[go: up one dir, main page]

JPS62261017A - Measuring instrument for variate element of fluid - Google Patents

Measuring instrument for variate element of fluid

Info

Publication number
JPS62261017A
JPS62261017A JP10355686A JP10355686A JPS62261017A JP S62261017 A JPS62261017 A JP S62261017A JP 10355686 A JP10355686 A JP 10355686A JP 10355686 A JP10355686 A JP 10355686A JP S62261017 A JPS62261017 A JP S62261017A
Authority
JP
Japan
Prior art keywords
pressure
fluid
piping
pulsation
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10355686A
Other languages
Japanese (ja)
Inventor
Akio Uehara
上原 明雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10355686A priority Critical patent/JPS62261017A/en
Publication of JPS62261017A publication Critical patent/JPS62261017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To enable the variate element of a fluid to be measured with a high reliability by providing a lead piping with a pressure pulsation preventing device having a plurality of communication holes to decrease the effect of a pressure pulsation. CONSTITUTION:Pressure pulsation preventing devices 26 are provided in lead pipings 7 and 12 connected to the high pressure side detector 8 and the low pressure side detector 13 of a flowmeter 14, respectively. Each preventing device 26 is formed with a plurality of thin communication holes 28, 28... in parallel to one another in the longitudinal direction of the device 26 and threadedly connected to the lead piping 7 or 12. Thus, when a pressure pulsation and a transient pressure change or a flow change are generated in a main steam pipe 2, a pressure wave corresponding thereto is propagated in the pipelines 7 and 12. The pressure change due to the pressure wave reaches a plurality of the holes 28 of the preventing devices 26 and the pressure pulsation of a fluid is damped by the restriction effect of the holes 28, 28... to suppress a dynamic pressure propagation. Accordingly, an always stable and accurate flow rate measurement can be conducted.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 木兄明番よ、圧力脈動が発生する流体の圧力や流量等か
らなる流体の変宿要索を、その圧力脈11UIに影響さ
れずに計測1゛ることのできる流体の変量要素の測定装
置に13!I する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) Mr. Kinoe Akiban, please describe the fluid change summary consisting of the pressure, flow rate, etc. of the fluid in which pressure pulsation occurs. 13! A device for measuring variable elements in fluids that can be measured without being affected by I will.

(従来の技術) 一般に、流体の変に要A;を測定する際に圧力脈動が発
生する流体としでは、(り1えば原子炉にJ3いて発生
されタービンへ導かれる主蒸気管内の蒸気や、ポンプに
にって送出された吐出側の流体笠がある。
(Prior art) In general, fluids that generate pressure pulsations when measuring the change in fluid (for example, steam in the main steam pipe generated in a nuclear reactor and led to the turbine), There is a fluid cap on the discharge side that is delivered by the pump.

従来から、このような蒸気流の発生している配管内の圧
力や流量の・測定、またはポンプ叶出側の配管内の圧力
や流!δの測定が行なわれているが、その配管内a−;
 J:び計測用に流体を導出づろ導n−配管内で発生す
る圧力脈動が人ぎいため、81測指示(ビ1bその圧ノ
コ脈5hに追随して変動してしまい不安定になりや寸い
ものであった。
Conventionally, we have been able to measure the pressure and flow rate in the piping where such steam flow occurs, or the pressure and flow rate in the piping on the outlet side of the pump! δ is being measured, but inside the pipe a-;
J: Due to the pressure pulsations occurring in the pipes leading to the flow of fluid for measurement, the 81 measurement instruction (B 1b fluctuates following the pressure saw pulse 5h and may become unstable). It was small.

特に、流量計においては、配管内に絞り様構を設け、そ
の上下流部の間に発生づる差圧から流量を測定する方法
が一般的であるが、差圧J1としての81測レンジは一
般に小さくしているため、前述の圧ツノ脈動による彰費
を受けやすいものであった。
In particular, in flowmeters, it is common to provide a constriction-like structure in the piping and measure the flow rate from the differential pressure generated between the upstream and downstream sections, but the 81 measurement range for differential pressure J1 is generally Because it was small, it was susceptible to the aforementioned pressure horn pulsation.

この絞りハ構にはノズル、ベンチュリ、オリフィス等が
用いられるが以下これらを総称してフローニレメンI・
と呼ぶ。
Nozzles, venturis, orifices, etc. are used in this aperture mechanism, and these will be collectively referred to as flowniremen I.
It is called.

例えば、沸騰水型原子力発電所の主蒸気管では、第6図
に示すように、原子炉1で発生した蒸気をタービン(図
示ぜず)へ供給する主蒸気管2の途中に設けたフローエ
レメント3の入口側圧力検出端4から蒸気を導圧配管5
を介して導出し、凝縮槽6に尋さ、この凝縮Wするで得
た圧力を導圧配管7を経由さけて流量計14の高圧側検
出部8に入1」圧力として与えている。また、フローエ
レメント3ののど部側圧力検出端9からも蒸気を導圧配
管10を介して導出し、凝縮槽11に導ひき、そしてこ
の凝縮槽11で得た圧力を導圧配管12を経由させて流
量計14の低圧側検出部13にのど部圧力として与えて
いる。そして、この入口圧力とのど部圧力との差圧を測
定するごとによって蒸気の流量を計測している。各導圧
配管7,12はそれぞれ原子炉格納容器25の量通部2
5a。
For example, in the main steam pipe of a boiling water nuclear power plant, as shown in FIG. Steam is transferred from the inlet side pressure detection end 4 of 3 to the pressure guidance pipe 5
The pressure obtained by condensing W is passed through the pressure piping 7 to the high-pressure side detection part 8 of the flow meter 14, and is applied as a pressure of 1''. In addition, steam is also led out from the throat side pressure detection end 9 of the flow element 3 via the pressure piping 10 and guided to the condensation tank 11, and the pressure obtained in the condensation tank 11 is passed through the pressure piping 12. This is applied to the low pressure side detection section 13 of the flowmeter 14 as throat pressure. The flow rate of steam is measured each time the pressure difference between the inlet pressure and the throat pressure is measured. Each pressure piping 7, 12 is connected to a flow section 2 of the reactor containment vessel 25, respectively.
5a.

25bを貫通させられている。25b is penetrated.

この流量計14は主蒸気管2内の蒸気流間が設定値以上
になると検出信号を発する。その検出信号は、万一下流
側の主蒸気配管2に破断があった際、図示しない主蒸気
隔離弁を閉じ、原子炉をスクラムさせる安全上重要な信
号として使用されているものである。
The flow meter 14 issues a detection signal when the steam flow in the main steam pipe 2 exceeds a set value. This detection signal is used as an important safety signal to close a main steam isolation valve (not shown) and scram the reactor in the event that the main steam pipe 2 on the downstream side is ruptured.

(発明が解決しようとする問題点) しかしながら、この種の蒸気流間の計測や、ポンプ吐出
圧力・吐出流量の計測においては、脈動圧力が比較的大
きく、検出信号に5定常的に大きなノイズが含まれてし
まう問題があった。
(Problem to be Solved by the Invention) However, in this type of measurement between steam flows or in the measurement of pump discharge pressure and discharge flow rate, the pulsating pressure is relatively large, and the detection signal has a constant large noise. There was a problem with being included.

また、主蒸気隔離弁の側弁開鎖テスト時やタービン入口
圧力調整器の作動時等において、過渡的な圧力変動、流
m変動が主蒸気管2内に生じ、その圧力波が導圧配管7
および12内に伝幡し、高圧配管側検出端8および低圧
側検出端13で測定される圧力は減衰振!IJノを生じ
でしまう。その際、導圧配管7および12内の流体は、
主としてそれぞれの配管長によって決まる回付振動数で
振動するため、一般に高圧側検出部8および低圧側検出
部13でそれぞれ測定される圧力の減衰撮動は、振!l
I数お」;び振幅等が菫なったモードどなる。
In addition, during the side valve opening test of the main steam isolation valve or when the turbine inlet pressure regulator is activated, transient pressure fluctuations and flow m fluctuations occur in the main steam pipe 2, and the pressure waves are transmitted to the pressure guide pipe 7.
12, and the pressure measured at the high-pressure piping side detection end 8 and the low-pressure side detection end 13 is a damped oscillation! This may cause IJ. At that time, the fluid in the pressure piping 7 and 12 is
Because it vibrates at a rotating frequency determined mainly by the length of each piping, generally the pressure attenuation imaging measured by the high-pressure side detection section 8 and the low-pressure side detection section 13, respectively, is caused by vibration! l
A mode in which the I number, amplitude, etc. become violet.

このため、2つの圧力の差圧を測定することにj;って
検出信号を(りる流量計14においては、実際に流ω変
化がほと/υど無いにもかかわらず、過渡的に見1)け
上の流V11変動が現われることがあり、また、流量変
動を更に助長する可能性もあった。
For this reason, in the flow meter 14, which measures the differential pressure between two pressures and generates a detection signal, the transient Observations 1) Upper flow V11 fluctuations may appear, and there is also a possibility that the flow fluctuations will be further exacerbated.

例えば、第7図に示ず」、うに、測定流量Qの信号が王
。時に発生した過渡変化時において実際の流nXQoよ
り大きく上背してしまい、原子炉停止レベルQ、に接近
し、原子炉の過渡運転を良り「に維持する余裕を少むく
するものであった。
For example, as shown in Figure 7, the signal for the measured flow rate Q is normal. During transient changes that occurred at times, the actual flow n .

このJ:うに主蒸気管2内の圧力変化時a3よび微小な
流量の過渡変化+1’5に、原子炉を停止させること【
、t ’JS故発生の防止という観点からはにり安全側
の処置と言えるが、原子力発電所の稼動率低下およびそ
れに伴なう電力安定供給の面で問題どなる。
This J: To stop the reactor at the time of pressure change in the main steam pipe 2 a3 and the slight transient change in flow rate +1'5 [
Although this can be said to be a safe measure from the perspective of preventing t'JS accidents, it poses problems in terms of a decline in the operating rate of nuclear power plants and the resulting stable supply of electricity.

そこで、従来は圧力変動の生じ易い配管の圧力測定装置
及び流量測定装置においては、第8図1.二丞?J’ 
J:うに流量計14の出力回路15に抵抗するとコンア
ン1ノ17とからなるフィルタ回路18を設け、そのフ
ィルタ回路18で振動を減衰ざ1!た出力信号19を求
めるようにしたものがある。
Therefore, in the conventional pressure measuring device and flow rate measuring device for piping where pressure fluctuations are likely to occur, the method shown in Fig. 8 1. Nijo? J'
J: When the output circuit 15 of the sea urchin flowmeter 14 is resisted, a filter circuit 18 consisting of a condenser 1 and 17 is provided, and the filter circuit 18 damps vibrations. There is a device in which an output signal 19 is obtained.

しかし、この装置ぐは、電気的なフィルタ回路18を新
たに追加するために、部品数の増加ど口れに伴う測定上
の信頼f1に問題があった9、更に、圧力脈動による流
ff1K114に生じる別緘的1rl l!2を防止り
ることができなかった。
However, since this device newly added an electric filter circuit 18, there was a problem with the measurement reliability f1 due to the increase in the number of parts. A different kind of 1rl l that occurs! 2 could not be prevented.

また、闘械的には第0図に示すように、ボディー20と
キ17ツブ21とで形成される溝22内にビン23.2
4を挿入し、その絞りによる1F力脈動を防止Jること
が行なわれているが、このyj法によってもごみが満2
2内に目づまりして測定円5!■となる可能性があり、
保守性おJ:び13・i(i flに心配があった。
In addition, mechanically, as shown in FIG. 0, a bottle 23.
4 is inserted to prevent the 1F force pulsation due to the throttle, but this yj method also prevents dust from filling up.
Measuring circle 5 due to clogging in 2! ■There is a possibility that
Maintainability J: and 13・i (I was worried about fl.

本発明はこれらの点に鑑みてなされたものであり、配管
内の流体の圧力や流量等の流体の変m要素を計測する際
、圧力脈動の影響を低減し、更に圧力変動時においても
常に安定的にかつ正確に測定表示し、かつ計器を保護す
ることができ、信頼性の高い流体の変m要素の測定装置
を提供することを目的とする。
The present invention has been made in view of these points, and it reduces the influence of pressure pulsations when measuring variable factors of fluid such as pressure and flow rate of fluid in piping, and furthermore, it is possible to reduce the influence of pressure pulsation even when pressure fluctuates. It is an object of the present invention to provide a highly reliable fluid variable element measuring device that can stably and accurately measure and display and protect the instrument.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の流体の変量要素の測定装置は、流路内の流体を
その流路からiit 1lll用に導出する導圧配管と
、その導圧配管によって導かれて来る流体の圧力または
流量等の流体の変量要素を測定するε1測礪構とを有す
る流体の変量要素の測定装置において、前記流路および
導圧配管内に発生する圧力脈動を低減させる?!J¥1
の導通孔を有する圧力脈動防止器を、前記導圧配管に設
りたことを特徴とする。
(Means for Solving the Problems) The fluid variable element measuring device of the present invention includes a pressure piping that leads the fluid in a flow path from the flow path for iit 1lll, and a fluid guided by the pressure piping. In a device for measuring a variable element of a fluid having an ε1 measurement structure for measuring a variable element of a fluid such as pressure or flow rate of an incoming fluid, is it possible to reduce pressure pulsations occurring in the flow path and pressure piping? ! J¥1
A pressure pulsation preventer having a communication hole is provided in the pressure guiding pipe.

(作 用) 本発明において、流路内や導圧配管内に発生した流体の
圧力脈動は、その流体が圧力脈動防止器の複数の細い導
通孔を流通ずる際に、その流シ′3を絞られ、その絞り
効果により下流側への動的な圧力伝播が押えられる。こ
れにJ:す、圧ツ脈動防止器の下流側のε1測礪構には
圧力脈動の影響を受1ノていない状態の流体がシフかれ
ることとムリ、その計測磯構によりTt力脈動をIJI
除した正確な流体の圧力や流υ等を測定することができ
ろ。
(Function) In the present invention, the pressure pulsations of the fluid generated in the flow path or the pressure piping are suppressed by the flow pulsation when the fluid flows through the plurality of narrow communication holes of the pressure pulsation preventer. The throttle effect suppresses dynamic pressure propagation to the downstream side. In addition, it is impossible for the fluid that is not affected by pressure pulsation to be shifted to the ε1 measurement structure downstream of the pressure pulsation preventer, and the measurement structure prevents Tt force pulsation. IJI
Be able to accurately measure the pressure and flow υ of the fluid.

また、導通孔は複数個穿設されているので、仝部の導通
孔が同時に閉塞されることがなく、常に    1安定
的に確実に計測を行なうことができる。
In addition, since a plurality of conduction holes are formed, two conduction holes are not blocked at the same time, and measurement can always be carried out stably and reliably.

(実施例) 以下、本発明の実施例を第1図から第5図について説明
する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 5.

第1図は本実施例の概要を示1°。本実施例は、測定づ
べき流体の変量要素として、B啄了力発電所の主蒸気の
流量を対象とするものである。
FIG. 1 shows an overview of this embodiment. In this embodiment, the flow rate of the main steam of the B-Takuryo Power Plant is targeted as a variable element of the fluid to be measured.

第1図において従来と同一部分に(,1、第6図と同一
の符号を付しである。
In FIG. 1, the same parts as in the prior art are denoted by the same reference numerals as in FIG.

゛本実施例においては、計よ!1機構の一種である流量
計14の高圧側検出部8と低圧側検出部13とにそれぞ
れ接続されている導圧配管7と12とに、各導圧配管7
.−12内に発生した流体の圧力脈動を減衰さゼて下流
側の1ffiil14に導びく圧力脈動防止器26を設
けている。その他の構成は第6図に示寸従来例と同様で
ある。
゛In this example, measure! Each impulse piping 7 is connected to the impulse piping 7 and 12 which are respectively connected to the high pressure side detection part 8 and the low pressure side detection part 13 of the flow meter 14 which is a type of mechanism.
.. A pressure pulsation preventer 26 is provided to attenuate the pressure pulsation of the fluid generated in the fluid 12 and guide it to the 1ffoil 14 on the downstream side. The rest of the structure is the same as the conventional example shown in FIG.

第2図および第3図はその圧力脈動防止器26の一実施
例を示している。
2 and 3 show one embodiment of the pressure pulsation preventer 26. FIG.

本実施例の圧力脈動防止器26は、円柱状の本体27に
、その長手方向に複数の細い導通孔28゜28・・・を
平行にして穿設しであり、その両端部にtmねじ部29
.29を設けて導圧配管7.12と螺着1&続J゛る接
続部が形成されている。本実施例においては、複数の導
通孔28,28・・・の絞り効果ににす、流体の圧力脈
動を減衰させることができる。。
The pressure pulsation preventer 26 of this embodiment has a cylindrical main body 27 with a plurality of thin conductive holes 28, 28, etc. formed in parallel in the longitudinal direction thereof, and TM threaded portions at both ends. 29
.. 29 is provided to form a threaded connection with the pressure piping 7.12. In this embodiment, the pressure pulsations of the fluid can be attenuated by the throttling effect of the plurality of conduction holes 28, 28, . . . . .

第1図は他の圧力脈動防止器268を示し、木実1薄例
にa′3いでは本体27の両端の接続部を導圧配管7,
12の端部に螺部を形成することなく簡単に接続J゛る
ことのでさる配管継手30.30を設置)たbのである
。この配管継手30はi9圧配管7.12と本体27と
の間に喰込まされる環状の楔形状をしたリング31.3
1と、リング31を緊a する袋プツト32とにより形
成されている1、次に、実施1列による流量測定方法を
説明する。
FIG. 1 shows another pressure pulsation preventer 268, in which the connections at both ends of the main body 27 are connected to the pressure piping 7,
A piping joint 30, 30 was installed at the end of the pipe 12 so that it could be easily connected without forming a thread. This pipe joint 30 is an annular wedge-shaped ring 31.3 inserted between the i9 pressure pipe 7.12 and the main body 27.
1 and a bag put 32 that tightens the ring 31.Next, a flow rate measuring method according to the first embodiment will be explained.

第2図において、主蒸気管2内の圧力脈動および過渡的
な圧力4Q化また1よ流量変化が発生すると、それに応
じた圧力波が導F[配管7 a3よび12内を伝1譜1
Jる。この圧力脈動および圧力波(よ、主として導圧配
管7.12の長さにJ:って決まる周!v〕の脈動圧を
主成分とした圧力変動である。この圧力変動は圧ツノ脈
動防止器26の複数の導通孔28/\到達ずろ。導通孔
28(ま下式の摩隙係数1で決まる絞り効果により、動
的な圧力伝播をおさえる効果がある。
In Fig. 2, when pressure pulsations and transient pressure changes or flow rate changes occur in the main steam pipe 2, a corresponding pressure wave is transmitted through the pipes 7 a3 and 12.
Jru. This pressure fluctuation is mainly caused by the pulsating pressure of this pressure pulsation and pressure wave (the circumference is mainly determined by the length of the pressure piping 7.12).This pressure fluctuation prevents the pressure horn pulsation. The plurality of conduction holes 28/\reaching gap of the vessel 26.The conduction holes 28 (the constriction effect determined by the friction coefficient 1 of the equation below) have the effect of suppressing dynamic pressure propagation.

F = L / n D   。F = L / n D.

ここで、l:X7通孔長さ D:導通孔内径 r)ニとフ通孔木敢 である。Here, l: X7 hole length D: Inner diameter of conduction hole r) Ni and F through Kokigan It is.

このl”F +寮係数Fは、−F式の関係があり、従っ
て、導通孔28の各々の口径を小さくするか、導通孔2
8の長ざを例えばラヒン状にして長くすることにより圧
力脈動を減衰する効果が増大する。
This l''F + dormitory coefficient F has the relationship of -F formula, therefore, either the diameter of each of the through holes 28 is made smaller or the through hole 2
By making the length of 8 longer, for example, in a lahin shape, the effect of damping pressure pulsations is increased.

J:って、これらの導通孔28.28・・・を流通した
流体は圧力脈動の影響を受【ノでいないものとなる。こ
れにJ:す、流量計14の両検出部8,13における圧
力脈動のピークおよび過渡的な圧力波のピークが大幅に
減衰されることとなり、この流量計により常に安定的に
正確な流量測定を行なうことができる。
J: Therefore, the fluid flowing through these communication holes 28, 28, etc. is not affected by pressure pulsations. As a result, the pressure pulsation peaks and transient pressure wave peaks in both the detection parts 8 and 13 of the flow meter 14 are significantly attenuated, and this flow meter can always stably and accurately measure the flow rate. can be done.

また、導通孔28は複数個穿設されているため、全部が
同時に目づまりJる可能性が非常に少ないため、*if
l測定の信頼性が烏いものである。
In addition, since a plurality of conductive holes 28 are provided, there is a very low possibility that all of them will become clogged at the same time.
The reliability of l measurements is poor.

このように、主蒸気管2内に圧力変動があっても、導圧
配管7および12を伝播してくる圧力波を流量計14の
高圧側検出部8および低圧側検出部13の手前に設けた
圧力脈動防止器26により圧力脈動の影フでを十分小さ
くすることができる。
In this way, even if there is a pressure fluctuation in the main steam pipe 2, the pressure waves propagating through the impulse piping 7 and 12 are placed in front of the high-pressure side detection section 8 and the low-pressure side detection section 13 of the flowmeter 14. The effect of pressure pulsation can be sufficiently reduced by the pressure pulsation preventer 26.

これにより、流、TI計1/Iに大きな圧力脈動が直接
信用づることが防止され、流量計14の損(力を防止す
ることができる1゜ そして、第5図に示づJ:うに流丹泪14は、主蒸気管
2内に過渡的な圧力変動や流Ed変動が生じた場合でも
、測定流量Qを実際の流量QQの近傍に雑持し、測定流
けQの指示振動の振幅埴を、プラント停止レベルQ、と
比べても充分問題にならない1直にまで低減させること
が可能どなる。
This prevents large pressure pulsations from being applied directly to the flow and TI meter 1/I, and prevents loss (force) of the flow meter 14. Even when transient pressure fluctuations or flow Ed fluctuations occur in the main steam pipe 2, the Tantei 14 keeps the measured flow rate Q close to the actual flow rate QQ, and maintains the amplitude of the indicated vibration of the measured flow Q. It becomes possible to reduce the amount of clay to one shift, which is not a problem even when compared to the plant shutdown level Q.

更に説明Jると、木実11例においては、差圧式の流量
h114の高圧側検出部8 Jjよび低圧側検出部13
につながる両導圧配管7.12に、複数の小径の導通孔
28,28・・・を備えた[[力脈りJ防止器26を設
けたことにより、母管内の圧力脈IυJを(it減する
ととしに過渡的な圧力変動時にイ[しるゴーとして計装
配管長によって決まる比較的高周波1・火の固有振動に
よる流が414の見掛上の指示振動を1−分に小さく覆
ることがでさる。、ひらに導通孔28は複数個設けてい
るため懸念されるつまりの発生可能性を小さくできる。
To further explain, in the 11 examples of nuts, the high pressure side detection section 8 Jj of the differential pressure type flow rate h114 and the low pressure side detection section 13
By providing the force pulsation J preventer 26, which is equipped with a plurality of small-diameter communication holes 28, 28... in both impulse piping 7.12 connected to the In order to reduce it, during transient pressure fluctuations, the relatively high frequency flow determined by the length of the instrumentation piping due to the natural vibration of the fire can overwhelm the apparent indication vibration of 414 to as small as 1 min. Since a plurality of conductive holes 28 are provided in the palm, the possibility of clogging can be reduced.

この結果、流出、11Q定の・安定性が向上し指示振動
に」:る誤信号発生の可能性も小さくなり信頼性をあげ
ることができろ。
As a result, the stability of the 11Q constant due to leakage is improved, and the possibility of generating an erroneous signal due to indication vibration is reduced, increasing reliability.

なお、以上の実施例では、原子炉の主蒸気管2の流m測
定について説明したが、これ以外の配管内の流体をX:
圧の測定によって流量を測定するものにも同様に実茄す
ることができる。また当然ながら、圧力測定においても
同様に実施可能である。
In addition, in the above embodiment, the measurement of the flow m in the main steam pipe 2 of a nuclear reactor was explained, but the fluid in other pipes was measured by X:
The same method can be used to measure flow rate by measuring pressure. Naturally, the same method can also be applied to pressure measurements.

〔発明の効果〕〔Effect of the invention〕

本発明の流体の変量要素の測定装首は、このように措成
され作用覆るものであるから、配管内の流体の圧力や流
量客の流体の変量要素を翳1測する際に、圧力脈動の影
響を低減し、更に圧力変動時にJ3いても常に安定的に
かつ正確に測定表示することができ、かつ4器をff1
. a ’Jることができ、信頼性t)高い等の効果を
奏する。
Since the measuring device for variable elements of fluid according to the present invention is constructed and operated in this manner, it is possible to detect pressure pulsation when measuring the pressure of the fluid in piping or the variable element of the fluid at the customer's flow rate. Furthermore, even when pressure fluctuates, measurement and display can always be performed stably and accurately.
.. It has the following effects: high reliability and high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の流体の変ffl要素の測定5A首の一
実施例を示す配管系統図、第2図は本発明に使用する0
:力脈動防止器の一実施例を示ず断面図、第3図は第2
図のII[−1線に沿った断面図、第4図はy[力脈動
防止器の他の実施例を承け断面図、第5図は本発明の詳
細な説明するための出力波形図、第6図は従来の原子炉
主蒸気管の流τd測定装置を示ず配管系統図、第7図は
原子炉主蒸気管の圧力変動時の流量51の出力波形図、
第8図は従来のフィルタ回路を示づ回路図、第9図は従
来の機械的な絞り機構を示す断面図である。 2・・・主蒸気管、5.7.10.12・・・導L1配
管、1/1・・・流φ計(差圧δt)、26・・・圧力
脈動防止器、28・・・導通孔、30・・・配管継手。 出願人代理人  佐  必  −Jjl革 1 図 幕4図 To    時間 第6 図 TO時間 第 6図
Fig. 1 is a piping system diagram showing an embodiment of the measurement 5A neck of the fluid variable ffl element of the present invention, and Fig.
:A cross-sectional view, not showing an example of a force pulsation preventer.
4 is a cross-sectional view of another embodiment of the force pulsation preventer, and FIG. 5 is an output waveform diagram for explaining the present invention in detail. Fig. 6 is a piping system diagram without showing a conventional reactor main steam pipe flow τd measurement device, Fig. 7 is an output waveform diagram of the flow rate 51 during pressure fluctuations in the reactor main steam pipe,
FIG. 8 is a circuit diagram showing a conventional filter circuit, and FIG. 9 is a sectional view showing a conventional mechanical aperture mechanism. 2...Main steam pipe, 5.7.10.12...Leading L1 piping, 1/1...Flow φ meter (differential pressure δt), 26...Pressure pulsation preventer, 28... Conduction hole, 30...piping joint. Applicant's agent: S -JJL 1 Diagram 4 Figure To Time Figure 6 TO Time Figure 6

Claims (1)

【特許請求の範囲】 1、流路内の流体をその流路から計測用に導出する導圧
配管と、その導圧配管によって導かれて来る流体の圧力
または流量等の流体の変量要素を測定する計測機構とを
有する流体の変量要素の測定装置において、前記流路お
よび導圧配管内に発生する圧力脈動を低減させる複数の
導通孔を有する圧力脈動防止器を、前記導圧配管に設け
たことを特徴とする流体の変量要素の測定装置。 2、圧力脈動防止器は、複数の導通孔が穿設されている
本体の両端部に配管接続部を設けて形成されており、こ
れらの配管接続部には配管継手が一体的に組込まれてい
ることを特徴とする特許請求の範囲第1項記載の流体の
変量要素の測定装置。
[Claims] 1. A pressure piping that leads the fluid in a flow path from the flow path for measurement, and measurement of variable elements of the fluid such as pressure or flow rate of the fluid guided by the pressure piping. In the device for measuring a variable element of a fluid, the pressure pulsation preventer having a plurality of communication holes that reduces pressure pulsations occurring in the flow path and the pressure piping is provided in the pressure piping. A device for measuring variable elements of a fluid, characterized in that: 2. The pressure pulsation preventer is formed by providing piping connections at both ends of the main body, which has multiple conduction holes, and piping joints are integrally incorporated into these piping connections. An apparatus for measuring a variable element of a fluid according to claim 1, characterized in that:
JP10355686A 1986-05-06 1986-05-06 Measuring instrument for variate element of fluid Pending JPS62261017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10355686A JPS62261017A (en) 1986-05-06 1986-05-06 Measuring instrument for variate element of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10355686A JPS62261017A (en) 1986-05-06 1986-05-06 Measuring instrument for variate element of fluid

Publications (1)

Publication Number Publication Date
JPS62261017A true JPS62261017A (en) 1987-11-13

Family

ID=14357092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10355686A Pending JPS62261017A (en) 1986-05-06 1986-05-06 Measuring instrument for variate element of fluid

Country Status (1)

Country Link
JP (1) JPS62261017A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748564A1 (en) * 1996-05-10 1997-11-14 Corneal Ind DEVICE FOR MEASURING THE PRESSURE OF A LIQUID FLOWING IN A TUBE TOWARDS OR OUTSIDE THE HUMAN BODY
DE19523480C2 (en) * 1995-06-28 1999-06-10 Daimler Chrysler Ag Internal combustion engine with an exhaust gas turbocharger driven by the exhaust gas of the internal combustion engine
JP2008064696A (en) * 2006-09-11 2008-03-21 Mitsubishi Heavy Ind Ltd Resonance reducing device of connecting pipe
JP2012073271A (en) * 2011-12-09 2012-04-12 Mitsubishi Heavy Ind Ltd Resonance reduction device for connecting pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523480C2 (en) * 1995-06-28 1999-06-10 Daimler Chrysler Ag Internal combustion engine with an exhaust gas turbocharger driven by the exhaust gas of the internal combustion engine
FR2748564A1 (en) * 1996-05-10 1997-11-14 Corneal Ind DEVICE FOR MEASURING THE PRESSURE OF A LIQUID FLOWING IN A TUBE TOWARDS OR OUTSIDE THE HUMAN BODY
JP2008064696A (en) * 2006-09-11 2008-03-21 Mitsubishi Heavy Ind Ltd Resonance reducing device of connecting pipe
JP2012073271A (en) * 2011-12-09 2012-04-12 Mitsubishi Heavy Ind Ltd Resonance reduction device for connecting pipe

Similar Documents

Publication Publication Date Title
GB2210169A (en) Apparatus for monitoring or measuring differential fluid presure
EP0536313A4 (en) Improved flow measurement system
Gajan et al. The influence of pulsating flows on orifice plate flowmeters
KR20130009611A (en) System and method for diagnosing clogging of lead pipe
JPH03194421A (en) Venturi apparatus
CA1134245A (en) Anti-surge system for gases and other media
WO2010002432A1 (en) Insertable ultrasonic meter and method
JP2017511486A (en) Flowmeter
JPS62261017A (en) Measuring instrument for variate element of fluid
KR890004447B1 (en) Vortex Flowmeter
US8667848B2 (en) Pressure indicator
JP4858446B2 (en) Reactor water system piping and ultrasonic flow meter system
CN104110278A (en) Steam turbine pipe and pipe
JP3549603B2 (en) Flow measurement probe
JPS62226017A (en) Flow rate measuring device
JP2014048212A (en) Capillary tube bubble detection device and bubble detection method thereof
JP4581439B2 (en) Ultrasonic flow measurement system and ultrasonic flow measurement method
JP3182718B2 (en) Temperature detector for differential pressure flow meter and its protection tube
JP3117842B2 (en) Gas leak detection method
Mottram Damping criteria for pulsating gas flow measurement
Grimley Performance Testing of Ultrasonic Flow Meters
Dushin et al. Enhanced acoustic and hydrodynamic performance of cylindrical flow conditioners using rubber and steel fillers for gas metering
Lin et al. Pressure sensing line diagnostics in nuclear power plants
JPS63184031A (en) Pressure guide piping apparatus for instrumentation
JPH04181200A (en) Main steam flow meter for nuclear reactor