JPS62255810A - Method and device for measuring depth of very small groove - Google Patents
Method and device for measuring depth of very small grooveInfo
- Publication number
- JPS62255810A JPS62255810A JP9808786A JP9808786A JPS62255810A JP S62255810 A JPS62255810 A JP S62255810A JP 9808786 A JP9808786 A JP 9808786A JP 9808786 A JP9808786 A JP 9808786A JP S62255810 A JPS62255810 A JP S62255810A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wavelength
- order diffracted
- sample
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、VLS Iのキャパシタ用に形成された溝や
穴のように、平面上に等間隔に配列された微少溝の深さ
を簡便に且つ精度良く測定する方法および装置に関する
ものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for easily controlling the depth of minute grooves arranged at equal intervals on a plane, such as grooves and holes formed for VLSI capacitors. The present invention relates to a method and apparatus for measuring with high accuracy.
VLS Iのキャパシタ用の微少溝は深さ3〜5μm1
幅0.5〜1μm1ピツ千数μm〜数十μmで形成され
ており、その深さを測定する方法として、Si基板を切
断しその断面を走査電子顕微鏡で観察するものがあった
。しかし、この方法は破壊による測定であるため、測定
した素子そのものは測定後には最早素子として使用でき
なくなるという欠点を有していた。The micro groove for the VLS I capacitor has a depth of 3 to 5 μm1.
It is formed with a width of 0.5 to 1 μm and a width of several thousand μm to several tens of μm, and one method for measuring its depth is to cut the Si substrate and observe its cross section with a scanning electron microscope. However, since this method involves destructive measurement, it has the disadvantage that the measured element itself can no longer be used as an element after the measurement.
一方、非破壊で溝の深さを測定する方法として光の干渉
を用いた測定方法が研究されている。第7図はこの測定
方法を示した概略構成図である。On the other hand, a measurement method using optical interference is being researched as a non-destructive method of measuring the depth of a groove. FIG. 7 is a schematic diagram showing this measuring method.
キャパシタ溝が形成されているSi基板1に対して垂直
に狭帯域波長の照射光2を入射する。この照射光2の波
長は、短波長側から長波長側に走査されており、1走査
を1〜10分程度で行っている。Irradiation light 2 having a narrow band wavelength is perpendicularly incident on a Si substrate 1 in which a capacitor groove is formed. The wavelength of this irradiation light 2 is scanned from the short wavelength side to the long wavelength side, and one scan is performed in about 1 to 10 minutes.
垂直入射した光2は垂直に反射すると共に、基板1に形
成されているセルの寸法が波長オーダであることから回
折する。符号3はその回折光を示し、符号4は回折光の
強度を検出するための検出器を示している。回折理論を
用いると、高次の回折光の強度■は
・・・(1)
で与えられる。ここに、Scはセル表面(溝以外の部分
)の面積、Stは溝部分の表面積、σは溝内の光の減衰
量、dは溝深さ、λは入射光の波長を表している。The vertically incident light 2 is reflected vertically and is also diffracted because the dimensions of the cells formed on the substrate 1 are on the wavelength order. Reference numeral 3 indicates the diffracted light, and reference numeral 4 indicates a detector for detecting the intensity of the diffracted light. Using diffraction theory, the intensity ■ of higher-order diffracted light is given by... (1). Here, Sc is the area of the cell surface (portion other than the groove), St is the surface area of the groove portion, σ is the amount of attenuation of light in the groove, d is the groove depth, and λ is the wavelength of the incident light.
この式から判るように、λを変化させることにより、強
度Iが変化し、その変化は溝深さdに依存する。しかも
、減衰量σは0.7とか0.8といった1に近い値をと
るものであるため、干渉成分’)、Fcos (4rc
d / λ)の値は直流成分(1+σ)との比較にお
いて十分に大きな値をとることができ、全体の強度■に
対する影響力は大きい。したがって、波長λを変化させ
ると回折光強度Iは大きなコントラストで変化し、溝深
さdの検出が可能となる(第46回応用物理学会学術講
演会 講演予稿集、 1985年秋期 2p−H−13
)。As can be seen from this equation, by changing λ, the intensity I changes, and the change depends on the groove depth d. Moreover, since the attenuation amount σ takes a value close to 1, such as 0.7 or 0.8, the interference component'), Fcos (4rc
The value of d/λ) can take a sufficiently large value in comparison with the DC component (1+σ), and has a large influence on the overall intensity ■. Therefore, when the wavelength λ is changed, the diffracted light intensity I changes with a large contrast, making it possible to detect the groove depth d. 13
).
しかし、高次の回折光は反射強度が極めて小さく、n次
回折光の存在する位置に検出器4を設定するという位置
合わせも、測定毎に行う必要があるという欠点を有して
いた。However, the reflection intensity of high-order diffracted light is extremely low, and the detector 4 has to be positioned at the position where the n-th order diffracted light is present, which requires alignment for each measurement.
本発明は上記問題点に鑑みてなされたものであり、波長
が走査されている狭帯域波長の光を微少溝が設けられて
いる試料表面に対して入射してその0次回折光の強度を
測定し、波長変化に応じた強度変化から前記微少溝の深
さを算出するものである。また、波長が走査されている
狭帯域波長の光を微少溝が設けられている第1の試料表
面に対して入射してその0次回折光の強度を測定し、前
紀元を前記第1の試料と同一素材であってその表面が平
らな第2の試料に対して入射してその0次回折光の強度
を測定し、前記第1の試料による0次回折光の強度を前
記第2の試料による0次回折光の強度で除算し、波長変
化に応じた除算結果の変化から前記微少溝の深さを算出
するものである。The present invention has been made in view of the above-mentioned problems, and involves measuring the intensity of the 0th-order diffracted light by making the wavelength-scanned narrow band wavelength light incident on the surface of a sample provided with microgrooves. However, the depth of the micro groove is calculated from the change in intensity according to the change in wavelength. Further, light having a narrow band wavelength whose wavelength is scanned is incident on the surface of the first sample provided with the microgrooves, and the intensity of the 0th order diffracted light is measured, and the previous epoch is determined from the first sample surface. The intensity of the 0th order diffracted light is measured by entering a second sample made of the same material with a flat surface, and the intensity of the 0th order diffracted light from the first sample is equal to the 0th order diffraction light from the second sample. The depth of the micro groove is calculated by dividing by the intensity of the next diffracted light and by changing the division result according to the change in wavelength.
0次回折光を測定するものであるので、高次の回折光を
測定する場合に比べて皇かに強い干渉光強度が得られる
。また0次回折光は正反射した光に他ならず、その方向
は入射光の入射角によって一義的に定まるため、回折光
検出のための検出器の位置合わせが非常に容易であり、
そのための調整はほとんど不要である。Since the 0th-order diffracted light is measured, a much stronger interference light intensity can be obtained than when measuring higher-order diffracted light. Furthermore, the 0th order diffracted light is nothing but specularly reflected light, and its direction is uniquely determined by the angle of incidence of the incident light, so it is very easy to align the detector for detecting the diffracted light.
Almost no adjustment is necessary for this purpose.
以下、実施例と共に本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail along with examples.
第1図は本発明の一実施例を説明するための構成図であ
り、第7図と同一もしくは相当部分には同一の符号を付
しである。同図において、5は白色光源、6はスリット
、7および13はレンズ、8は光学可変フィルタとして
の音響光学フィルタ、9はハーフミラ−210は増幅器
、11は波形観測装置、12はスィーブオシレータであ
る。FIG. 1 is a block diagram for explaining one embodiment of the present invention, and the same or corresponding parts as in FIG. 7 are given the same reference numerals. In the figure, 5 is a white light source, 6 is a slit, 7 and 13 are lenses, 8 is an acousto-optic filter as an optical variable filter, 9 is a half mirror, 210 is an amplifier, 11 is a waveform observation device, and 12 is a sweep oscillator. be.
白色光源5からの白色光をスリット6を用いて取り出し
、レンズ7で集光して音響光学フィルタ8へ導入する。White light from a white light source 5 is extracted using a slit 6, focused by a lens 7, and introduced into an acousto-optic filter 8.
音響光学フィルタ8は、二酸化テルル単結晶内を伝播す
る横波超音波によって生じる異方回折を利用したもので
あり、入射する白色光から単色光に近い狭帯域の色を取
り出すことができる。しかも、この取り出し得る狭帯域
の光の波長を短波長側から長波長側へあるいは長波長側
から短波長側へ高速に走査することができるものであり
、このときの走査周波数はスイープオシレータ12によ
り設定することができる。本実施例では、増幅器10の
増幅帯域に関係から走査周波数をIKHzに設定した。The acousto-optic filter 8 utilizes anisotropic diffraction generated by transverse ultrasonic waves propagating in a tellurium dioxide single crystal, and can extract a narrow band color close to monochromatic light from the incident white light. Moreover, the wavelength of the narrow band of light that can be extracted can be scanned at high speed from the short wavelength side to the long wavelength side or from the long wavelength side to the short wavelength side, and the scanning frequency at this time is determined by the sweep oscillator 12. Can be set. In this embodiment, the scanning frequency is set to IKHz in relation to the amplification band of the amplifier 10.
このように変調された光はレンズ13によって平行光線
に変換され、さらにハーフミラ−9を通してキャパシタ
用の微少溝が形成されているSi基板1に垂直に入射さ
れる。The light thus modulated is converted into a parallel beam by the lens 13, and is further incident perpendicularly through the half mirror 9 onto the Si substrate 1 in which a microgroove for a capacitor is formed.
第2図はSi基板1での光の回折の様子を示す概略断面
図であり、入射光20はセル表面1aおよび溝表面1b
で回折する。同図から、基板1に垂直にすなわち入射光
20に沿って0次回折光21が反射し、その両側に高次
回折光22が広がる様子が判る。FIG. 2 is a schematic cross-sectional view showing the state of light diffraction in the Si substrate 1, and the incident light 20 is transmitted to the cell surface 1a and the groove surface 1b.
diffracts at From the figure, it can be seen that the 0th-order diffracted light 21 is reflected perpendicularly to the substrate 1, that is, along the incident light 20, and the higher-order diffracted light 22 spreads on both sides thereof.
垂直に反射した0次回折光は再びハーフミラ−9に至り
、ここで反射されて検出器4に導かれ、その強度が電気
信号に変換される。検出器4の出力信号は増幅器10で
増幅され、波形観測装置11に供給される。The vertically reflected zero-order diffracted light reaches the half mirror 9 again, is reflected there, and is guided to the detector 4, where its intensity is converted into an electrical signal. The output signal of the detector 4 is amplified by an amplifier 10 and supplied to a waveform observation device 11 .
ここで、0次回折光の光強度について説明する。Here, the light intensity of the 0th order diffracted light will be explained.
セル表面1aおよび溝表面1bからの0次の回折光の電
場EcおよびEtはそれぞれ、
で与えられる。ここで、Scはセル表面(溝以外の部分
)の面積、Stは溝部分の表面積、σは溝内の光の減衰
量、dは溝深さ、λは入射光の波長を表している。そし
て、Etの位相項exp [−4πid]は、溝内の往
復による位相遅れを表している。The electric fields Ec and Et of the zero-order diffracted light from the cell surface 1a and the groove surface 1b are given by the following, respectively. Here, Sc is the area of the cell surface (portion other than the groove), St is the surface area of the groove portion, σ is the amount of attenuation of light in the groove, d is the groove depth, and λ is the wavelength of the incident light. The phase term exp[-4πid] of Et represents a phase delay due to reciprocation within the groove.
上記(2)式および(3)式から、0次回折光の強度I
(0) は、
1 ”’ = IEc+Et 1”
となる。From the above equations (2) and (3), the intensity I of the 0th order diffracted light
(0) becomes 1 "' = IEc+Et 1".
キャパシタ溝面積Stは一般にセル面積Scよりも遥か
に小さいため、0次回折光の強度■(0) は第(4)
式の中括弧内の第1項の寄与が大きく、干渉を表す第2
項[2! cos (4rc d / λ)コは観測さ
れ難い。しかし、本発明では波長λを短波長側から長波
長側へあるいは長波長側から短波長側へ高い周波数(本
実施例では上述したようにIKHz)で走査するため、
ノイズの除去が可能となり0次回折光の強度I(0)
の交流成分(干渉成分)のみを取り出すことができる。Since the capacitor groove area St is generally much smaller than the cell area Sc, the intensity of the 0th order diffracted light ■(0) is the (4th)
The first term in the curly brackets of the equation has a large contribution, and the second term, which represents interference,
Term [2! cos (4rc d / λ) is difficult to observe. However, in the present invention, since the wavelength λ is scanned from the short wavelength side to the long wavelength side or from the long wavelength side to the short wavelength side at a high frequency (in this embodiment, IKHz as described above),
Noise can be removed and the intensity of the 0th order diffracted light I(0)
Only the alternating current component (interference component) can be extracted.
いま、1 (01の交流成分(干渉成分)が最大となる
波長をλ。、つぎに最大となる波長をλ1とし、
Δλ=ス、−λ。 −(5)とする
と次式が成り立つ。Now, let the wavelength at which the alternating current component (interference component) of 1 (01 is maximum be λ.), then the wavelength at which it is maximum be λ1, and Δλ=s, −λ. −(5), then the following equation holds true.
4πd/λ。=4πd/ (λ。+Δλ)+2π・・・
(6)
これを変形すると、
d=λ。(λ。十Δλ)/ 2Δλ ・・・(7)
となり、溝深さdが測定できる。4πd/λ. =4πd/ (λ.+Δλ)+2π...
(6) Transforming this, d=λ. (λ. 1Δλ) / 2Δλ ... (7)
Therefore, the groove depth d can be measured.
第3図は具体的な測定波形を示す波形図であり、約5μ
mの深さのキャパシタ溝を測定した結果を示す。同図で
はλ。=510nm 、λ+ =536nmとなり、第
(7)式からd =5.2μmと測定された。Figure 3 is a waveform diagram showing a specific measurement waveform, approximately 5μ
The results of measuring a capacitor groove with a depth of m are shown. In the same figure, λ. = 510 nm, λ+ = 536 nm, and from equation (7) it was determined that d = 5.2 μm.
第4図は本発明の第2の実施例を示す概略構成図であり
、上記第1実施例に、表面が研磨されたSi基板40、
メカニカルシャッタ41.42および計算手段43が付
加されたものである。なお、ハーフミラ−9とSi基板
40との距離は、ハーフミラ−9とSi基板1との距離
とほぼ等しくなっている。FIG. 4 is a schematic configuration diagram showing a second embodiment of the present invention.
Mechanical shutters 41, 42 and calculation means 43 are added. Note that the distance between the half mirror 9 and the Si substrate 40 is approximately equal to the distance between the half mirror 9 and the Si substrate 1.
本実施例ではハーフミラ−9に光を導入するまでは上記
第1実施例と同じである。ハーフミラ−9に導入された
光は、メカニカルシャッタ41が開き42が閉じている
場合に、ハーフミラ−9で反射した光がメカニカルシャ
ッタ41を通り、表面研磨されたSi基板40で反射さ
れて再びメカニカルシャッタ41を通り、さらにハーフ
ミラ−9を透過して検出器4へ入る(第1の径路)。検
出器4へ導かれた光は電気信号に変換され、増幅器10
で交流成分のみ増幅されて計算手段43に入力される。This embodiment is the same as the first embodiment described above until light is introduced into the half mirror 9. When the mechanical shutter 41 is opened and the mechanical shutter 42 is closed, the light introduced into the half mirror 9 is reflected by the half mirror 9, passes through the mechanical shutter 41, is reflected by the surface-polished Si substrate 40, and is again mechanically transmitted. The light passes through the shutter 41 and further passes through the half mirror 9 to enter the detector 4 (first path). The light guided to the detector 4 is converted into an electrical signal and sent to the amplifier 10.
Only the alternating current component is amplified and input to the calculation means 43.
計算手段43では増幅器10からの光信号をスィーブオ
シレータ12の出力信号に同期させることにより、波長
λの変化に応じた干渉強度の静止波形を作り、これを記
憶する。The calculation means 43 synchronizes the optical signal from the amplifier 10 with the output signal of the sweep oscillator 12 to create a stationary waveform of interference intensity according to a change in wavelength λ, and stores this.
つぎに、メカニカルシャッタ41.42の状態を切り替
え、シャッタ41を閉じ42を開く。この場合は、光は
ハーフミラ−9を透過し、メカニカルシャッタ42を通
り、キャパシタ溝が形成されているSi基板1で反射さ
れ、再びメカニカルシャッタ42を通ってハーフミラ−
9で反射され、検出器4に導かれる(第2の径路)。こ
こでも、検出器4へ導かれた光は電気信号に変換され、
増幅器10で交流成分のみ増幅されて計算手段43に入
力され、スィーブオシレータ12の出力信号に同期させ
て波長λの変化に応じた干渉強度の静止波形を作り、記
憶する。Next, the states of the mechanical shutters 41 and 42 are switched to close the shutter 41 and open the shutter 42. In this case, the light passes through the half mirror 9, passes through the mechanical shutter 42, is reflected by the Si substrate 1 on which the capacitor groove is formed, passes through the mechanical shutter 42 again, and exits the half mirror.
9 and guided to the detector 4 (second path). Here too, the light guided to the detector 4 is converted into an electrical signal,
Only the alternating current component is amplified by the amplifier 10 and inputted to the calculation means 43, and in synchronization with the output signal of the sweep oscillator 12, a stationary waveform of the interference intensity corresponding to the change in the wavelength λ is created and stored.
つぎに、計算手段43内において、第2の径路を通った
光による強度すなわちキャパシタ溝の形成されたSi基
板1からの反射光強度を、第1の径路を通った光による
強度すなわち表面研磨されたSi基板40からの反射光
強度で入射光の波長に対応させて除算する。そしてその
結果をスィーブオシレータ12の出力に同期させて波形
観測装置11に出力する。Next, in the calculation means 43, the intensity of the light passing through the second path, that is, the intensity of the reflected light from the Si substrate 1 in which the capacitor groove is formed, is changed from the intensity of the light passing through the first path, that is, the intensity of the reflected light from the Si substrate 1 formed with the capacitor groove. The wavelength of the incident light is divided by the intensity of the reflected light from the Si substrate 40. The result is then synchronized with the output of the sweep oscillator 12 and output to the waveform observation device 11.
本実施例では白色光源の波長による強度の分布、波長に
よるSil板の反射強度の分布が上述した除算により補
正されるので、第5図の波形図に示すように強度分布の
ほぼ等しい干渉光の信号が観測でき、その結果を第(7
)弐に代入すれば溝深さdが算出される。本実施例では
、干渉光の信号が第1実施例の場合よりも一層明確とな
るため、さらに精度良くキャパシタ用の微少溝の深さを
測定できる。In this example, the distribution of the intensity according to the wavelength of the white light source and the distribution of the reflection intensity of the Sil plate according to the wavelength are corrected by the above-mentioned division, so that the interference light with almost equal intensity distribution is The signal can be observed, and the result is
)2, the groove depth d is calculated. In this embodiment, since the signal of the interference light becomes clearer than in the first embodiment, the depth of the microgroove for the capacitor can be measured with higher accuracy.
第6図は第3の実施例を示す概略構成図であり、第1実
施例の音響光学フィルタ8に代えて高速走査分光器60
を用いたものである。高速走査分光器60は400nm
〜600nmの波長の光を0.5秒で1走査すること
ができる光学可変フィルタとして機能する。FIG. 6 is a schematic configuration diagram showing a third embodiment, in which a high-speed scanning spectrometer 60 is used instead of the acousto-optic filter 8 of the first embodiment.
It uses High-speed scanning spectrometer 60 is 400 nm
It functions as an optical variable filter that can scan light with a wavelength of ~600 nm once in 0.5 seconds.
本実施例では、まず、白色光S:Sからの光をレンズ7
を介して高速走査分光器60のスリット62に入射させ
る。高速走査分光器60内の回折格子61はスィーブオ
シレータ12に同期して0.5秒で1回転しており、回
折格子61の各角度に対して一定の波長が高速走査分光
器60のスリット63から射出するので、0.5秒間で
400nm〜600nmの波長範囲を掃引する光が得ら
れる。この結果第1実施例と同様の原理でVLS Iの
溝の深さの測定が可能である。In this embodiment, first, the light from the white light S:S is transferred to the lens 7.
and enters the slit 62 of the high-speed scanning spectrometer 60 through the slit 62 of the high speed scanning spectrometer 60. The diffraction grating 61 in the high-speed scanning spectrometer 60 rotates once every 0.5 seconds in synchronization with the sweep oscillator 12, and a constant wavelength for each angle of the diffraction grating 61 is connected to the slit of the high-speed scanning spectrometer 60. 63, light that sweeps the wavelength range of 400 nm to 600 nm in 0.5 seconds can be obtained. As a result, the depth of the VLSI groove can be measured using the same principle as in the first embodiment.
なお、上記第1および第2実施例では、波長の走査周波
数をIKHzとし、第3実施例では2Hzとしているが
、I Hz以上のある程度高い周波数であれば十分に干
渉成分を抽出することができる。Note that in the first and second embodiments, the wavelength scanning frequency is IKHz, and in the third embodiment it is 2Hz, but interference components can be sufficiently extracted at a reasonably high frequency of IHz or higher. .
〔発明の効果〕
以上説明したように本発明の微少溝深さ測定方法および
その装置によれば、0次回折光を測定するものであるの
で、高次の回折光を測定する場合に比べて温かに強い干
渉光強度が得られる。そのため、溝の深さを一層正確に
測定することが可能となる。また0次回折光は正反射し
た光に他ならず、その方向は入射光の入射角によって一
義的に定まるため、回折光検出のための検出器の位置合
わせが非常に容易であり、そのための調整はほとんど不
要である。したがって、測定の再現性が極めて良いとい
う利点がある。[Effects of the Invention] As explained above, according to the micro-groove depth measuring method and apparatus of the present invention, since the 0th-order diffracted light is measured, the temperature is lower than when measuring higher-order diffracted light. A strong interference light intensity can be obtained. Therefore, it becomes possible to measure the depth of the groove more accurately. In addition, the 0th order diffracted light is nothing but specularly reflected light, and its direction is uniquely determined by the angle of incidence of the incident light, so it is very easy to align the detector for detecting the diffracted light. is almost unnecessary. Therefore, there is an advantage that the reproducibility of measurement is extremely good.
第1図は本発明の第1の実施例を示す概略構成図、第2
図は基板表面での回折の様子を示す断面図、第3図は第
1の実施例による測定結果を示す波形図、第4図は本発
明の第2の実施例を示す概略構成図、第5図は第2の実
施例による測定結果を示す波形図、第6図は第3の実施
例を示す概略構成図、第7図は従来の溝深さ測定方法を
示す概略構成図である。
1・・・微少溝が設けられたSi基板、4・・・検出器
、5・・・白色光源、8・・・音響光学フィルタ、9・
・・ハーフミラ−110・・・増幅器、11・・・波形
観測装置、12・・・スイープオシレータ、40・・・
表面が研磨されたSi基板、41.42・・・メカニカ
ルシャッタ、43・・・計算手段、60・・・高速走査
分光器。FIG. 1 is a schematic configuration diagram showing the first embodiment of the present invention;
3 is a waveform diagram showing the measurement results of the first embodiment. FIG. 4 is a schematic configuration diagram showing the second embodiment of the present invention. FIG. 5 is a waveform diagram showing measurement results according to the second embodiment, FIG. 6 is a schematic block diagram showing the third embodiment, and FIG. 7 is a schematic block diagram showing the conventional groove depth measuring method. DESCRIPTION OF SYMBOLS 1... Si substrate provided with minute grooves, 4... Detector, 5... White light source, 8... Acousto-optic filter, 9...
...Half mirror 110...Amplifier, 11...Waveform observation device, 12...Sweep oscillator, 40...
Si substrate with polished surface, 41.42... Mechanical shutter, 43... Calculation means, 60... High speed scanning spectrometer.
Claims (4)
設けられている試料表面に対して入射してその0次回折
光の強度を測定し、波長変化に応じた強度変化から前記
微少溝の深さを算出することを特徴とする微少溝深さ測
定方法。(1) The intensity of the 0th-order diffracted light is measured by inputting narrow band wavelength light whose wavelength is scanned onto the sample surface provided with microgrooves, and measuring the intensity of the 0th-order diffracted light according to the wavelength change. A micro groove depth measuring method characterized by calculating the depth of a groove.
出する白色光から狭帯域波長の光を波長を走査しながら
取り出す光学可変フィルタと、前記光学可変フィルタか
らの光の一部を透過してその透過光を微少溝が設けられ
ている試料表面に入射すると共に試料から反射された0
次回折光の一部を反射して所望の方向に取り出すハーフ
ミラーと、前記ハーフミラーで取り出された0次回折光
を受光してその強度に応じた電気信号を出力する検出器
と、前記電気信号を前記狭帯域波長の走査周期と同期し
て観測する波形観測装置とを備えた微少溝深さ測定装置
。(2) a white light source generating means; an optically variable filter that extracts light with a narrow band wavelength from the white light emitted by the white light source generating means while scanning the wavelength; and a variable optical filter that transmits a part of the light from the optically variable filter. The transmitted light is incident on the sample surface where microgrooves are provided, and the reflected light from the sample is
a half mirror that reflects a part of the order diffracted light and takes it out in a desired direction; a detector that receives the 0th order diffracted light taken out by the half mirror and outputs an electric signal according to its intensity; A micro groove depth measuring device comprising: a waveform observation device that observes in synchronization with the scanning period of the narrow band wavelength.
設けられている第1の試料表面に対して入射してその0
次回折光の強度を測定し、前記光を前記第1の試料と同
一素材であってその表面が平らな第2の試料に対して入
射してその0次回折光の強度を測定し、前記第1の試料
による0次回折光の強度を前記第2の試料による0次回
折光の強度で波長に対応させて除算し、波長に応じた除
算結果から前記微少溝の深さを算出することを特徴とす
る微少溝深さ測定方法。(3) The wavelength of light with a narrow band wavelength being scanned is incident on the first sample surface provided with microgrooves, and the 0
The intensity of the 0th-order diffracted light is measured, and the light is incident on a second sample that is made of the same material as the first sample and has a flat surface, and the intensity of the 0th-order diffracted light is measured. The intensity of the 0th-order diffracted light from the sample is divided by the intensity of the 0th-order diffracted light from the second sample in correspondence with the wavelength, and the depth of the microgroove is calculated from the division result according to the wavelength. Micro groove depth measurement method.
出する白色光から狭帯域波長の光を波長を走査しながら
取り出す光学可変フィルタと、前記光学可変フィルタか
らの光を受けその一部を反射し一部を透過するハーフミ
ラーと、前記ハーフミラーからの透過光(または反射光
)をその表面に垂直に入射する微少溝が設けられている
第1の試料と、前記ハーフミラーからの反射光(または
透過光)をその表面に垂直に入射し前記第1の試料と同
一素材であってその表面が平らな第2の試料と、前記ハ
ーフミラーと前記第1の試料との間の光路に配置され該
光路を選択的に遮断する第1のシャッタと、前記ハーフ
ミラーと前記第2の試料との間の光路に配置され該光路
を前記第1のシャッタと反対動作により遮断するシャッ
タと、前記第1の試料で反射した0次回折光であって前
記第1のシャッタを通過した後前記ハーフミラーで反射
(または前記ハーフミラーを透過)した第1の0次回折
光を受光してその強度に応じた第1の電気信号を出力す
ると共に前記第2の試料で反射した0次回折光であって
前記第2のシャッタを通過した後前記ハーフミラーを透
過(または前記ハーフミラーで反射)した第2の0次回
折光を受光してその0次回折光の強度に応じた第2の電
気信号を出力する検出器と、前記第1の電気信号で示さ
れた光強度を前記第2の電気信号で示された光強度で波
長に対応させて除算する演算手段と、前記演算手段の除
算結果を前記狭帯域波長の走査周期と同期して観測する
波形観測装置とを備えた微少溝深さ測定装置。(4) white light source generating means; an optical variable filter that extracts light with a narrow band wavelength from the white light emitted by the white light source generating means while scanning the wavelength; and a variable optical filter that receives the light from the optical variable filter and extracts a part of the light. A first sample that is provided with a half mirror that reflects and partially transmits light, a microgroove that allows the transmitted light (or reflected light) from the half mirror to enter perpendicularly on its surface, and the reflection from the half mirror. A second sample whose surface is made of the same material as the first sample and whose surface is flat, on which light (or transmitted light) is incident perpendicularly, and an optical path between the half mirror and the first sample. a first shutter disposed in the optical path between the half mirror and the second sample to selectively block the optical path; and a shutter disposed in the optical path between the half mirror and the second sample to block the optical path by an operation opposite to that of the first shutter. , the 0th-order diffracted light reflected by the first sample, which is reflected by the half mirror (or transmitted by the half mirror) after passing through the first shutter, is received and its intensity is determined. A first electric signal corresponding to the second sample is output, and the second electrical signal is transmitted through the half mirror (or reflected by the half mirror) after passing through the second shutter, which is the 0th order diffracted light reflected by the second sample. a detector that receives the 0th-order diffracted light and outputs a second electrical signal according to the intensity of the 0th-order diffracted light; and a detector that converts the light intensity indicated by the first electrical signal into the second electrical signal. A micro-groove depth measuring device comprising: arithmetic means for dividing according to the wavelength by the indicated light intensity; and a waveform observation device for observing the division result of the arithmetic means in synchronization with the scanning period of the narrow band wavelength. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9808786A JPS62255810A (en) | 1986-04-30 | 1986-04-30 | Method and device for measuring depth of very small groove |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9808786A JPS62255810A (en) | 1986-04-30 | 1986-04-30 | Method and device for measuring depth of very small groove |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62255810A true JPS62255810A (en) | 1987-11-07 |
Family
ID=14210557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9808786A Pending JPS62255810A (en) | 1986-04-30 | 1986-04-30 | Method and device for measuring depth of very small groove |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62255810A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0569609U (en) * | 1992-02-25 | 1993-09-21 | 横河電機株式会社 | Infrared thickness gauge |
US5412125A (en) * | 1991-02-06 | 1995-05-02 | L'oreal | Dipeptidic amides derived from glycyl-serine as surfactants or hydrating agents and cosmetic, pharmaceutical or alimentary compositions containing the same |
US5599947A (en) * | 1993-01-14 | 1997-02-04 | G. D. Searle & Co. | Fatty acid analogs and prodrugs |
US5859052A (en) * | 1993-01-14 | 1999-01-12 | G. D. Searle & Co. | Fatty acid analogs and prodrugs |
-
1986
- 1986-04-30 JP JP9808786A patent/JPS62255810A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5412125A (en) * | 1991-02-06 | 1995-05-02 | L'oreal | Dipeptidic amides derived from glycyl-serine as surfactants or hydrating agents and cosmetic, pharmaceutical or alimentary compositions containing the same |
JPH0569609U (en) * | 1992-02-25 | 1993-09-21 | 横河電機株式会社 | Infrared thickness gauge |
US5599947A (en) * | 1993-01-14 | 1997-02-04 | G. D. Searle & Co. | Fatty acid analogs and prodrugs |
US5670650A (en) * | 1993-01-14 | 1997-09-23 | G. D. Searle & Co. | Fatty acid analogs and prodrugs |
US5672769A (en) * | 1993-01-14 | 1997-09-30 | G. D. Searle & Co. | Fatty acid analogs and prodrugs |
US5719290A (en) * | 1993-01-14 | 1998-02-17 | G. D. Searle & Co. | Fatty acid analogs and prodrugs |
US5859052A (en) * | 1993-01-14 | 1999-01-12 | G. D. Searle & Co. | Fatty acid analogs and prodrugs |
US5929110A (en) * | 1993-01-14 | 1999-07-27 | G. D. Searle & Co. | Fatty acid analogs and prodrugs |
US5952377A (en) * | 1993-01-14 | 1999-09-14 | G. D. Searle & Co. | Fatty acid analogs and prodrugs |
US5981580A (en) * | 1993-01-14 | 1999-11-09 | G. D. Searle & Co. | Fatty acid analogs and prodrugs |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5377006A (en) | Method and apparatus for detecting photoacoustic signal | |
US5491552A (en) | Optical interferometer employing mutually coherent light source and an array detector for imaging in strongly scattered media | |
US7397596B2 (en) | Surface and subsurface detection sensor | |
US4966459A (en) | Broadband optical detection of transient motion from a scattering surface | |
JP3657362B2 (en) | Optical pulse characteristic measuring apparatus and measuring method thereof | |
JPH07311182A (en) | Evaluation of sample by measurement of thermo-optical displacement | |
US7002695B2 (en) | Dual-spot phase-sensitive detection | |
US7903238B2 (en) | Combination of ellipsometry and optical stress generation and detection | |
US6204926B1 (en) | Methods and system for optically correlating ultrashort optical waveforms | |
Katayama et al. | Real-time time–frequency imaging of ultrashort laser pulses using an echelon mirror | |
US5872629A (en) | Analytical depth monitor utilizing differential interferometric analysis | |
JPS62255810A (en) | Method and device for measuring depth of very small groove | |
JPS6134430A (en) | Active mirror wave-front sensor | |
JPS6338102A (en) | Method and device for measuring fine displacement | |
JPH08271337A (en) | Spectroscope | |
US6952261B2 (en) | System for performing ellipsometry using an auxiliary pump beam to reduce effective measurement spot size | |
JP7128516B2 (en) | How to measure interference signals in dual comb spectroscopy | |
JP3340792B2 (en) | Microstructure measuring device | |
US10132681B2 (en) | Noise reduction apparatus and detection apparatus including the same | |
JP2020085545A (en) | Optical space measuring device | |
JPH0875433A (en) | Surface form measuring device | |
SU1763884A1 (en) | Method for thickness measuring of optically transparent objects | |
KR100449654B1 (en) | Method and apparatus for monitoring the density of Gadolinium atomic vapor | |
JPS62259006A (en) | Interference film thickness measuring instrument | |
JP2000002690A (en) | Optical interferometer for detection ultrasonic oscillation |