JPS62263980A - Structural material preventing permeation of hydrogen - Google Patents
Structural material preventing permeation of hydrogenInfo
- Publication number
- JPS62263980A JPS62263980A JP61106722A JP10672286A JPS62263980A JP S62263980 A JPS62263980 A JP S62263980A JP 61106722 A JP61106722 A JP 61106722A JP 10672286 A JP10672286 A JP 10672286A JP S62263980 A JPS62263980 A JP S62263980A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- base material
- region
- isotopes
- permeation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 55
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 39
- 239000001257 hydrogen Substances 0.000 title claims abstract description 39
- 239000010935 stainless steel Substances 0.000 claims abstract description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 8
- 230000002265 prevention Effects 0.000 claims description 7
- 230000004927 fusion Effects 0.000 abstract description 7
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 abstract description 5
- 229910052722 tritium Inorganic materials 0.000 abstract description 5
- 238000009792 diffusion process Methods 0.000 abstract description 3
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 abstract 4
- 229910033181 TiB2 Inorganic materials 0.000 abstract 4
- 239000000498 cooling water Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は核融合炉の壁材等として有用な水素透過防止構
造材に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a hydrogen permeation prevention structural material useful as a wall material of a nuclear fusion reactor.
(従来の技術)
核融合炉では、拡散や電荷交換によりてプラズマから漏
出した水素同位体が上記プラズマを囲んでいる容器1例
えば、ステンレス鋼からなる第−壁に照射される。この
第−壁に照射されてその材料中に入り込んだ上記水素同
位体の大部分は、プラズマ側の材料表面に拡散して上記
プラズマ側に再放出され、或いは上記プラズマ中から飛
び出した中性子、または上記水素同位体やヘリウム等の
照射によって上記壁材料中に生じた格子欠陥に捕捉され
る。しかしながら、その一部は第一壁中を拡散して冷却
水側に透過する。この第−壁を透過して冷却水側に漏れ
る水素同位体がトリチウムの場曾、その冷却系機器の放
射能汚染を招@、・上記冷却水系機器の保守、補修の大
きな障害が発生する。したがって上記汚染・障害を防止
するためには、水素同位体の透過を防止−抑制しつる構
造材が要望されている。(Prior Art) In a nuclear fusion reactor, hydrogen isotopes leaked from plasma due to diffusion or charge exchange are irradiated onto a container 1 surrounding the plasma, for example, a third wall made of stainless steel. Most of the hydrogen isotopes that have been irradiated onto this third wall and entered the material are diffused to the surface of the material on the plasma side and re-emitted to the plasma side, or neutrons ejected from the plasma, or It is trapped in lattice defects generated in the wall material by irradiation with the hydrogen isotope, helium, or the like. However, some of it diffuses through the first wall and permeates to the cooling water side. Hydrogen isotopes that pass through this second wall and leak into the cooling water side are contaminated with tritium, causing radioactive contamination of the cooling system equipment, resulting in major problems in maintenance and repair of the cooling water system equipment. Therefore, in order to prevent the above-mentioned contamination and damage, there is a need for a structural material that prevents and suppresses the permeation of hydrogen isotopes.
上記の例のほか1例えば多目的高温ガス炉において、二
次側の水素ガスが一次側ヘリウムガス中に透過すると、
その水素ガスによって炉心が損傷を受ける恐れがあるた
め、熱交換器の伝熱壁材料として水素の透過を防止しつ
る材料が要望されている。In addition to the above example, 1. For example, in a multi-purpose high temperature gas furnace, when hydrogen gas on the secondary side permeates into helium gas on the primary side,
Since the reactor core may be damaged by the hydrogen gas, there is a need for a material that can prevent hydrogen from permeating as a heat transfer wall material for a heat exchanger.
しかしながら、水素同位体の透過を有効に抑制または防
止できる。核融合炉の壁材等としての構造材は未だ開発
されるに到っていない。However, hydrogen isotope permeation can be effectively suppressed or prevented. Structural materials such as wall materials for nuclear fusion reactors have not yet been developed.
(発明が解決しようとする問題点)
本発明は、上記要望を満足させるためになされたもので
、水素同位体の透過を効果的に防止または抑制できる水
素透過防止構造材を提供することを目的とする。(Problems to be Solved by the Invention) The present invention has been made to satisfy the above-mentioned needs, and its purpose is to provide a hydrogen permeation prevention structural material that can effectively prevent or suppress the permeation of hydrogen isotopes. shall be.
(問題点を解決するための手段)
本発明の水素透過防止構造材は、ベース材に、好ましく
は、ステンレス鋼から成るベース材にTl鳥濃度の高い
領域を形成したことを特徴とするものである。(Means for Solving the Problems) The hydrogen permeation prevention structural material of the present invention is characterized in that a region with a high Tl concentration is formed in a base material, preferably made of stainless steel. be.
(作用) ベース材VcTiBR高濃度領域を形成せしめると。(effect) When a base material VcTiBR high concentration region is formed.
プラズマ側からT i B、高濃度領域に拡散してきた
水素同位体はT i Bt高濃度領域に保持される。さ
らに中性子照射によって形成された格子欠陥によって水
素同位体は強く保持され、冷却水側に透過できなくなる
。Hydrogen isotopes that have diffused from the plasma side to the T i B high concentration region are retained in the T i Bt high concentration region. Furthermore, hydrogen isotopes are strongly retained due to lattice defects formed by neutron irradiation, making it impossible for them to pass through to the cooling water side.
(実施例) 以下図面を参照して本発明の実施例につ−て説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
第1図は実施例に係る水素透過防止構造材の模式的な構
造図であシ、lは核融合炉の壁材のベース材である。FIG. 1 is a schematic structural diagram of a hydrogen permeation prevention structural material according to an embodiment, and l is a base material of a wall material of a fusion reactor.
このベース材の材質は、本発明において特に限定されず
、核融合炉の構造材として用いることのできるものであ
ればいずれのものでもよい。例えば、ステンレス鋼、炭
素鋼、耐熱合金、アルミ合金、ニッケル合金、セラミッ
クなどがあるが、好ましくはステンレス鋼である。The material of this base material is not particularly limited in the present invention, and any material may be used as long as it can be used as a structural material of a fusion reactor. Examples include stainless steel, carbon steel, heat-resistant alloy, aluminum alloy, nickel alloy, ceramic, etc., and stainless steel is preferable.
また2はベース材lの内部に形成されたTiB。Further, 2 is TiB formed inside the base material 1.
高濃度領域である。TiB、高濃度領域2tf、TiB
。This is a high concentration area. TiB, high concentration region 2tf, TiB
.
濃度の分布を表す第2図(a)に示すようにベース材l
中に一つの層を成すようにしても%第2図(b)のヨウ
にベース材中に多数の層をなすようにしてもWc2図(
C)のようにベース全体に亘って均一に形成しても、さ
らに第2図(dlに示すように濃度勾配をつけてもよい
。As shown in Figure 2 (a), which shows the concentration distribution, the base material l
Even if one layer is formed in the base material, the result will be different from that in Figure 2 (b), even if many layers are formed in the base material (Figure 2 (b)).
It may be formed uniformly over the entire base as shown in C), or it may be formed with a concentration gradient as shown in FIG. 2 (dl).
本明細書において「TiB、高濃度領域」とは。In this specification, what is meant by "TiB, high concentration region"?
ベース材中を通過しようとする水素同位体を有効に保持
して水素同位体の透過を防止することのできる濃度のT
i B!を含有する領域を指し、ベース材質の種類、
上記した領域の形態などによってTiB、4度を適宜変
更することかできる。A concentration of T that can effectively retain hydrogen isotopes that are about to pass through the base material and prevent hydrogen isotopes from permeating.
iB! Refers to the area containing the type of base material,
TiB and 4 degrees can be changed as appropriate depending on the form of the region described above.
この発明の構造材は次のような作用をするものと考えら
れる。The structural material of the present invention is thought to have the following effects.
拡散や電荷交換によってプラズマ3から漏出した中性子
4および水素同位体5鉱、第1図に示すように、壁のベ
ース材1を照射する。大部外はプラズマ1lliI/c
再放出されるが、一部は透過しようとするが、高濃度領
域のTiB、が水素同位体をトラップし、水素透過を防
止する。As shown in FIG. 1, the base material 1 of the wall is irradiated with neutrons 4 and hydrogen isotopes 5 leaked from the plasma 3 due to diffusion and charge exchange. Mostly plasma 1lliI/c
Although it is re-released, some of it tries to permeate, but the high concentration region of TiB traps the hydrogen isotope and prevents hydrogen permeation.
第3図はTIB、にH+を照射した鴨合のTiB。Figure 3 shows Kamoai's TiB, which was irradiated with H+.
の水素保持率を示す。ステンレス鋼では照射した水素の
大半は表面から外部へ放出されるのに対しT i B、
では約500”C以下では大半が材料中に保持される。shows the hydrogen retention rate. In stainless steel, most of the irradiated hydrogen is released from the surface to the outside, whereas T i B,
At temperatures below about 500''C, most of the material is retained in the material.
すなわちT j B、ではステンレス鋼よシ水素保持力
が格段に大きい。従って、ベース材にTiB、高濃度領
域を形成せしめると、プラズマ側からTiB、高濃度領
域に拡散してきた水素同位体はTiB、高温度領域に保
持される。さらに中性子照射によって形成された格子欠
陥によって水素同位体は強く保持され冷却水側へ透過で
きなくなるという本発明の構造材の作用が実証される。That is, at T j B, the hydrogen retention capacity is much greater than that of stainless steel. Therefore, when a TiB high concentration region is formed in the base material, the hydrogen isotope that has diffused from the plasma side to the TiB high concentration region is retained in the TiB high temperature region. Furthermore, the effect of the structural material of the present invention is demonstrated in that hydrogen isotopes are strongly held by the lattice defects formed by neutron irradiation and cannot pass through to the cooling water side.
上記の水素同位体に関する特性は、おもに化学的性質に
基くものであるから、水素同位体である軽水X1重水素
、トリチウムの間での違すは#1とんどない。したがっ
て、単にトリチウムの透過防止のみならず重水素等の透
過防止にも利用することができる。The above characteristics regarding hydrogen isotopes are mainly based on chemical properties, so there is almost no difference between the hydrogen isotopes, light water, deuterium, and tritium. Therefore, it can be used not only to prevent the permeation of tritium but also to prevent the permeation of deuterium and the like.
また、核融合炉材料について説明したが1本発明の構造
材の作用が上述した通りであることから。Further, although the fusion reactor material has been explained, the effect of the structural material of the present invention is as described above.
前述した高温ガス炉の熱交換器伝熱壁等、水素同位体の
透過を防止するための材料としても本発明の構造材が働
くと考えられる。It is believed that the structural material of the present invention also works as a material for preventing the permeation of hydrogen isotopes, such as the heat exchanger heat transfer wall of the high temperature gas furnace mentioned above.
本発明による水素透過防止構造材によれば、トリチウム
等の水素同位体の透過を効果的に抑制することができる
。According to the hydrogen permeation prevention structural material according to the present invention, permeation of hydrogen isotopes such as tritium can be effectively suppressed.
第1図は本発明の実施例に係る水素透過防止構造材の構
造を説明するための略図、第2図はベース材に形成され
るTiB、$iの高い領域を示す図、第3図はTiB、
にイオン注入した水素の保持量と温度の関係を示す特性
図である。
l・・・ベース材、2・・・TiB、高濃度領域、3・
−・プラズマ、4・・・中性子、5・・・水素同位体。
代理人 弁理士 則 近 憲 佑
同 竹 花 喜久男
第 1 図
第 2 図FIG. 1 is a schematic diagram for explaining the structure of a hydrogen permeation prevention structural material according to an embodiment of the present invention, FIG. 2 is a diagram showing a region with high TiB and $i formed in the base material, and FIG. TiB,
FIG. 3 is a characteristic diagram showing the relationship between the amount of retained hydrogen ion-implanted into the substrate and temperature. l...Base material, 2...TiB, high concentration region, 3...
- Plasma, 4... Neutron, 5... Hydrogen isotope. Agent Patent Attorney Noriyuki Chika Yudo Kikuo Takehana Figure 1 Figure 2
Claims (2)
ることを特徴とする水素透過防止構造材。(1) A structural material for preventing hydrogen permeation, characterized in that a TiB_2 high concentration region is formed in the base material.
第1項記載の水素透過防止構造材。(2) The hydrogen permeation prevention structural material according to claim 1, wherein the base material is made of stainless steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61106722A JPS62263980A (en) | 1986-05-12 | 1986-05-12 | Structural material preventing permeation of hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61106722A JPS62263980A (en) | 1986-05-12 | 1986-05-12 | Structural material preventing permeation of hydrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62263980A true JPS62263980A (en) | 1987-11-16 |
Family
ID=14440840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61106722A Pending JPS62263980A (en) | 1986-05-12 | 1986-05-12 | Structural material preventing permeation of hydrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62263980A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2528272A (en) * | 2014-07-15 | 2016-01-20 | Tokamak Energy Ltd | Shielding materials for fusion reactors |
-
1986
- 1986-05-12 JP JP61106722A patent/JPS62263980A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2528272A (en) * | 2014-07-15 | 2016-01-20 | Tokamak Energy Ltd | Shielding materials for fusion reactors |
GB2528272B (en) * | 2014-07-15 | 2017-06-21 | Tokamak Energy Ltd | Shielding materials for fusion reactors |
US10636528B2 (en) | 2014-07-15 | 2020-04-28 | Tokamak Energy Ltd | Shielding materials for fusion reactors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | In-vessel melt retention of pressurized water reactors: historical review and future research needs | |
US3322644A (en) | Core element for a breeder nuclear reactor | |
US2736696A (en) | Reactor | |
Powell | Preliminary reference design of a fusion reactor blanket exhibiting very low residual radioactivity | |
US3146173A (en) | Fuel element | |
JPS62263980A (en) | Structural material preventing permeation of hydrogen | |
US4314880A (en) | Hydrogen permeation resistant barrier | |
JPS62263979A (en) | Structural material preventing permeation of hydrogen | |
US3322636A (en) | Breeder nuclear reactor | |
Koga et al. | Study on lithium rod test module and irradiation method for tritium production using high temperature gas-cooled reactor | |
JPH0252235B2 (en) | ||
JPH0252236B2 (en) | ||
JPS63151893A (en) | Hydrogen permeation preventive structural material | |
US3832563A (en) | Apparatus for storing and processing fissionable substances | |
JPS62196380A (en) | Structural material preventing penetration of hydrogen | |
JPS6270549A (en) | Structural material preventing penetration of hydrogen | |
Steinwarz et al. | Tritium behaviour in an HTR-system based on AVR-experience | |
US2836554A (en) | Air cooled neutronic reactor | |
JPS61113764A (en) | Structural material for preventing permeation of hydrogen | |
EP0360240A3 (en) | Method of restraining diffusion of tritium and apparatus for same | |
Crocker et al. | Safety and environmental issues of fusion reactors | |
JPS6344198A (en) | Pebble and tritium production equipment for tritium production | |
Mingguang et al. | Study on in-vessel injection strategy for IVR improvement | |
JPH02227699A (en) | Boiling water nuclear reactor | |
Lamarsh | Safety considerations in the design and operation of light water nuclear power plants |