JPS62251709A - Objective lens for optical disk - Google Patents
Objective lens for optical diskInfo
- Publication number
- JPS62251709A JPS62251709A JP9540086A JP9540086A JPS62251709A JP S62251709 A JPS62251709 A JP S62251709A JP 9540086 A JP9540086 A JP 9540086A JP 9540086 A JP9540086 A JP 9540086A JP S62251709 A JPS62251709 A JP S62251709A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- objective lens
- curvature
- condition
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 25
- 230000004075 alteration Effects 0.000 abstract description 25
- 206010010071 Coma Diseases 0.000 abstract description 5
- 239000004065 semiconductor Substances 0.000 abstract description 5
- 239000011521 glass Substances 0.000 description 6
- 239000006059 cover glass Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 201000009310 astigmatism Diseases 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
Landscapes
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はDAD等ディスクの情報を再生するために用い
るピックアップ光学系の対物レンズに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an objective lens of a pickup optical system used for reproducing information from a disk such as a DAD.
従来、この種のピックアップ光学系には、第8図に示す
ように対物レンズが単レンズで構成されていても、入射
する光束を平行光束にするために、対物レンズ以外にコ
リメータレンズ(qを必要とした。あるいは、コリメー
タレンズを必要としない場合は、第9図に示すように、
対物レンズが4枚で構成さ・れていた。第8図において
コリメータレンズに固定状態で使用されるが対物レンズ
は可動状態で使用されるので、2本のレンズ鏡胴が必要
であシ、全体の光学系としての光軸の調整が大変である
。ここで対物レンズが単レンズである場合、このレンズ
は通常非球面レンズであるので、偏心に対する性能劣下
が著しく大きく光軸の調整にはきびしい精度が必要とな
る。一方、第9図のように対物レンズが複数のレンズよ
り構成される場合、性能劣下を避けるために鏡胴のきび
しい精度が必要となる。また、単レンズに比べて、鏡胴
面積も大きくせねばならず、温度変化による鏡胴のひず
みからレンズに偏心がおこり、性能が劣下するという問
題が生じる。Conventionally, this type of pickup optical system has a collimator lens (q Or, if a collimator lens is not required, as shown in Figure 9,
The objective lens was composed of four lenses. In Figure 8, the collimator lens is used in a fixed state, but the objective lens is used in a movable state, so two lens barrels are required, and it is difficult to adjust the optical axis of the entire optical system. be. If the objective lens is a single lens, this lens is usually an aspherical lens, so the performance deteriorates significantly with respect to eccentricity, and the adjustment of the optical axis requires severe precision. On the other hand, when the objective lens is composed of a plurality of lenses as shown in FIG. 9, strict precision of the lens barrel is required to avoid performance deterioration. Furthermore, compared to a single lens, the area of the lens barrel must be larger, and distortion of the lens barrel due to temperature changes causes decentering of the lens, resulting in a problem of degraded performance.
本発明は、これらの問題を軽減するために、コリメータ
レンズを必要とせず、半導体レーザからの光を直接うけ
とり、ディスクに集光させる単レンズを具体的に提供す
ることを目的とする。In order to alleviate these problems, it is an object of the present invention to specifically provide a single lens that directly receives light from a semiconductor laser and focuses it on a disk without requiring a collimator lens.
以下、本発明について、さらに詳細に説明する。The present invention will be explained in more detail below.
本発明に係る対物レンズは、コリメータレンズを使用し
ないので投影倍率βが−−くβ<−、の範囲内で収差が
良好に補正されている。倍率がm−を越えて犬きくなる
と、光源から光ディスクまでの距離を十分に短くするこ
とができず、光学系のコンパクト化を達成できない。ま
た倍率が 。Since the objective lens according to the present invention does not use a collimator lens, aberrations are well corrected within the range where the projection magnification β is - and β<-. If the magnification exceeds m-, the distance from the light source to the optical disk cannot be sufficiently shortened, and the optical system cannot be made more compact. Also, the magnification is .
m−を越えて小さくなると、ビームスプリッタ等の光学
系を支配′する余地がとれず、また対物レンズが傾いて
と9つけられた場合に収差を良好に補正する為に必要な
像高範囲が十分得られない。従って、本発明に係る対物
レンズは、−一<β<−一の範囲内で用いられる。If it becomes smaller than m-, there will not be enough room to dominate the optical system such as a beam splitter, and if the objective lens is tilted, the image height range necessary to properly correct aberrations will be insufficient. I can't get enough. Therefore, the objective lens according to the present invention is used within the range of -1<β<-1.
ここで、β−0の状態で収差補正された従来の対物レン
ズを、そのまま、コリメータレンズを必要としないピッ
クアップ光学系の対物レンズとして、倍率−一くβくm
−の範囲内で用いると、開0数NAが減少するので1μ
mの分解能を得ることができない。つまり−=Oのとき
の開口数をN A c。Here, a conventional objective lens that has been aberration-corrected in the β-0 state is used as an objective lens for a pickup optical system that does not require a collimator lens, and the magnification is - β × m.
If used within the range of -, the numerical aperture NA will decrease, so 1μ
m resolution cannot be obtained. In other words, the numerical aperture when -=O is N A c.
とし、βくOのときの開口数をNAβとするとNAβ=
NA■/(1−β)
が成立するが、NAω= 0.45の対物レンズをβ結
果β=−一では1μmの分解能を得ることができない。And if the numerical aperture when β is O is NAβ, then NAβ=
NA■/(1-β) holds true, but a resolution of 1 μm cannot be obtained with an objective lens of NAω=0.45 and β=−1.
そこで、有限物点に対するNAβを大きくするために、
レンズの口径を拡大すると、軸上ておいて球面収差が軸
外においてコマ収差が著しく発生し、これらの収差補正
が困難である。Therefore, in order to increase NAβ for finite object points,
When the aperture of the lens is enlarged, spherical aberration significantly occurs on the axis, and comatic aberration occurs significantly off-axis, making it difficult to correct these aberrations.
そこで、本発明に関わる対物レンズは、半導体レーザか
らの光を直接単レンズでうけとるために光源側の開口数
で決まる値以上の倍率を有し、その際必然的に発生する
軸外における著しい非収差及びコマ収差を補正するため
に、以下のような構成を有する。つまりこの対物レンズ
は第1,2.3図に示されるように、光源側の面が正の
屈折力を有する非球面を有し、ディスク側の面が正の屈
折力を有する単レンズ(L)よりなる光デイスク用対物
レンズであって、投影倍率がm−くβくm−の範囲内で
用いられ、以下の条件を満足することを特徴とする。Therefore, the objective lens according to the present invention has a magnification greater than the value determined by the numerical aperture on the light source side in order to directly receive light from a semiconductor laser with a single lens, and the significant off-axis distortion that inevitably occurs at this time. In order to correct aberrations and coma, the following configuration is used. In other words, as shown in Figures 1 and 2.3, this objective lens has an aspherical surface with positive refractive power on the light source side surface, and a single lens (L) with positive refractive power on the disk side surface. ) is characterized in that it is used within the range of projection magnification m- β x m- and satisfies the following conditions.
(1) 0.9<(N−1) r 1/f<3.9(
2) 0.6 <□・ (N−1)<1.7r2
(330,5<ε<1.5
但し、
N:対物レンズの屈折率
rB対物レンズの最も光源側の面の近軸曲率半径
rl:対物レンズのディスク側の面の曲率半径ξ二円錐
定数
である。(1) 0.9<(N-1) r 1/f<3.9(
2) 0.6 <□・(N-1)<1.7r2 (330,5<ε<1.5 where, N: refractive index of the objective lens rB paraxial radius of curvature of the surface of the objective lens closest to the light source rl: radius of curvature ξ of the disk-side surface of the objective lens; biconic constant;
ここで、条件(1)から条件(3)は収差をよく補正す
るための条件である。Here, conditions (1) to (3) are conditions for well correcting aberrations.
条件(υの下限を超えて、単レンズ(L)の最も光源側
の面の近軸曲率半径(rl)が小さくなるとコマ収差の
補正が困難になる。また条件(1)の下限を超えて、単
レンズ(L)の屈折率(N)が小さくなると、所定の値
の焦点距離を確保するためには、最も光源側の面の近軸
曲率半径(rl)あるいはディスク側の面の曲率半径(
rl)の絶対値を小さくせねばならないが、そのどちら
を行ってもコマ収差の補正が困難となる。このように、
光源側の面の近軸曲率半径(rl)あるいは単レンズ(
L)の屈折率(N)のいずれかが条件(1]の下限を越
えて小さくなると、コマ収差の補正が困難になる。一方
、本発明のようなレンズでは、最も光源側の面の近軸曲
率半径(rl)が犬きくなると瞳の周辺で著しいコマフ
レアが発生する、これは高屈折率ガラスを使うことによ
って補正することができるが、最も光源側の面の近軸曲
率半径(rl)と屈折率(N)の組み合わせが条件(1
)の上限を越えるような値になると非点収差が発生して
軸外性能を良好に保つことができなくなる。If the lower limit of condition (υ is exceeded and the paraxial radius of curvature (rl) of the surface closest to the light source of the single lens (L) becomes small, it becomes difficult to correct comatic aberration. Also, if the lower limit of condition (1) is exceeded, , when the refractive index (N) of the single lens (L) becomes smaller, in order to ensure a predetermined focal length, the paraxial radius of curvature (rl) of the surface closest to the light source or the radius of curvature of the surface closest to the disk must be increased. (
It is necessary to reduce the absolute value of rl), but either of these methods makes it difficult to correct comatic aberration. in this way,
The paraxial radius of curvature (rl) of the surface on the light source side or the single lens (
If either of the refractive indexes (N) of L) becomes smaller than the lower limit of condition (1), it becomes difficult to correct comatic aberration.On the other hand, in the lens of the present invention, the lens closest to the light source side When the axial radius of curvature (rl) becomes sharp, significant coma flare occurs around the pupil. This can be corrected by using high refractive index glass, but the paraxial radius of curvature (rl) of the surface closest to the light source The combination of and refractive index (N) is the condition (1
), astigmatism occurs and it becomes impossible to maintain good off-axis performance.
条件(2〕は軸外収差を良好に補正するための条件であ
る。単レンズ(L)において、所定の焦点距離のもとで
、条件(2)の上限を越えて屈折率が大きくなると、デ
ィスク側面の曲率半径(rl)の絶対値が大きくなり、
非点収差が発生する、また条件(2)の上限を越えてデ
ィスク側の面の曲率半径(rl)の絶対値に対して光源
側の面の近軸曲率半径(rl)の比が大きくなると、デ
ィスク側の面の曲率半径(rl)の絶対値が小さくなり
すぎ、その結果コマ収差が発生し軸外で良好に補正する
ことが困難になる。一方、条件(2)の下限を越えて対
物レンズ(L)の屈折率が小さくなると、ディスク側の
面の曲率半径(rl)の絶対値が小さくなってコマ収差
が発生する。また条件(2)の下限を越えてディスク側
の面(r 2)の曲率半径の絶対値に対して光源側の面
の曲率半径(rl)の比が小さくなると、ディスク側の
面の曲率半径(rl)の絶対値が大きくなりすぎ、非点
収差が発生して所望の像高にわたって良好な性能を保つ
ことができない。Condition (2) is a condition for good correction of off-axis aberrations.In a single lens (L), if the refractive index exceeds the upper limit of condition (2) at a predetermined focal length, The absolute value of the radius of curvature (rl) of the side surface of the disk increases,
Astigmatism occurs, and the ratio of the paraxial radius of curvature (rl) of the surface on the light source side to the absolute value of the radius of curvature (rl) of the surface on the disk side increases beyond the upper limit of condition (2). , the absolute value of the radius of curvature (rl) of the disk-side surface becomes too small, resulting in coma aberration that is difficult to correct well off-axis. On the other hand, if the refractive index of the objective lens (L) decreases beyond the lower limit of condition (2), the absolute value of the radius of curvature (rl) of the disk-side surface decreases, causing coma aberration. Furthermore, if the lower limit of condition (2) is exceeded and the ratio of the radius of curvature (rl) of the surface on the light source side to the absolute value of the radius of curvature of the surface on the disk side (r2) becomes small, then the radius of curvature of the surface on the disk side (r2) becomes smaller. The absolute value of (rl) becomes too large and astigmatism occurs, making it impossible to maintain good performance over a desired image height.
条件(3〕は軸上収差を良好に補正するための式である
。条件(3)の上限を越えて円錐定数が大きくなると特
に光束の周辺でアンダーな球面収差が発生し、補正が困
難になる。一方条件(3)の下限を越えて円錐定数が小
さくなると、オーバーな球面収差が発生し補正が困難に
なる。Condition (3) is a formula for properly correcting axial aberrations.If the conic constant increases beyond the upper limit of condition (3), under-spherical aberrations will occur especially around the periphery of the light beam, making correction difficult. On the other hand, if the conic constant becomes smaller than the lower limit of condition (3), excessive spherical aberration will occur and correction will become difficult.
以上の条件を満足することにより、半導体レーザからの
光を直接うけとり軸外まで収差が良好に補正された単レ
ンズが得られる。この単レンズは、両面が非球面あるい
は非球面と球面との組み合わせで構成され、各々の面の
光軸が合致すれば単レンズの外径精度はゆるくてすみ、
芯取シの必要度は軽減される。また、鏡胴の精度面での
要求度も低く、その単レンズを保持する鏡胴に平行、傾
き、偏心に対する調整機構を設ければ、単レンズがもつ
性能を保持することが可能である。この結果、低コスト
化を達成することができる。なお、非球面の加工法につ
いては、ガラスであればモールド製法などが適用可能で
ある。また非球面形状を成した樹脂層、又はプラスチッ
ク材等を球面ガラスに接合することも可能である。By satisfying the above conditions, it is possible to obtain a single lens which directly receives light from the semiconductor laser and whose aberrations are well corrected even off-axis. This single lens is composed of aspheric surfaces on both sides or a combination of an aspheric surface and a spherical surface, and as long as the optical axes of each surface match, the precision of the outer diameter of the single lens can be relaxed.
The need for centering is reduced. Further, the requirements for precision of the lens barrel are low, and if the lens barrel that holds the single lens is provided with an adjustment mechanism for parallelism, inclination, and eccentricity, it is possible to maintain the performance of the single lens. As a result, cost reduction can be achieved. As for the processing method for the aspherical surface, if it is made of glass, a molding method or the like can be applied. It is also possible to bond an aspherical resin layer or plastic material to the spherical glass.
以下、本発明の実施例を示す。Examples of the present invention will be shown below.
実施例中、rgt 、 rgzは半導体レーザのカバー
ガラス(g)の光源側及びディスク側の曲率半径、rl
(r+’) 、 rlは単レンズ(L)の光源側及びデ
ィスク側の面の近軸曲率半径、rpl 、 rp2はデ
ィスク(P)の光源側及びディスク側の曲率半径である
。In the examples, rgt and rgz are the radius of curvature of the cover glass (g) of the semiconductor laser on the light source side and the disk side, rl
(r+') and rl are the paraxial radii of curvature of the light source side and disk side surfaces of the single lens (L), and rpl and rp2 are the curvature radii of the light source side and disk side of the disk (P).
dg+はカバーガラス(g)の芯厚、dgzはカバーガ
ラス(g)から単レンズ(L) 1での軸上空気間隔、
dlは単レンズの芯厚、dlは単レンズ(L)からディ
スフ(P)4での軸上空気間隔、dPはディスクの〕の
軸上間隔である。ただし、球面ガラスの上に非球面が接
合されている場合、drMは樹脂層ないしプラスチック
材の軸上間隔、d+’は球面ガラスの芯厚である。Ng
、NJ (Nt’) 、NPはそれぞれ波長780nm
におけるカバーガラス(g)、単レンズ(L)。dg+ is the core thickness of the cover glass (g), dgz is the axial air distance from the cover glass (g) to the single lens (L) 1,
dl is the core thickness of the single lens, dl is the axial air distance from the single lens (L) to the disc (P) 4, and dP is the axial distance between the discs. However, when an aspherical surface is bonded onto a spherical glass, drM is the axial distance of the resin layer or plastic material, and d+' is the core thickness of the spherical glass. Ng
, NJ (Nt'), and NP each have a wavelength of 780 nm.
cover glass (g), single lens (L).
ディスク(P)の屈折率である。ただし、球面ガラスの
上に非球面が接合されている場合、NIMは樹脂層ない
しプラスチック材の屈折率である。黄は、非球面を示し
その形状は下式にて定義される。It is the refractive index of the disk (P). However, when an aspherical surface is bonded onto a spherical glass surface, NIM is the refractive index of the resin layer or plastic material. Yellow indicates an aspherical surface, and its shape is defined by the formula below.
(i=t 1213m)
但し、Xは光軸からの距離りにおける光軸に垂直な平面
からの光軸方向の距離、COは近軸曲率(=1/r )
、Ciは非球面係数である。なお、NAは光デイスク側
の面の開口数、fは単レンズ(L)の焦点距離、βは投
影倍率である。(i=t 1213m) However, X is the distance in the optical axis direction from the plane perpendicular to the optical axis in the distance from the optical axis, and CO is the paraxial curvature (=1/r)
, Ci are aspheric coefficients. Note that NA is the numerical aperture of the surface on the optical disk side, f is the focal length of the single lens (L), and β is the projection magnification.
第1図、第2図は各々本発明筒1.第2実施例の光fイ
スク用対物レンズのレンズ断面図、第3図は第3.第4
実施例の光デイスク用対物レンズのレンズ断面図である
。第4図乃至第7図は第1実施例乃至第4実施例のレン
ズ収差図である。第8図、第9図は従来の光デイスク用
対物レンズのレンズ構成図である。FIG. 1 and FIG. 2 each show the cylinder 1 of the present invention. A cross-sectional view of the optical f-isk objective lens of the second embodiment, FIG. Fourth
It is a lens sectional view of the objective lens for optical disks of an Example. 4 to 7 are lens aberration diagrams of the first to fourth embodiments. FIGS. 8 and 9 are lens configuration diagrams of conventional objective lenses for optical disks.
〔実施例1〕
NA−0,45f、、、1.Oβ−−0,17曲率半径
軸上面間隔 屈折率rp2 ω
非球面係数
口“ ε=1.0
Cx=0.OCz=−0,759242刈0−’ C
a=−0,484883刈0−1C4=−0,3301
97X10−’ C3=−0,443189刈0−2
(N−1) rl/7=3.09
〔実施例2〕
NA−Q、45 /−1,0β識−0,20曲率半
径 軸上面間隔 屈折率非球面係数
rl” (=1.4
Ct=*0.OC2=−0,230057Ca=−0,
192504C4=−0,134990C5=−0,3
87242X10−2(N−1)71/7=0.92
□・(N−1)=0.62
−「2
〔実施例3j
NA−0,45f−1,0β畠−0,20曲率半径
軸上面間隔 屈折率非球面係数
rl” ξ=0.55
C+=0.0 C2=−0,292694C3=−0
,228172C4=−0,223349C3=−0,
351381刈0−2(N−1)rl/7=0.93
□・(N−1)= 0.67
r2
ε=0.55
〔実施例4〕
NA−Q、45 /−1,0β−−0,20曲率半径
軸上面間隔 屈折率非球面係数
r−ε=1.0
CI=0.0 C2=−0,345502C3=−0
,243398C4=−0,378201C5=−0,
665623xlO−2(N−1) rt/7=1.0
3
□・(N−1)=0.79
r2
ξ=1.0[Example 1] NA-0,45f, 1. C
a=-0,484883 mowing0-1C4=-0,3301
97X10-' C3=-0,443189 mowing 0-2
(N-1) rl/7=3.09 [Example 2] NA-Q, 45 /-1,0β Sense-0,20 Radius of curvature Axial spacing Refractive index Aspherical coefficient rl” (=1.4 Ct =*0.OC2=-0, 230057Ca=-0,
192504C4=-0, 134990C5=-0,3
87242X10-2(N-1)71/7=0.92 □・(N-1)=0.62 - "2 [Example 3j NA-0,45f-1,0βHatake-0,20 radius of curvature
On-axis spacing Refractive index aspheric coefficient rl” ξ=0.55 C+=0.0 C2=-0, 292694C3=-0
,228172C4=-0,223349C3=-0,
351381 mowing 0-2(N-1)rl/7=0.93 □・(N-1)=0.67 r2 ε=0.55 [Example 4] NA-Q, 45/-1,0β- -0,20 radius of curvature Axis spacing Refractive index aspherical coefficient r-ε=1.0 CI=0.0 C2=-0,345502C3=-0
, 243398C4=-0, 378201C5=-0,
665623xlO-2(N-1) rt/7=1.0
3 □・(N-1)=0.79 r2 ξ=1.0
第1図、第2図は各々本発明第1.第2実施例の光ティ
スフ相対物レンズのレンズ断面図、第3図は第3.第4
実施例の光デ仁スク用対物レンズのレンズ断面図である
。第4図乃至第7図は第1実施例乃至第4実施例のレン
ズ収差図である。第8図、第9図は従来の光デイスク用
対物レンズのレンズ構成図である。
単レンズ・・・L
出願人 ミノルタカメラ株式会社
@ / 図
第 20
第3図
第4図
球面収差 井t、双差。
第S図
甲訪嗟 弗原収差
第6図
工ま面硅 711一点収差FIG. 1 and FIG. 2 respectively show the first aspect of the present invention. FIG. 3 is a cross-sectional view of the optical optical objective lens of the second embodiment. Fourth
FIG. 3 is a lens cross-sectional view of an objective lens for an optical lens according to an example. 4 to 7 are lens aberration diagrams of the first to fourth embodiments. FIGS. 8 and 9 are lens configuration diagrams of conventional objective lenses for optical disks. Single lens... L Applicant: Minolta Camera Co., Ltd. / Figure 20 Figure 3 Figure 4 Spherical aberration I, double difference. Figure S: Irohara aberration Figure 6: 711 One-point aberration
Claims (1)
成され、ディスク側の面が正の屈折力を有する単レンズ
であって、投影倍率βが−1/2<β<−1/8の範囲
内で用いられ、以下の条件を満足することを特徴とする
光ディスク用対物レンズ: 0.9<(N−1)r1/f<3.9 0.6<(r1/−r2)・(N−1)<1.70.5
<ε<1.5 但し、 N:対物レンズの屈折率 r1:対物レンズの最も光源側の面の近軸曲率半径 r2:対物レンズのディスク側の面の曲率半径 ε:円錐定数[Claims] 1. A single lens whose surface on the light source side is composed of an aspherical surface having positive refractive power and whose surface on the disk side has positive refractive power, and whose projection magnification β is -1/2. An objective lens for an optical disc that is used within the range of <β<-1/8 and satisfies the following conditions: 0.9<(N-1)r1/f<3.9 0.6<(r1/-r2)・(N-1)<1.70.5
<ε<1.5 However, N: refractive index of the objective lens r1: paraxial radius of curvature of the surface of the objective lens closest to the light source r2: radius of curvature of the surface of the objective lens closest to the disk ε: conic constant
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9540086A JPS62251709A (en) | 1986-04-24 | 1986-04-24 | Objective lens for optical disk |
US06/926,644 US4765723A (en) | 1985-11-05 | 1986-11-03 | Objective lens system for optical reading device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9540086A JPS62251709A (en) | 1986-04-24 | 1986-04-24 | Objective lens for optical disk |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62251709A true JPS62251709A (en) | 1987-11-02 |
Family
ID=14136610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9540086A Pending JPS62251709A (en) | 1985-11-05 | 1986-04-24 | Objective lens for optical disk |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62251709A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6310119A (en) * | 1986-07-02 | 1988-01-16 | Matsushita Electric Ind Co Ltd | Large aperture single lens |
-
1986
- 1986-04-24 JP JP9540086A patent/JPS62251709A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6310119A (en) * | 1986-07-02 | 1988-01-16 | Matsushita Electric Ind Co Ltd | Large aperture single lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0442650B2 (en) | ||
JP2902435B2 (en) | Objective lens system for optical information recording / reproducing device | |
KR100506565B1 (en) | Objective lens for an optical disk | |
JPS61163308A (en) | Refractive index distributed single lens | |
JPS62251709A (en) | Objective lens for optical disk | |
JPH0416763B2 (en) | ||
JP2613761B2 (en) | Condensing optical system for optical information recording media | |
JP2727373B2 (en) | Finite system large aperture imaging lens | |
JP2003167189A (en) | Objective lens for optical disk | |
JPH0462565B2 (en) | ||
JPH0462564B2 (en) | ||
JPS5962815A (en) | Distributed refractive index lens | |
JPH01130115A (en) | Lens system for laser beam | |
JP2001249271A (en) | Refraction/diffraction hybrid lens | |
JPH0651198A (en) | Single plano-convex aspherical cllimator lens | |
JP2511275B2 (en) | Optical system for recording / reproducing optical information media | |
JPS62242908A (en) | Objective lens for optical disk | |
JPH02195317A (en) | Objective lens for optical disk | |
JP2511279B2 (en) | Optical system for recording / reproducing optical information media | |
JPS599619A (en) | Large diameter condenser lens | |
JPH0312618A (en) | Objective lens for optical information recording and reproduction | |
JPH0462563B2 (en) | ||
JPS61163310A (en) | Refractive index distributed single lens | |
JPS62135802A (en) | Objective for recording and reproduction of optical information recording medium | |
JPS60250320A (en) | Large aperture single lens |