[go: up one dir, main page]

JPS62256488A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS62256488A
JPS62256488A JP9793686A JP9793686A JPS62256488A JP S62256488 A JPS62256488 A JP S62256488A JP 9793686 A JP9793686 A JP 9793686A JP 9793686 A JP9793686 A JP 9793686A JP S62256488 A JPS62256488 A JP S62256488A
Authority
JP
Japan
Prior art keywords
laser
semiconductor laser
reflectance
laser device
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9793686A
Other languages
Japanese (ja)
Inventor
Takashi Kajimura
梶村 俊
Kazuhisa Uomi
魚見 和久
Shinichi Nakatsuka
慎一 中塚
Misuzu Yoshizawa
吉沢 みすず
Yuichi Ono
小野 佑一
Shigeo Yamashita
茂雄 山下
Toshihiro Kono
河野 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9793686A priority Critical patent/JPS62256488A/en
Publication of JPS62256488A publication Critical patent/JPS62256488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光デイスクファイル用光源として用いる半導体
レーザに係り、特に記録、再生可能な光デイスク用光源
として好適な半導体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser used as a light source for optical disc files, and more particularly to a semiconductor laser device suitable as a light source for recordable and reproducible optical discs.

〔従来の技術〕[Conventional technology]

従来、記録再生が可能な光デイスク用光源としては単一
の高出力半導体レーザが用いられ、記録時には高出力、
再生時には低出力動作させていた。
Conventionally, a single high-output semiconductor laser has been used as a light source for optical discs capable of recording and reproducing.
During playback, it was operated at low output.

しかし、記録膜の高感度化に伴ない、再生時にレーザ光
による誤記録が生じるようになり、より低光出力での再
生が必要となった。しかし、従来のレーザでは高出力化
のため、レーザ端面を低反射率化しており、低出力動作
時には量子雑音が発生し、また戻り光雑音が容易に発生
するという問題が生じた。戻り光雑音に関しては例えば
応用物理学会予稿集昭和59年秋139−R−4におい
て論じられている。
However, as the sensitivity of recording films has increased, erroneous recording by laser light has started to occur during reproduction, and reproduction with lower optical output has become necessary. However, in order to increase the output power of conventional lasers, the laser end face has a low reflectance, which causes problems in that quantum noise is generated during low output operation, and return optical noise is easily generated. Return optical noise is discussed, for example, in Proceedings of the Japan Society of Applied Physics, Autumn 1982, 139-R-4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は再生時に低光出力動作させても量子雑音
が十分低く、かつ戻り光誘起雑音も発生し遥く、かつ記
録時には高出力動作させつる記録・再生用光ディスクの
光源を提供することにある。
An object of the present invention is to provide a light source for an optical disk for recording and reproducing which has sufficiently low quantum noise even when operating at low optical output during reproduction, and has far less return light induced noise, and which operates at high output during recording. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、光源として相互に独立変調が可能で、端面
反射率が10%前後と90%程度と大きく異なる2つの
半導体レーザを間隔300μm前後で隣接して並列配置
することにより、達成される。
The above object is achieved by arranging two semiconductor lasers as light sources, which can be modulated independently of each other and whose end face reflectances are significantly different from about 10% to about 90%, adjacent to each other in parallel with an interval of about 300 μm.

〔作用〕[Effect]

間隔300μm前後で並列配置した2つの半導体レーザ
よりの放射光は相互に極めて近接しているため、同一の
光学系を用いて光デイスク上に集光できるため、記録・
再生に同一の光学系が使用できる。また、2つの半導体
レーザのうち、一方のレーザの前方端面反射率は5〜1
0%と低くなっている。このため、このレーザの前方端
面よりは高効率で高出力のレーザ光が放射され効率的に
記録できる。もう一方のレーザ端面は前方反射率75〜
90%前後と高い、このため素子の微分量子効率が低く
なり、0.5〜1mWの低光出力動作でも量子雑音レベ
ルは低い、また、高反射率化により、ディスクよりの戻
り光に対しても安定で。
Since the emitted light from two semiconductor lasers arranged in parallel with a spacing of about 300 μm is extremely close to each other, they can be focused onto an optical disk using the same optical system, making recording and recording possible.
The same optical system can be used for playback. Also, among the two semiconductor lasers, the front end face reflectance of one laser is 5 to 1.
It is as low as 0%. Therefore, highly efficient and high power laser light is emitted from the front end face of this laser, allowing efficient recording. The other laser end face has a forward reflectance of 75~
As a result, the differential quantum efficiency of the element is low, and the quantum noise level is low even when operating at a low optical output of 0.5 to 1 mW.Also, due to the high reflectance, it is effective against return light from the disk. It's also stable.

戻り光誘起雑音が小さくなる。Return light induced noise is reduced.

〔実施例〕 以下、本発明の詳細な説明する。〔Example〕 The present invention will be explained in detail below.

〔実施例1〕 第1図において、1及び2は第1及び第2の半導体レー
ザ、3はレーザマウントを表わす。第1の半導体レーザ
1の前方端面には1/3.5 波長の厚さの5iOa膜
から成る低反射率膜(反射率約10%)4が、後方端面
には1/4波長の厚さの5iftとa−3i膜が各1層
の2層高反射率膜(反射率約75%)5が形成されてい
る。一方、第2の半導体レーザ2の場合には、Aとは逆
に前方端面に高反射率膜、後方端面に低反射率膜が形成
されている。半導体レーザAおよびBはチップ間隔を約
50μmにとり、レーザストライプが平行となるように
して、pn接合を上にしてレーザマウント3にボンディ
ングしである。レーザチップの巾は約300μmで、レ
ーザAおよびBの間隔は約350μmとなっている。A
およびBにはワイヤボンディングが施こしてあり、相互
に独立に駆動できる。半導体レーザAおよびBとしては
csp構造の素子を用いた。
[Example 1] In FIG. 1, 1 and 2 represent first and second semiconductor lasers, and 3 represents a laser mount. The front end facet of the first semiconductor laser 1 has a low reflectance film (reflectance of approximately 10%) 4 made of 5iOa film with a thickness of 1/3.5 wavelength, and the rear end facet has a film with a thickness of 1/4 wavelength. A two-layer high-reflectance film (reflectance of about 75%) 5 is formed, with one layer each of 5ift and a-3i films. On the other hand, in the case of the second semiconductor laser 2, contrary to A, a high reflectance film is formed on the front end face and a low reflectance film is formed on the rear end face. Semiconductor lasers A and B are bonded to a laser mount 3 with a chip spacing of about 50 μm, laser stripes parallel to each other, and pn junctions facing upward. The width of the laser chip is approximately 300 μm, and the distance between lasers A and B is approximately 350 μm. A
and B are wire bonded and can be driven independently of each other. As semiconductor lasers A and B, elements having a CSP structure were used.

本半導体レーザ装置を光ディスクのピックアップに搭載
し、特性を検討した6両レーザのストライプ間隔が約3
50μmと極めて近接しているため、同一の光学系を用
いて光デイスク上に両レーザのスポットを集光できた0
次に第1のレーザを光出力30mWで駆動することによ
り、ディスク上への記録を行なった。再生時には第2の
レーザを光出力約1mWで連続動作させ、ディスク上の
信号の読み取りを行なった。第2のレーザは前方端面の
反射率が約75%と高いため、ディスクよりの戻り光に
対して極めて安定であることが確認された。また、高反
射率化により量子雑音レベルも低く、高いS/Nでの信
号読み取りが可能で、再生時の相対雑音強度として10
 ”Hz−”以下の値を得た。さらに、第2のレーザを
用いた再生に際して、dc雷電流700〜1000 M
 Hzの高周波と重量することにより、再生時の雑音レ
ベルを一層低減できることが判明した。
This semiconductor laser device was mounted on an optical disk pickup, and the stripe spacing of the six lasers whose characteristics were studied was approximately 3.
Because they are extremely close to each other at 50 μm, we were able to focus the spots of both lasers on the optical disk using the same optical system.
Next, recording on the disc was performed by driving the first laser with an optical output of 30 mW. During reproduction, the second laser was operated continuously with an optical output of about 1 mW to read the signals on the disk. Since the second laser has a high reflectance of about 75% at its front end face, it was confirmed that it is extremely stable against the return light from the disk. In addition, due to the high reflectance, the quantum noise level is low, making it possible to read signals with a high S/N, and the relative noise intensity during playback is 10
A value of "Hz-" or less was obtained. Furthermore, during reproduction using the second laser, a dc lightning current of 700 to 1000 M
It has been found that the noise level during reproduction can be further reduced by using a high frequency of Hz.

〔実施例2〕 本発明の第2の実施例を第2図により説明する。[Example 2] A second embodiment of the invention will be described with reference to FIG.

第2図においては実施例1の半導体レーザ1および2が
同一基板上に七ノリシックに集積化されている6本構造
の半導体レーザ装置においても実施例1と同様な効果が
得られた。
In FIG. 2, the same effect as in Example 1 was obtained in a semiconductor laser device having a six-layer structure in which semiconductor lasers 1 and 2 of Example 1 were integrated seven times on the same substrate.

実施例1および2においては第1および第2の半導体レ
ーザの前方および後方端面反射率を10%および75%
としたが1本発明の効果は一方のレーザの反射率を低め
、他方を高めることにより得られることは言うまでもな
い、また、実施例では第1の半導体レーザの後方端面の
反射率を第2の半導体レーザの前方端面の反射率、第2
のレーザの後方端面反射率を第1のレーザの前方反射率
と同じとした場合について述べたが、これは本レーザ装
置を独立した2個の半導体レーザで構成するに際して、
同一のプロセスで作製したレーザを互いに逆向きにマウ
ントするだけで良い等作製が容易になる為であって1本
発明の効果は後方端面反射率の値によりず得られること
は言及するまでもない。
In Examples 1 and 2, the front and rear end face reflectances of the first and second semiconductor lasers were set to 10% and 75%.
However, it goes without saying that the effect of the present invention can be obtained by lowering the reflectance of one laser and increasing the other.In addition, in the embodiment, the reflectance of the rear end facet of the first semiconductor laser is changed to the reflectance of the second laser. Reflectance of the front facet of the semiconductor laser, second
We have described the case where the rear end face reflectance of the first laser is the same as the front reflectance of the first laser.
This is because manufacturing is easy, such as by simply mounting lasers manufactured in the same process in opposite directions.1 It goes without saying that the effects of the present invention can be obtained depending on the value of the rear end face reflectance. .

〔発明の効果〕〔Effect of the invention〕

本願発明によれば、光雑音が少ない、特に光デイスクフ
ァイル用光源に適した半導体レーザが得られる。
According to the present invention, it is possible to obtain a semiconductor laser which has low optical noise and is particularly suitable as a light source for optical disk files.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1の半導体レーザ装置の平面図
、第2図は実施例2の!rLl!18図である。 1・・・第1の半導体レーザ、2・・・第2の半導体レ
ーザ、3・・・レーザマウント、4・・・低反射率の端
面コーテイング膜、5・・・高反射率の端面コーテイン
グ膜。                    −第
 l 図 ′″fI 2 図
FIG. 1 is a plan view of a semiconductor laser device according to a first embodiment of the present invention, and FIG. 2 is a plan view of a semiconductor laser device according to a second embodiment of the present invention. rLl! This is Figure 18. DESCRIPTION OF SYMBOLS 1...First semiconductor laser, 2...Second semiconductor laser, 3...Laser mount, 4...Low reflectance end face coating film, 5...High reflectance end face coating film . -Figure 1'''fI 2

Claims (1)

【特許請求の範囲】 1、端面反射率が異なり、かつ相互に独立変調が可能な
2つの半導体レーザを隣接して並列配置したことを特徴
とする半導体レーザ装置。 2、特許請求の範囲第1項記載の半導体レーザ装置にお
いて、前記2つの半導体レーザが同一基板上にモノリシ
ックに集積化されていることを特徴とする半導体レーザ
装置。
[Scope of Claims] 1. A semiconductor laser device characterized in that two semiconductor lasers having different end face reflectances and capable of mutually independent modulation are arranged adjacently in parallel. 2. A semiconductor laser device according to claim 1, wherein the two semiconductor lasers are monolithically integrated on the same substrate.
JP9793686A 1986-04-30 1986-04-30 Semiconductor laser device Pending JPS62256488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9793686A JPS62256488A (en) 1986-04-30 1986-04-30 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9793686A JPS62256488A (en) 1986-04-30 1986-04-30 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS62256488A true JPS62256488A (en) 1987-11-09

Family

ID=14205550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9793686A Pending JPS62256488A (en) 1986-04-30 1986-04-30 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS62256488A (en)

Similar Documents

Publication Publication Date Title
JPS62256488A (en) Semiconductor laser device
JP2003188454A (en) Semiconductor laser device and integrated optical pickup
JPH0582757B2 (en)
JPH10312577A (en) Optical submodule and manufacture thereof
JP2765839B2 (en) 2-beam optical head
JP2001007432A (en) Semiconductor light-emitting device
JP3464917B2 (en) Method of manufacturing semiconductor laser device
JP3674266B2 (en) Laser equipment
KR100272368B1 (en) High density optical recording reproducing medium and recording reproducing device and manufacturing method thereof
JP3451021B2 (en) Semiconductor laser device and method of manufacturing semiconductor laser device
JP3712180B2 (en) Integrated optical pickup module and optical pickup
JP2007157909A (en) Semiconductor light-receiving element, and optical pickup device having the same
JP3412603B2 (en) Optoelectronic devices
JPS61137228A (en) Regenerating method of optical disk
JP3131497B2 (en) Optical head device
JPH08339570A (en) Optical head for optical recording and reproducing device
JP4425485B2 (en) Optical pickup head and information recording / reproducing apparatus
JP3524699B2 (en) Semiconductor laser device and optical pickup using the same
TWI357600B (en) Device with multiple light sources
JPS63155434A (en) Optical disc information reproducing device
JP2000123394A (en) Optical recording information reproducing device
JP3284591B2 (en) Optical disc recording method
JPH11316967A (en) Photodetecting element united semiconductor laser unit and optical pickup device
JP2004327608A (en) Sub-mount, laser module, optical device, semiconductor laser device and its manufacturing method
JPH10177732A (en) Optical recording / reproducing method, optical recording / reproducing device, semiconductor laser device, and method of manufacturing the same