JPS62262482A - semiconductor laser equipment - Google Patents
semiconductor laser equipmentInfo
- Publication number
- JPS62262482A JPS62262482A JP10613386A JP10613386A JPS62262482A JP S62262482 A JPS62262482 A JP S62262482A JP 10613386 A JP10613386 A JP 10613386A JP 10613386 A JP10613386 A JP 10613386A JP S62262482 A JPS62262482 A JP S62262482A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- laser device
- substrate
- birefringent material
- wave plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔概要〕
本発明は外部共振器内の一方に174波長板を他方に複
屈折物質を挿入配置して2周波数の異なる2つの直交偏
光を得た外部共振器型半導体レーザ装置に特徴がある。[Detailed Description of the Invention] [Summary] The present invention provides an external cavity type semiconductor in which two orthogonal polarized lights with two different frequencies are obtained by inserting a 174 wavelength plate in one of the external cavities and a birefringent material in the other. The laser device is unique.
本発明は2周波光源として用いられる半導体レーザ装置
に係わり、特に構成部品点数を削減できかつ2周波光の
間の周波数差が可変である外部共振器型半導体レーザ装
置に関する。The present invention relates to a semiconductor laser device used as a dual-frequency light source, and particularly to an external cavity type semiconductor laser device that can reduce the number of component parts and can vary the frequency difference between two-frequency lights.
光応用技術の発展に伴って新しい機能を持つデバイスが
急速度で開発されている。光計測分野においてもレーザ
光を用いて種々の物理量を計測する方法が求められてい
る。その内の1つである光ヘテロダイン法を用いて高精
度な測定を行うためには1周波数の近接した2つのレー
ザ光を安定に得ることが必要である。また、計測器の小
型化という要請から従来より用いられてきた気体レーザ
に代わって半導体レーザの利用が必要となっている。With the development of optical application technology, devices with new functions are being developed at a rapid pace. In the field of optical measurement, there is also a need for methods for measuring various physical quantities using laser light. In order to perform highly accurate measurements using one of these methods, the optical heterodyne method, it is necessary to stably obtain two closely spaced laser beams of one frequency. Furthermore, due to the demand for downsizing of measuring instruments, it is necessary to use semiconductor lasers in place of the conventionally used gas lasers.
〔従来の技術〕
最近距離計測、速度計測等の計測分野においてレーザ光
を応用した光計測装置が増加しているが光ヘテロゲイン
法を用いてかかる計測を効率良く行うには、安定した周
波数差を持つ二つのレーザ光が必要とされ、2周波光源
としてZeem、1n効果を用いたHe−Ne レーザ
が多(用いられる。また、その他の光源として気体レー
ザの共振器内に複屈折性の物質を挿入することで2周波
光を得た例かある( Walter M、doyle他
^PPLIED PI(YSIC3LETTEl’1S
Vo1.5. Number 101964 )。その
他に、レーザ光を2分割し音響光学素子を用いて片方の
周波数をわずかに変移させてZJFa波光を得る方法も
ある。[Prior Art] Recently, the number of optical measurement devices that apply laser light in measurement fields such as distance measurement and speed measurement has been increasing, but in order to efficiently perform such measurements using the optical heterogain method, it is necessary to establish a stable frequency difference. Zeem and He-Ne lasers using the 1n effect are often used as dual-frequency light sources.Also, as other light sources, birefringent materials are used in the resonator of gas lasers. There is an example of obtaining two-frequency light by inserting the
Vo1.5. Number 101964). Another method is to divide the laser beam into two and slightly shift the frequency of one using an acousto-optic element to obtain ZJFa wave light.
また半導体レーザを用いた2周波レーザ光源としては1
本出願人が先に出願した外部共振器構造のものく特願昭
58−177233)等があるが、実用化されているも
のはいまだない。In addition, as a two-frequency laser light source using a semiconductor laser, 1
Although there are patent applications for external resonator structures previously filed by the present applicant, such as Japanese Patent Application No. 58-177233), none have been put to practical use yet.
半導体レーザを用いて偏光面の異なる2周波光を得よう
とする場合、半導体レーザ内部の導波路構造に起因する
伝播常数の異方性のために偏光モード間に大きな位相の
差が発生する。そのため偏光モード間で実効的な共振器
長が大きく異なり。When attempting to obtain two-frequency light with different polarization planes using a semiconductor laser, a large phase difference occurs between polarization modes due to the anisotropy of the propagation constant caused by the waveguide structure inside the semiconductor laser. Therefore, the effective cavity length differs greatly between polarization modes.
周波数が極めて近接しかつ偏光モードの異なる2つの光
を同時に発振させることは非常に難しいという問題があ
った。また外部共振器構造の半導体レーザ装置において
も同じ問題は未解決のまま残っている。There has been a problem in that it is extremely difficult to simultaneously oscillate two lights with extremely close frequencies and different polarization modes. Furthermore, the same problem remains unsolved in semiconductor laser devices having an external cavity structure.
本発明者らは、上記の半導体レーザ内部の構造に起因す
る問題点が半導体レーザ端面での反射によるレーザ発振
を無くシ、外部共振器構成において反射鏡からの帰還光
の偏光面を90度回転させることで解決可能であること
に気付き、この結果上記問題点を解決するため、少なく
とも半導体レーザ(1)を中心としてその両側に反射鏡
(3)が配置されている外部共振器型半導体レーザ装置
であって。The present inventors have solved the problem caused by the internal structure of the semiconductor laser by eliminating laser oscillation caused by reflection at the end face of the semiconductor laser, and rotating the polarization plane of the feedback light from the reflecting mirror by 90 degrees in an external cavity configuration. As a result, in order to solve the above-mentioned problems, an external cavity type semiconductor laser device was developed in which at least a semiconductor laser (1) is located in the center and reflectors (3) are arranged on both sides of the semiconductor laser (1). And.
片側光路(21)中に174波長板(4)をその軸方位
が中心に置かれた半導体レーザのTEB光面(11)に
対して45度となるように配設し、且つ他方側光路(2
2)中には複屈折物質(5)を挿入し1周波数の異なる
2つの直交偏光を得ることを特徴とする半導体レーザ装
置を提供したものである。A 174 wavelength plate (4) is arranged in one optical path (21) so that its axial direction is 45 degrees with respect to the TEB optical plane (11) of the semiconductor laser placed at the center, and 2
2) A semiconductor laser device is provided which is characterized in that a birefringent material (5) is inserted therein to obtain two orthogonal polarized lights having different frequencies.
本発明においては、半導体レーザと174波長板の組み
合わせにより半導体レーザの異方性を打ち消すことがで
き、各種の偏向成分に対して等方的な半導体レーザ媒質
が実現できる。そして、共振器内に複屈折物質を入れる
ことで2つの偏光に対して実効的な共振器長が変わり2
周波光源が実現できる。In the present invention, the anisotropy of the semiconductor laser can be canceled by a combination of a semiconductor laser and a 174-wave plate, and a semiconductor laser medium that is isotropic with respect to various polarization components can be realized. By inserting a birefringent material into the resonator, the effective resonator length changes for the two polarized lights.
A frequency light source can be realized.
〔実施例〕
第1図は本発明に係る半導体レーザ装置の全体的構成を
示す実施例図、第2図は第1図の一部を取り出した本発
明に係る半導体レーザ装置の斜視図、第3図は第1図装
置における偏光面の回転状態を示す図、第4図は第1図
装置における発振周波数の可変度を示す図、第5図(a
l (blは本発明の変形例として共@器を集積化した
場合の半導体レーザ装置の実施例図である。[Example] FIG. 1 is an example diagram showing the overall configuration of a semiconductor laser device according to the present invention, and FIG. 3 is a diagram showing the rotation state of the polarization plane in the device shown in FIG. 1, FIG. 4 is a diagram showing the degree of variability of the oscillation frequency in the device shown in FIG.
1 (bl is an embodiment diagram of a semiconductor laser device in which a laser device is integrated as a modified example of the present invention.
第1図および第2図において、1は活性媒質として用い
るために両端面に無反射膜を形成した半導体レーザ、2
は半導体レーザからの出射光を平行にするためのコリメ
ート用のマイクロレンズ。In FIGS. 1 and 2, 1 is a semiconductor laser with anti-reflection films formed on both end faces for use as an active medium; 2
is a collimating microlens that makes the emitted light from a semiconductor laser parallel.
3は光をレーザに戻すための反射鏡、4は半導体レーザ
lのTE偏光Nilに対して複屈折軸方位を45度〔図
では矢印41によって該軸方位が図示されており、該軸
方位はTE偏光面11の対応仮想線より回転角θ1が4
5度になっている〕傾けて配設した水晶等よりなる17
4波長板、5は半導体レーザlのTE偏光面11に対し
て複屈折軸方位を(45+α)度〔図では矢印51によ
って該軸方位が図示されており、該軸方位はTE偏光面
11の対応仮想線より回転角θ2が45度+α度になっ
ている〕傾けて配設した水晶等の複屈折物質からなる1
74波長板、21と22は共振器内の光路を示しいてる
。3 is a reflecting mirror for returning light to the laser, and 4 is a birefringence axis oriented at 45 degrees with respect to the TE polarized light Nil of the semiconductor laser 1. The rotation angle θ1 is 4 from the corresponding virtual line of the TE polarization plane 11.
5 degrees] 17 made of crystal etc. arranged at an angle
The 4-wave plate 5 has a birefringence axis azimuth of (45+α) degrees with respect to the TE polarization plane 11 of the semiconductor laser 1 [in the figure, the axis direction is indicated by an arrow 51; The rotation angle θ2 is 45 degrees + α degrees from the corresponding virtual line] 1 made of a birefringent material such as quartz arranged at an angle.
74 wave plate, 21 and 22 indicate the optical path within the resonator.
尚、α度としてはQ”<α〈45°の範囲であり、5°
〜10’が適当である。In addition, the α degree is in the range of Q”<α<45°, and 5°
~10' is appropriate.
このように構成された半導体レーザ装置において、レー
ザ1から(A)側に出射した光路21内の光はレンズ2
によってコリメートされ174波長板4を通過したのち
、tJ13によって反射され再び該174波長板4を通
過しレンズ2により集光されてレーザ1内部に入射する
。In the semiconductor laser device configured in this way, the light in the optical path 21 emitted from the laser 1 to the (A) side is transmitted through the lens 2.
The light is collimated by , passes through the 174-wave plate 4 , is reflected by tJ13 , passes through the 174-wave plate 4 again, is focused by the lens 2 , and enters the inside of the laser 1 .
また同様にレーザ1から(B)側に出射した光路22内
の光はレンズ2によってコリメートされ174波長板5
を通過したのち、113によって反射され再び該174
波長板5を通過しレンズ2により集光されてレーザI内
部に入射する。Similarly, the light in the optical path 22 emitted from the laser 1 to the (B) side is collimated by the lens 2 and is collimated by the 174 wavelength plate 5.
After passing through 113, it is reflected by 174 again.
The light passes through the wavelength plate 5, is focused by the lens 2, and enters the inside of the laser I.
従って、初めレーザ1から左側にTE偏光で出射した光
は174波長板4を往復(2回)通過することでTE偏
光に直交する7M偏光に変換される。逆に7M偏光はT
E偏光に変換される。Therefore, the light that is initially emitted from the laser 1 to the left as TE polarized light passes through the 174-wave plate 4 back and forth (twice) and is converted into 7M polarized light that is orthogonal to the TE polarized light. On the other hand, 7M polarized light is T
It is converted to E-polarized light.
この際共振器内部においてレーザ1を含めた点線a−−
−〜−−−・a゛より左側の(A)部分では、174波
長板4により偏光面に関する異方性は往復することです
べて打ち消されることになる。At this time, dotted line a-- including laser 1 inside the resonator
In the part (A) on the left side of .a', the anisotropy regarding the plane of polarization is completely canceled out by the 174-wave plate 4 as it moves back and forth.
ところが、共振器の右側のCB)部分では光路22内に
、軸方位がわずかに45度からずれた複屈折物質である
174波長板5が挿入されているため、2つの直交偏光
に対する実効共振器長をわずかに異ならせることが出来
る。However, in the part CB) on the right side of the resonator, a 174 wavelength plate 5 made of a birefringent material whose axis direction is slightly shifted from 45 degrees is inserted in the optical path 22, so the effective resonator for two orthogonal polarized lights is The length can be slightly different.
その結果1周波数のわずかに異なる2つの直交偏光TE
、TMが発振することになる。The result is two slightly different orthogonal polarizations TE with one frequency.
, TM will oscillate.
このとき、光路22内に置いた174波長板5の軸方位
が(45+α)度であるとすると1発振する2つの直線
偏光TE、TMの方向は第3図に示すようにTE、TM
軸から角度αだけ回転し、共振器長を20cmとしたと
きには2偏光間の発振周波数差は第4図に示すように回
転角αに従って直線的に変化する。At this time, if the axial direction of the 174-wave plate 5 placed in the optical path 22 is (45+α) degrees, the directions of the two linearly polarized lights TE and TM that emit one oscillation are as shown in FIG.
When it is rotated by an angle α from the axis and the resonator length is 20 cm, the oscillation frequency difference between the two polarized lights changes linearly according to the rotation angle α, as shown in FIG.
なお2本実施例においては光路21内に174波長板4
を挿入した場合について説明を行ったが同様の偏光面変
換効果を持つ1例えば、電気光学効果素子の通用をなん
ら妨げるものではない。In addition, in this embodiment, a 174 wavelength plate 4 is provided in the optical path 21.
Although the explanation has been made on the case where a polarization plane conversion effect is inserted, this does not in any way impede the use of an electro-optic effect element having a similar polarization plane conversion effect, for example.
また174波長板5として上記実施例では軸方位がわず
かに45度からずれた1/4波長板を使用したが、これ
は軸方位を1/4波長板4と同じ45度とし、その厚み
を異ならして例えば178波長板にしても同等の機能が
発揮される。In addition, as the 174-wave plate 5, a quarter-wave plate with an axial direction slightly shifted from 45 degrees was used in the above embodiment, but this has an axial direction of 45 degrees, which is the same as that of the quarter-wave plate 4, and its thickness is For example, a 178-wavelength plate may provide the same function.
第5図(al (blは光学素子を集積化した場合の本
発明に係る半導体レーザ装置の側面図と断面図である。FIG. 5 (al) is a side view and a sectional view of a semiconductor laser device according to the present invention in which optical elements are integrated.
これは、レーザ1を搭載する基板7が水晶等の複屈折物
質で形成されており、該基板7の表面にはレーザ1を埋
設する凹部71が、その両側端面には反射鏡74および
75が設けられ、また該基Fi7をヒートシンク用基板
8に実装して外部共振器型半導体レーザ装置を構成した
ものである。This is because the substrate 7 on which the laser 1 is mounted is formed of a birefringent material such as crystal, and the surface of the substrate 7 has a recess 71 in which the laser 1 is embedded, and reflective mirrors 74 and 75 are formed on both end surfaces of the recess 71. The base Fi7 is mounted on a heat sink substrate 8 to construct an external cavity type semiconductor laser device.
この際凹部71は基板7におけるレーザ1と反射鏡74
間の領域72と、レーザ1と反射鏡75間の領域73と
が互いに異なった厚み寸法(レーザlと反射鏡74或い
は75間の長さに対応)になるように基板7の表面に形
成されており、該領域72と73の断面における光学軸
は矢印76で示すようにレーザ1のTE偏光面に対し4
5度となっている。At this time, the recess 71 is connected to the laser 1 and the reflecting mirror 74 on the substrate 7.
The region 72 between the laser 1 and the reflecting mirror 75 is formed on the surface of the substrate 7 so that the region 73 between the laser 1 and the reflecting mirror 75 has different thickness dimensions (corresponding to the length between the laser 1 and the reflecting mirror 74 or 75). The optical axis in the cross section of the regions 72 and 73 is oriented 4 degrees with respect to the TE polarization plane of the laser 1, as shown by the arrow 76.
It is 5 degrees.
このような厚み寸法の相違により、領域72は174波
長板4と同等の機能を果たし、領域73は軸の傾いた1
/41fL長板5と同等の機能を果たす。Due to such a difference in thickness, the region 72 has the same function as the 174-wave plate 4, and the region 73 has a tilted axis.
/41fL It performs the same function as the long plate 5.
このとき領域72の長さ■は次式で決まる。At this time, the length ■ of the region 72 is determined by the following equation.
m・λ/4
I= (m:奇数)noは基板
7の常光線に対する屈折率、neは基板7の異常光線に
対する屈折率である。m·λ/4 I= (m: odd number) no is the refractive index of the substrate 7 for ordinary rays, and ne is the refractive index of the substrate 7 for extraordinary rays.
また、領域73の長さは上記の1式を満たさない範囲で
必要な周波数差に応じて変えることができる。Furthermore, the length of the region 73 can be changed according to the required frequency difference within a range that does not satisfy the above equation 1.
以上説明した如く本発明によれば、半導体レーザを用い
て簡便に2周波光源が実現できるばかりでなく、その2
周波間の周波数差が可変となり。As explained above, according to the present invention, not only can a dual-frequency light source be easily realized using a semiconductor laser, but also the dual-frequency light source can be easily realized using a semiconductor laser.
The frequency difference between the frequencies becomes variable.
光を用いるヘテロゲイン計測の適用範囲拡大に寄与した
効果が顕著である。The effect of contributing to expanding the scope of application of heterogain measurement using light is remarkable.
第1図は本発明の1実施例による半導体レーザ!装置の
全体構成を示す図。
第2図は第1図の一部を取り出して示した本発明に係る
斜視図。
第3図は1/4波長板5の設定角αに対する偏光面の回
転を示す図。
第4図は共振器長20cmの場合に174波長板5の設
定角αに対する2周波光の間の周波
数差の変化を示す図。
第5図fat (b)は本発明の他の実施例による光学
素子を集積化した場合の半導体レーザ装
置を示す側面図と断面図である。
〔符号の説明〕
これら図において、1は無反射膜付半導体し一ザ、3,
74.75は反射鏡、4は左側1/4波長板、5は右側
174波長板、7は基板、72と73は異なった偏光面
変換効果を持った基板7の偏光伝播領域である。FIG. 1 shows a semiconductor laser according to one embodiment of the present invention! FIG. 1 is a diagram showing the overall configuration of the device. FIG. 2 is a perspective view of a portion of FIG. 1 according to the present invention. FIG. 3 is a diagram showing the rotation of the plane of polarization with respect to the set angle α of the quarter-wave plate 5. FIG. 4 is a diagram showing changes in the frequency difference between two-frequency lights with respect to the setting angle α of the 174-wave plate 5 when the resonator length is 20 cm. FIG. 5 (b) is a side view and a sectional view showing a semiconductor laser device in which optical elements are integrated according to another embodiment of the present invention. [Explanation of symbols] In these figures, 1 is a semiconductor with a non-reflective film, 3,
74 and 75 are reflecting mirrors, 4 is a left 1/4 wavelength plate, 5 is a right 174 wavelength plate, 7 is a substrate, and 72 and 73 are polarization propagation regions of the substrate 7 having different polarization plane conversion effects.
Claims (5)
両側に反射鏡(3)が配置されている外部共振器型半導
体レーザ装置であって、片側光路(21)中に1/4波
長板(4)をその軸方位が中心に置かれた半導体レーザ
のTE偏光面(11)に対して45度となるように配設
し、且つ他方側光路(22)中には複屈折物質(5)を
挿入し、周波数の異なる2つの直交偏光を得ることを特
徴とする半導体レーザ装置。(1) An external cavity type semiconductor laser device in which reflective mirrors (3) are arranged on both sides of at least a semiconductor laser (1), and a quarter-wave plate (4) in one optical path (21). ) is arranged so that its axial direction is 45 degrees with respect to the TE polarization plane (11) of the semiconductor laser placed at the center, and a birefringent material (5) is placed in the optical path (22) on the other side. A semiconductor laser device characterized in that the laser beam is inserted to obtain two orthogonal polarized lights with different frequencies.
物質(5)が1/4波長板であり、かつその軸方位が半
導体レーザのTE偏光面にたいして45度からわずかに
ずれていることを特徴とする半導体レーザ装置。(2) In claim 1 above, the birefringent material (5) is a quarter-wave plate, and its axial direction is slightly deviated from 45 degrees with respect to the TE polarization plane of the semiconductor laser. A semiconductor laser device characterized by:
物質(5)が前記1/4波長板(4)とは厚さの異なる
波長板からなることを特徴とする半導体レーザ装置。(3) The semiconductor laser device according to claim 1, wherein the birefringent material (5) is a wavelength plate having a thickness different from that of the quarter-wave plate (4).
物質(5)が1/8波長板からなることを特徴とする半
導体レーザ装置。(4) The semiconductor laser device according to claim 3, wherein the birefringent material (5) is a 1/8 wavelength plate.
物質(5)が前記半導体レーザ(1)を搭載する基板(
7)として設けられ、該基板(7)にはその表面に形成
された凹部(71)に該半導体レーザ(1)が埋設され
且つその両側端面に反射鏡(74)および(75)が設
けられて外部共振器型半導体レーザ装置が構成されてお
り、しかも前記凹部(71)は前記基板(7)における
前記半導体レーザ(1)と前記反射鏡(74)間の領域
(72)と、前記半導体レーザ(1)と前記反射鏡(7
5)間の領域(73)とが互いに異なった厚み寸法にな
るように前記基板(7)に形成されていることを特徴と
する半導体レーザ装置。(5) In claim 1 above, the birefringent material (5) is a substrate on which the semiconductor laser (1) is mounted (
7), the semiconductor laser (1) is embedded in a recess (71) formed on the surface of the substrate (7), and reflective mirrors (74) and (75) are provided on both end faces thereof. An external cavity type semiconductor laser device is configured, and the recess (71) is located between the region (72) in the substrate (7) between the semiconductor laser (1) and the reflecting mirror (74), and the semiconductor laser device. The laser (1) and the reflecting mirror (7
5) A semiconductor laser device characterized in that the semiconductor laser device is formed on the substrate (7) so that the regions (73) therebetween have mutually different thickness dimensions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10613386A JPH0758820B2 (en) | 1986-05-09 | 1986-05-09 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10613386A JPH0758820B2 (en) | 1986-05-09 | 1986-05-09 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62262482A true JPS62262482A (en) | 1987-11-14 |
JPH0758820B2 JPH0758820B2 (en) | 1995-06-21 |
Family
ID=14425896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10613386A Expired - Lifetime JPH0758820B2 (en) | 1986-05-09 | 1986-05-09 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0758820B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0389575A (en) * | 1989-08-31 | 1991-04-15 | Nec Corp | Oscillation frequency stabilizing device for semiconductor laser device |
-
1986
- 1986-05-09 JP JP10613386A patent/JPH0758820B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0389575A (en) * | 1989-08-31 | 1991-04-15 | Nec Corp | Oscillation frequency stabilizing device for semiconductor laser device |
Also Published As
Publication number | Publication date |
---|---|
JPH0758820B2 (en) | 1995-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nilsson et al. | Eigenpolarization theory of monolithic nonplanar ring oscillators | |
US4688940A (en) | Heterodyne interferometer system | |
EP0138452B1 (en) | Laser light source device | |
US4684828A (en) | Apparatus to transform a single frequency, linearly polarized laser beam into a beam with two, orthogonally polarized frequencies | |
US4521110A (en) | Dual cavity laser gyro | |
EP1027756B1 (en) | Apparatus for generating orthogonally polarized beams having different frequencies | |
JP2001526413A (en) | Double ray generator | |
US3382758A (en) | Ring laser having frequency offsetting means inside optical path | |
JP2007012981A (en) | Laser device with highly reflective coating on the internal total reflection surface of optical element | |
US5091913A (en) | Quartz crystal tuning he-ne double frequency laser | |
JPS62262482A (en) | semiconductor laser equipment | |
JPS6016115B2 (en) | Birefringent coupled laser | |
US20060045148A1 (en) | Low noise, intra-cavity frequency-doubling micro chip laser with wide temperature range | |
US20080080571A1 (en) | Intracavity frequency-doubling laser device | |
Zhang et al. | Birefringence cavity dual-frequency lasers and relative mode splitting | |
JPH07281140A (en) | Electro-optic modulator | |
JP3472471B2 (en) | Polarization-maintaining self-compensating reflector, laser resonator and laser amplifier | |
JPS63262602A (en) | Diffraction grating type optical polarizing plat | |
JPH0795614B2 (en) | Double frequency laser | |
JPS60198880A (en) | Laser device | |
JPH0264522A (en) | light modulator | |
JPH05235456A (en) | Laser apparatus | |
JP2823870B2 (en) | Apparatus for narrowing spectral line width of semiconductor laser | |
JP2006106104A (en) | Depolarizing element | |
JPS61171183A (en) | Semiconductor laser device |