Expired - Lifetime JPH0690237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61109589A JPH0690237B2 (en) 1986-05-15 1986-05-15 Peak value detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61109589A JPH0690237B2 (en) 1986-05-15 1986-05-15 Peak value detection circuit

Publications (2)

Publication Number Publication Date
JPS62266470A true JPS62266470A (en) 1987-11-19
JPH0690237B2 JPH0690237B2 (en) 1994-11-14

Family

ID=14514092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61109589A Expired - Lifetime JPH0690237B2 (en) 1986-05-15 1986-05-15 Peak value detection circuit

Country Status (1)

Country Link
JP (1) JPH0690237B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212671U (en) * 1988-07-08 1990-01-26
JPH044282U (en) * 1990-04-27 1992-01-16
JP2020112484A (en) * 2019-01-15 2020-07-27 Tdk株式会社 Voltage detection circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48103078U (en) * 1972-03-02 1973-12-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48103078U (en) * 1972-03-02 1973-12-03

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212671U (en) * 1988-07-08 1990-01-26
JPH044282U (en) * 1990-04-27 1992-01-16
JP2020112484A (en) * 2019-01-15 2020-07-27 Tdk株式会社 Voltage detection circuit

Also Published As

Publication number Publication date
JPH0690237B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JPH0420238B2 (en)
AU599296B2 (en) Temperature stabilized rf detector
US5132609A (en) Circuit for measuring the level of an electrical signal and including offset correction means, and application thereof to amplifiers having automatic gain control
US4445054A (en) Full-wave rectifying circuit
JPS62266470A (en) Peak value detection circuit
US4314326A (en) Rectifying circuit with zero correction
EP0291345B1 (en) A temperature stabilized RF detector
JP4001685B2 (en) Load disconnection detector
JPS5947356B2 (en) Logarithmic conversion circuit for resistance change sensor
JPS6142239Y2 (en)
JPS6234283B2 (en)
JPS5847670B2 (en) Cairo
JPS58127134A (en) Detecting circuit for temperature
JP2000349561A (en) Rectifier circuit
JPS5830321Y2 (en) Detection circuit
JPS63138270A (en) Difference voltage detecting circuit
SU1286062A2 (en) Photodetector device
JPH0665994B2 (en) Peak value detection circuit
JPH0425767A (en) Temperature characteristic compensation device for semiconductor device
JPS61187415A (en) Photoelectric switch
JPS63265174A (en) Overcurrent detecting circuit
KR100227982B1 (en) Balancing Circuit for Position Control of Actuator
JPS6142191Y2 (en)
JPS6046452A (en) Humidity detecting circuit
JPH0254608A (en) Constant current circuit