JPS6225103B2 - - Google Patents
Info
- Publication number
- JPS6225103B2 JPS6225103B2 JP54104046A JP10404679A JPS6225103B2 JP S6225103 B2 JPS6225103 B2 JP S6225103B2 JP 54104046 A JP54104046 A JP 54104046A JP 10404679 A JP10404679 A JP 10404679A JP S6225103 B2 JPS6225103 B2 JP S6225103B2
- Authority
- JP
- Japan
- Prior art keywords
- olefin resin
- heat
- bag
- laminated
- resin layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920005672 polyolefin resin Polymers 0.000 claims description 25
- -1 polyethylene Polymers 0.000 claims description 18
- 239000004698 Polyethylene Substances 0.000 claims description 16
- 229920000573 polyethylene Polymers 0.000 claims description 16
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 9
- 238000007789 sealing Methods 0.000 claims description 8
- 230000004888 barrier function Effects 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229920005992 thermoplastic resin Polymers 0.000 claims description 4
- 229920001187 thermosetting polymer Polymers 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 238000005304 joining Methods 0.000 claims description 2
- 238000011068 loading method Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 26
- 239000011888 foil Substances 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000012790 adhesive layer Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229920001903 high density polyethylene Polymers 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000004700 high-density polyethylene Substances 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- 238000004659 sterilization and disinfection Methods 0.000 description 6
- 229920006015 heat resistant resin Polymers 0.000 description 5
- 238000000605 extraction Methods 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012775 heat-sealing material Substances 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 229920006332 epoxy adhesive Polymers 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 229920006262 high density polyethylene film Polymers 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009820 dry lamination Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 235000021056 liquid food Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000012053 oil suspension Substances 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Bag Frames (AREA)
- Wrappers (AREA)
- Laminated Bodies (AREA)
Description
本発明はレトルト殺菌可能な積層袋に関し、よ
り詳細には耐積圧性に優れたレトルト殺菌可能な
積層袋に関する。
従来レトルト殺菌用密封包装袋の用途にはアル
ミ箔の様な可撓性のガスバリヤー性基質の一方の
表面に熱封緘性の結晶性オレフイン樹脂層を設け
た積層シートが広く使用されている。この積層シ
ートは、オレフイン樹脂層が対面する様に袋状に
重ね合わされ、この周囲を熱封緘して袋とした
後、食品等の内容物を充填し、脱気密封し次いで
レトルトと呼ばれる殺菌装置内で加熱殺菌して、
常温で貯蔵可能な包装体となる。
この積層シートの結晶性オレフイン樹脂層は、
ヒートシーラント(熱封緘材)としての作用と内
面保護材料としての作用とを要求されるものであ
り、しかも過酷な加熱殺菌処理を受けるため、
種々の制約が存在する。
従来この様な用途に最も広く使用されている低
密度ポリエチレンは、熱封緘性に優れているとい
う利点を有するが、耐熱性、耐抽出性に劣るのが
欠点であり、加熱殺菌処理時に高温では破袋を生
じて、内面被覆材としての性能が劣化したり或い
は内容品中に樹脂成分が移行してフレーバー特性
や衛生的特性を損うという欠点がある。一方中乃
至高密度ポリエチレンはこの様な耐熱性、耐抽出
性には優れているが、環境応力亀裂
(Enviromental Stress Cracking)を生じ易いと
いう欠点があり、この欠点は内容物を充填し密封
した殺菌包装袋を堆積し、堆積した状態で保存し
た時、熱封緘部が脆くなり、わずかの衝撃で容易
に破袋するという致命的な欠陥につながることに
なる。
従つて本発明の目的は、中乃至高密度ポリエチ
レンを積層袋の内面材料兼熱封緘材として使用す
る場合に生ずる上記欠点が有効に解消されたレト
ルト殺菌可能な積層体を提供するにある。
本発明の他の目的は、耐熱性、耐抽出性、熱封
緘性及び耐積圧性の組み合わせに優れた結晶性オ
レフイン樹脂層を内面に備えたレトルト殺菌可能
な積層袋を提供するにある。
本発明者は、加熱殺菌密封包装袋の積圧強度
は、内面材料兼熱封緘材として使用するポリエチ
レンの分子量分布と密接な関係があり以下に詳述
するフロー比(Kp)が特定の範囲にある中乃至
高密度ポリエチレンを選択使用することにより、
従来の積層袋に比して積圧強度を顕著に向上させ
得ることを見出した。
本発明によれば、可撓性ガスバリヤー性基質と
該基質の一方の表面に設けられた熱封緘性の結晶
性オレフイン樹脂層とから成る積層シートを、前
記オレフイン樹脂層が対面するように袋状に重ね
合せ、その周囲をヒートシールにより接合して成
る積層袋において、前記結晶性オレフイン樹脂層
が、下記式
Kp=100logMI20/MI2
式中、MI2はJIS K6760に従つて測定したオレ
フイン樹脂の融解指数(g/10分)を表わし、
MI20は荷重20.0Kg及び試料採取時間を30秒とする
以外はJIS K6760と同様にして測定したオレフイ
ン樹脂の融解指数(g/10分)を表わす、
で定義されるフロー比(Kp)が165以上であり、
0.05乃至15g/10分の融解指数(MI2)を有し、且
つ密度が0.935g/c.c.以上のポリエチレンから成
ることを特徴とする耐積圧性に優れたレトルト殺
菌可能な積層袋が提供される。
本発明を以下に詳細に説明する。
本発明に用いる積層シートの一例の断面構造を
示す第1図において、積層シート1は、アルミニ
ウム箔2、その一方の表面に接着剤層3を介して
接合された結晶性オレフイン樹脂層4、その他方
の表面に接着剤層5を介して接合された耐熱性樹
脂層6から成る。
また必要により、アルミニウム箔2と耐熱性樹
脂層6との間に接着剤層を介して衝撃緩和層を設
けることが出来る。さらに、衝撃緩和層は変性オ
レフイン樹脂層3と結晶性オレフイン樹脂層4と
の間に設けることも出来る。この場合、衝撃緩和
層と結晶性オレフイン樹脂層との間に接着剤層が
必要となる。
密封包装体の製造に当つては、第2図に示すと
おり、2枚の積層シート1,1を、結晶性オレフ
イン樹脂層4が内側となるように重ね合せ、その
周囲7を熱封緘して内部に食品収容部8を有する
袋とする。なお簡単のために第2図においては接
着剤層3及び接着剤層5は省略されている。
本発明の重要な特徴は、前記結晶性オレフイン
樹脂層4として、従来フイルムの製造には全く用
いられていないフロー比(Kp)が165以上で且つ
密度が0.935g/c.c.以上のポリエチレンのフイル
ムを使用することに存する。
従来、積層袋のヒートシール用内面材として
は、市販の中乃至高密度ポリエチレンフイルムを
貼り合せるか、或いはフイルムグレードの中乃至
高密度ポリエチレンを押出コートしたものが用い
られており、このような中乃至高密度ポリエチレ
ンは、何れも前記式(1)で示されるフロー比
(Kp)が160以下のものであり、この様な従来の
ポリエチレンフイルムは後述する比較例1に示す
通りそれ自体優れたヒートシール強度を示すとし
ても、袋内に液性の内容物を充填し、密封殺菌し
た後荷重下に保存した場合には、著しく低い積圧
強度を示し、この様な積層袋は貯蔵時或いは取り
扱い時にわずかの衝撃で破袋を免れないのであ
る。
これに対して本発明に従い、フロー比(Kp)
が165以上で密度が0.935g/c.c.以上のポリエチレ
ンフイルムを積層袋の内面材料兼熱封緘材として
使用すると同様な条件下での積圧強度を1桁以上
高いオーダーに向上させることが可能となるので
あつて、本発明の係る作用効果は従来の中乃至低
密度ポリエチレンフイルムを用いた積層袋からは
全く予想外のものである。
前記式(1)において分母のMI2は通常の意味での
融解指数であつて、分子量と相関関係にある指数
であり、一方分子のMI20は高いずり速度における
融解指数を表わし、MI20/MI2は非ニユートン性
の程度を表わしている。かくしてKpの値は、ポ
リエチレンの分子量分布と密接に関連しており、
この値が高ければ高いほど分子量分布が広いこと
を意味している。
本発明においては、フロー比(Kp)を165以上
特に170乃至250の範囲とすることにより積層袋の
積圧強度を顕著に向上させることが可能となる。
またポリエチレンの密度を0.935g/c.c.以上特に
0.940乃至0.960の範囲とすることも耐熱性、耐抽
出性及び内面材料の機械的強度の面から重要であ
る。また用いるポリエチレンの融解指数(MI2)
はフイルムへの成膜性及び機械的性質から0.05乃
至15の範囲にあることが望ましい。
本発明に使用するポリエチレンは、エチレンの
ホモポリマーであつても或いはその結晶性を粗害
しない範囲で一般に3重量%以下の範囲でプロピ
レン、ブテン−1、ペンテン−1・4−メチルペ
ンテン−1等の他のオレフイン類等のコモノマー
を含有していてもよい。
ポリエチレンの耐衝撃性やブロツキング性を改
良するために、ポリイソブチレン、ブチルゴム、
スチレンブタジエンゴム、エチレンプロピレンゴ
ム等のエラストマー或いはエチレンプロピレン共
重合体、エチレンブテン共重合体等のα−オレフ
イン共重合体を1乃至50重量%の量で配合するこ
ともできる。
本発明に用いるポリエチレンは、上述した制限
を満足する範囲内で多くの変更が可能であり、例
えば単一のポリエチレンを使用する代りに2種以
上のポリエチレンをブレンド物の形で使用するこ
とも可能である。
本発明に使用するポリエチレンは、ブロー成形
用の中乃至高密度ポリエチレンとして容易に入手
でき、フイルムへの成形は、インフレーシヨン成
膜法、Tダイ法等のそれ自体公知の手段で容易に
行うことができる。フイルムの厚みは、熱封緘性
の点で10乃至300μm、特に30乃至100μmの範囲
にあることが望ましい。更に熱封緘性の点では、
フイルムは未延伸のものが望ましいが、Tダイフ
イルム程度の配向は許容できる。
ガスバリヤー性の可撓性基質としては、厚さが
6乃至80μmのアルミ箔が好適であるが、鋼箔の
様な他の金属の箔やセルロースフイルム、未処理
或いはアセトアルカリ処理を行つたポリビニルア
ルコールフイルム或いはエチレンビニルアルコー
ル共重合体フイルム等を使用することも可能であ
る。
両者を接合するための接着剤層としては、ウレ
タン接着剤、エポキシ系接着剤等の熱硬化性接着
剤の他にマレイン酸変性ポリエチレンのような酸
変性ポリオレフイン系接着剤も使用し得る。
ガスバリヤー性基質の他方の表面に施される耐
熱性樹脂層としては、前述した結晶性オレフイン
樹脂よりも高い溶融温度乃至は分解温度を有する
熱可塑性樹脂、或いは熱硬化性樹脂が使用され
る。
耐熱性の熱可塑性樹脂としては、ポリエチレン
テレフタレートの如きポリエステル、ナイロン−
6、ナイロン−6・6、の如きポリアミド、ポリ
カーボネート、セルロースエステル、フツ素樹脂
等が挙げられ、また熱硬化性樹脂としては、例え
ば分子鎖内にイミド環、イミダゾピロロン環、イ
ミダゾール環、オキサゾール環、オキサジアゾー
ル環、チアゾール環の如き異節環を含む耐熱性重
合体、例えば、ポリイミド、ポリアミドイミド、
ポリエステルイミド、ポリアミドイミドエステ
ル、ポリエステルアミドイミド、ポリイミドイミ
ダゾピロロン等を用いることができる。あるいは
さらに、エポキシ・フエノール樹脂系塗料、フエ
ノール樹脂系塗料、不飽和ポリエステル樹脂系塗
料料、オレオジナス系塗料等も用いることができ
る。
耐熱性の熱可塑樹脂は未延伸乃至は二軸延伸の
フイルムとして容易に入手でき、これらのフイル
ムはエポキシ系接着剤、ポリウレタン系接着剤等
の公知の接着剤によつて、アルミ箔乃至シートに
積層され、一方熱不溶融型の耐熱性樹脂は、これ
らの樹脂の先駆重合体の溶液を前記箔乃至シート
に塗布した後、焼付けることにより形成される。
衝撃緩和層としては、ガスバリヤー性基質の外
側に設ける場合、ポリアミド或いはコポリアミ
ド、ポリカーボネート、ポリエステル−ポリエー
テル、ポリエステルポリラクトン等の延伸或いは
未延伸のフイルム、さらに二軸延伸のポリエステ
ル・フイルム等を用いることが出来る。また、ア
ルミ箔の内側に設ける場合、変性オレフイン樹脂
と接着性を有するポリアミド或いはコポリアミド
等を用いることができる。
上述した各種フイルムの積層はドライラミネー
シヨンのそれ自体公知の方法で行うことができ
る。
かくして製造された積層シートは、その2枚の
片を結晶性オレフイン樹脂層が内側となるように
重ね合せ、その三周辺部を熱封緘して可撓性の袋
状容器とすることが出来る。熱封緘は加熱バー、
加熱ナイフ、加熱ワイヤー、インパルスシール、
超音波シール、誘導加熱シール等により容容易に
行える。
これらの容器内に腐敗しやすい内容食品、特に
液性食品類を充填し、必要により保存に有害な空
気等の気体を、例えば真空脱気法、熱間充填法、
蒸煮脱気法、水蒸気噴射法、容器の変形による脱
気法等の手段で排除したのち、前述した熱封緘方
法により充填口を密封する。ついでこの包装体を
レトルト装置内に充填し、100℃以上の温度で加
熱殺菌する。
本発明によるレトルト殺菌密封包装体は、この
加熱殺菌に際しても内容物のフレーバーに変化を
伴うことがなく、殺菌後は勿論のこと、落下衝撃
等を加えた場合にも、シール部の破壊がないとい
う顕著な利点を有している。
本発明を次の例で説明する。
積圧強度の測定は、促進条件下、即ち雰囲気温
度55℃にて内容物(水:140c.c.、洗剤:40c.c.)を
充填した袋に所定の荷重(17.0Kg/袋)を載せ
て、内容物が漏洩する迄の時間を測定し、この時
間で表示した。
実施例 1
厚さ12μのポリエチレンテレフタレートフイル
ム、厚さ9μのアルミ箔、フロー比(Kp)
180.0、密度0.958g/c.c.の高密度ポリエチレン
(MI:0.5)の厚さ70μの内面フイルムからなる
3層シートを用いて、縦170mm、横130mmの袋を作
り、180gの水/油懸濁液を充填し密封した。こ
れを表−1の条件で処理した後、アルミ箔と内面
フイルムとの間の接着強度(Kg/15mm)を測定
し、又袋中の品温を0〜2℃に保ち、1.2mの高
さからコンクリート面に10回の垂直落下し、その
破袋数を調べ、更に雰囲気温度55℃にて17.0Kg/
袋の荷重を、水/洗剤:140/40c.c.を充填し密封
した袋に載そて内容物が漏洩する迄の時間(積圧
強度)を調べ、表−1に示す結果を得た。
The present invention relates to a laminated bag that can be sterilized by retort, and more particularly to a laminated bag that can be sterilized by retort and has excellent stacking pressure resistance. Conventionally, laminated sheets having a heat-sealable crystalline olefin resin layer provided on one surface of a flexible gas barrier substrate such as aluminum foil have been widely used as sealed packaging bags for retort sterilization. This laminated sheet is stacked in a bag shape so that the olefin resin layers face each other, and the periphery is heat sealed to form a bag, which is then filled with contents such as food, degassed and sealed, and then placed in a sterilizer called a retort. Heat sterilize inside the
It becomes a package that can be stored at room temperature. The crystalline olefin resin layer of this laminated sheet is
It is required to act as a heat sealant (thermal sealing material) and an inner surface protection material, and it is also subjected to harsh heat sterilization treatment.
Various restrictions exist. Low-density polyethylene, which has traditionally been most widely used in such applications, has the advantage of excellent heat sealability, but has the disadvantage of poor heat resistance and extraction resistance, and cannot be used at high temperatures during heat sterilization. There are disadvantages in that the bag may break and its performance as an inner coating material deteriorates, or the resin component may migrate into the contents, impairing flavor characteristics and sanitary characteristics. On the other hand, although medium to high density polyethylene has excellent heat resistance and extraction resistance, it has the disadvantage of being susceptible to environmental stress cracking. When packaging bags are piled up and stored in a piled-up state, the heat-sealed portion becomes brittle, leading to a fatal defect in which the bags easily break with the slightest impact. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a retort-sterilizable laminate that effectively eliminates the above-mentioned drawbacks that occur when medium to high-density polyethylene is used as the inner surface material and heat sealing material of a laminate bag. Another object of the present invention is to provide a retort sterilizable laminated bag that has a crystalline olefin resin layer on its inner surface that has an excellent combination of heat resistance, extraction resistance, heat sealability, and pressure resistance. The present inventor has discovered that the load strength of heat sterilized sealed packaging bags is closely related to the molecular weight distribution of polyethylene used as the inner material and heat sealing material, and that the flow ratio (Kp) described in detail below is within a specific range. By selectively using a certain medium to high density polyethylene,
It has been found that the stacking strength can be significantly improved compared to conventional laminated bags. According to the present invention, a laminated sheet consisting of a flexible gas barrier substrate and a heat-sealable crystalline olefin resin layer provided on one surface of the substrate is placed in a bag such that the olefin resin layer faces each other. In a laminated bag formed by stacking the layers in a shape and joining the peripheries by heat sealing, the crystalline olefin resin layer has the following formula Kp=100log MI 20 /MI 2 where MI 2 is the olefin resin measured according to JIS K6760. Represents the melting index (g/10 minutes) of the resin,
MI 20 represents the melting index (g/10 min) of olefin resin measured in the same manner as JIS K6760 except that the load was 20.0 kg and the sample collection time was 30 seconds.The flow ratio (Kp) defined by is 165. That's all,
Provided is a retort sterilizable laminated bag with excellent loading pressure resistance, characterized by being made of polyethylene having a melting index (MI 2 ) of 0.05 to 15 g/10 minutes and a density of 0.935 g/cc or more. . The present invention will be explained in detail below. In FIG. 1 showing a cross-sectional structure of an example of a laminate sheet used in the present invention, a laminate sheet 1 includes an aluminum foil 2, a crystalline olefin resin layer 4 bonded to one surface of the aluminum foil 2 via an adhesive layer 3, and other parts. It consists of a heat-resistant resin layer 6 bonded to one surface via an adhesive layer 5. Further, if necessary, a shock absorbing layer can be provided between the aluminum foil 2 and the heat-resistant resin layer 6 via an adhesive layer. Furthermore, the impact-reducing layer can also be provided between the modified olefin resin layer 3 and the crystalline olefin resin layer 4. In this case, an adhesive layer is required between the impact mitigation layer and the crystalline olefin resin layer. In manufacturing the sealed package, as shown in FIG. 2, two laminated sheets 1, 1 are stacked so that the crystalline olefin resin layer 4 is on the inside, and the periphery 7 is heat-sealed. The bag has a food storage section 8 inside. For simplicity, the adhesive layer 3 and the adhesive layer 5 are omitted in FIG. 2. An important feature of the present invention is that, as the crystalline olefin resin layer 4, a polyethylene film having a flow ratio (Kp) of 165 or more and a density of 0.935 g/cc or more, which has not been used at all in conventional film production, is used. It consists in using it. Conventionally, the inner material for heat sealing of laminated bags has been either laminated with commercially available medium- to high-density polyethylene films, or extrusion-coated with film-grade medium- to high-density polyethylene. All high-density polyethylenes have a flow ratio (Kp) of 160 or less as expressed by the above formula (1), and such conventional polyethylene films themselves have excellent heat resistance as shown in Comparative Example 1 described later. Even if the bag exhibits seal strength, if the bag is filled with liquid contents, sealed and sterilized, and then stored under load, it will exhibit significantly low compressive strength, and such laminated bags will be difficult to store or handle. Sometimes even the slightest impact can cause the bag to break. In contrast, according to the present invention, the flow ratio (Kp)
If polyethylene film with a density of 165 or higher and a density of 0.935 g/cc or higher is used as the inner surface material and heat sealing material for laminated bags, it is possible to improve the stacking strength under similar conditions to an order of magnitude higher. Therefore, the effects of the present invention are completely unexpected from conventional laminated bags using medium to low density polyethylene films. In the above formula (1), MI 2 in the denominator is a melting index in the usual sense and is an index that correlates with molecular weight, while MI 20 in the numerator represents the melting index at high shear rates, and MI 20 / MI 2 represents the degree of non-Newtonianity. Thus, the value of Kp is closely related to the molecular weight distribution of polyethylene;
The higher this value, the wider the molecular weight distribution. In the present invention, by setting the flow ratio (Kp) to 165 or more, particularly in the range of 170 to 250, it is possible to significantly improve the stacking pressure strength of the laminated bag.
In addition, the density of polyethylene must be increased to 0.935 g/cc or more.
A range of 0.940 to 0.960 is also important in terms of heat resistance, extraction resistance, and mechanical strength of the inner surface material. Also, the melting index (MI 2 ) of the polyethylene used
is preferably in the range of 0.05 to 15 from the viewpoint of film formability and mechanical properties. Even if the polyethylene used in the present invention is an ethylene homopolymer, it generally contains propylene, butene-1, pentene-1, and 4-methylpentene-1 in an amount of 3% by weight or less as long as the crystallinity is not impaired. It may also contain comonomers such as other olefins. In order to improve the impact resistance and blocking properties of polyethylene, polyisobutylene, butyl rubber,
Elastomers such as styrene-butadiene rubber and ethylene-propylene rubber, or α-olefin copolymers such as ethylene-propylene copolymers and ethylene-butene copolymers can also be blended in an amount of 1 to 50% by weight. The polyethylene used in the present invention can be modified in many ways within the range that satisfies the above-mentioned limitations. For example, instead of using a single polyethylene, it is also possible to use two or more types of polyethylene in the form of a blend. It is. The polyethylene used in the present invention is easily available as medium- to high-density polyethylene for blow molding, and can be easily formed into a film by means known per se, such as an inflation film forming method or a T-die method. be able to. The thickness of the film is desirably in the range of 10 to 300 μm, particularly 30 to 100 μm in terms of heat sealability. Furthermore, in terms of heat sealability,
The film is preferably unstretched, but an orientation similar to that of a T-die film is acceptable. As a flexible substrate with gas barrier properties, aluminum foil with a thickness of 6 to 80 μm is suitable, but other metal foils such as steel foil, cellulose film, and untreated or acetoalkali-treated polyvinyl are also suitable. It is also possible to use an alcohol film or an ethylene vinyl alcohol copolymer film. As the adhesive layer for bonding the two, in addition to thermosetting adhesives such as urethane adhesives and epoxy adhesives, acid-modified polyolefin adhesives such as maleic acid-modified polyethylene can also be used. As the heat-resistant resin layer applied to the other surface of the gas barrier substrate, a thermoplastic resin or a thermosetting resin having a higher melting temperature or decomposition temperature than the above-mentioned crystalline olefin resin is used. Examples of heat-resistant thermoplastic resins include polyesters such as polyethylene terephthalate, and nylon.
Examples of thermosetting resins include polyamides such as 6, nylon-6 and nylon-6, polycarbonates, cellulose esters, fluororesins, etc.; , a heat-resistant polymer containing a heterocyclic ring such as an oxadiazole ring or a thiazole ring, such as polyimide, polyamideimide,
Polyesterimide, polyamideimide ester, polyesteramideimide, polyimideimidazopyrrolone, etc. can be used. Alternatively, epoxy/phenolic resin paints, phenolic resin paints, unsaturated polyester resin paints, oleogenous paints, etc. can also be used. Heat-resistant thermoplastic resins are easily available as unstretched or biaxially stretched films, and these films can be bonded to aluminum foil or sheets using known adhesives such as epoxy adhesives and polyurethane adhesives. Laminated, heat-infusible heat-resistant resins are formed by applying a solution of a precursor polymer of these resins to the foil or sheet and then baking. As the impact-relaxing layer, when provided on the outside of the gas barrier substrate, stretched or unstretched films such as polyamide or copolyamide, polycarbonate, polyester-polyether, polyester-polylactone, biaxially stretched polyester film, etc. can be used. It can be used. In addition, when provided inside the aluminum foil, polyamide, copolyamide, or the like that has adhesive properties with modified olefin resin can be used. The various films described above can be laminated by dry lamination, a method known per se. The thus produced laminated sheet can be made into a flexible bag-like container by stacking the two pieces so that the crystalline olefin resin layer is on the inside and heat sealing the three peripheral parts. For heat sealing, use a heating bar,
heating knife, heating wire, impulse seal,
This can be easily done using ultrasonic sealing, induction heating sealing, etc. These containers are filled with perishable foods, especially liquid foods, and if necessary, gases such as air that are harmful to storage are removed using vacuum degassing, hot filling, etc.
After removing the gas by steam degassing, steam injection, degassing by deforming the container, or the like, the filling port is sealed by the heat sealing method described above. This package is then filled into a retort device and heat sterilized at a temperature of 100°C or higher. In the retort sterilization sealed package according to the present invention, there is no change in the flavor of the contents even during heat sterilization, and there is no damage to the sealed portion not only after sterilization but also when subjected to drop impact, etc. It has this remarkable advantage. The invention is illustrated by the following example. The load strength was measured by applying a predetermined load (17.0 kg/bag) to a bag filled with contents (water: 140 c.c., detergent: 40 c.c.) under accelerated conditions, that is, at an ambient temperature of 55°C. The time taken for the contents to leak was measured and expressed as this time. Example 1 12μ thick polyethylene terephthalate film, 9μ thick aluminum foil, flow ratio (Kp)
180.0, a 3-layer sheet consisting of a 70μ thick inner film of high-density polyethylene (MI: 0.5) with a density of 0.958g/cc was used to make a bag 170mm long and 130mm wide, and 180g of water/oil suspension was added to the bag. filled and sealed. After processing this under the conditions shown in Table 1, the adhesive strength (Kg/15mm) between the aluminum foil and the inner film was measured, and the temperature in the bag was kept at 0 to 2°C, and a 1.2m high The bag was dropped 10 times vertically onto the concrete surface, and the number of broken bags was determined.
The load of the bag was placed on a sealed bag filled with water/detergent: 140/40 c.c., and the time until the contents leaked (load strength) was examined, and the results shown in Table 1 were obtained. .
【表】
比較例 1
実施例1の内面フイルムの代りにフロー比
(Kp)160.0、密度0.953g/c.c.(MI1.2)の高密
度ポリエチレンフイルムを用い実施例1と同様の
3層シートから袋を作り、同条件で充填密封し、
接着強度、積圧強度及び落下試験を行い、表−2
に示す結果を得た。[Table] Comparative Example 1 A bag was made from the same three-layer sheet as in Example 1 using a high-density polyethylene film with a flow ratio (Kp) of 160.0 and a density of 0.953 g/cc (MI1.2) instead of the inner film of Example 1. made, filled and sealed under the same conditions,
Adhesive strength, load strength and drop tests were conducted, and Table 2
The results shown are obtained.
第1図は積層シートの断面図、第2図は密封包
装体の断面図である。
1……積層シート、2……アルミニウム箔乃至
シート、3……接着剤層、4……結晶性オレフイ
ン樹脂層、5……接着剤層、6……耐熱性樹脂
層、7……周囲、8……食品収容部。
FIG. 1 is a sectional view of the laminated sheet, and FIG. 2 is a sectional view of the sealed package. 1... Laminated sheet, 2... Aluminum foil or sheet, 3... Adhesive layer, 4... Crystalline olefin resin layer, 5... Adhesive layer, 6... Heat resistant resin layer, 7... Surroundings, 8... Food storage section.
Claims (1)
の表面に設けられた熱封緘性の結晶性オレフイン
樹脂層とから成る積層シートを、前記オレフイン
樹脂層が対面するように袋状に重ね合せ、その周
囲をヒートシールにより接合して成る積層袋にお
いて、前記結晶性オレフイン樹脂層が、下記式 Kp=100logMI20/MI2 式中、MI2はJIS K6760に従つて測定したオレ
フイン樹脂の融解指数(g/10分)を表わし、
MI20は荷重20.0Kg及び試料採取時間を30秒とする
以外はJIS K6760と同様にして測定したオレフイ
ン樹脂の融解指数(g/10分)を表わす、 で定義されるフロー比(Kp)が165以上であり、
0.05乃至15g/10分の融解指数(MI2)を有し、且
つ密度が0.935g/c.c.以上のポリエチレンから成
ることを特徴とする耐積圧性に優れたレトルト殺
菌可能な積層袋。 2 前記ガスバリヤー性基質の他方の表面には、
結晶性オレフイン樹脂よりも高い溶融温度乃至は
分解温度を有する熱可塑性樹脂或いは熱硬化性樹
脂の層が設けられている特許請求の範囲第1項記
載の積層袋。[Scope of Claims] 1. A laminated sheet consisting of a flexible gas barrier substrate and a heat-sealable crystalline olefin resin layer provided on one surface of the substrate so that the olefin resin layer faces each other. In a laminated bag formed by overlapping the layers into a bag shape and joining the periphery by heat sealing, the crystalline olefin resin layer is formed by the following formula Kp=100log MI 20 /MI 2 where MI 2 is measured according to JIS K6760. represents the melting index (g/10 min) of the olefin resin,
MI 20 represents the melting index (g/10 min) of olefin resin measured in the same manner as JIS K6760 except that the load was 20.0 kg and the sample collection time was 30 seconds.The flow ratio (Kp) defined by is 165. That's all,
A retort sterilizable laminated bag with excellent loading pressure resistance, characterized by being made of polyethylene having a melting index (MI 2 ) of 0.05 to 15 g/10 minutes and a density of 0.935 g/cc or more. 2. On the other surface of the gas barrier substrate,
The laminated bag according to claim 1, further comprising a layer of thermoplastic resin or thermosetting resin having a higher melting temperature or decomposition temperature than that of the crystalline olefin resin.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10404679A JPS5628855A (en) | 1979-08-17 | 1979-08-17 | Laminated bag* which can be sterilized by retort* having excellent stacking pressure resisting property |
US06/179,987 US4311742A (en) | 1979-08-17 | 1980-08-21 | Retort-sterilizable laminated pouch comprising a flexible gas-barrier substrate and blended crystalline olefin layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10404679A JPS5628855A (en) | 1979-08-17 | 1979-08-17 | Laminated bag* which can be sterilized by retort* having excellent stacking pressure resisting property |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5628855A JPS5628855A (en) | 1981-03-23 |
JPS6225103B2 true JPS6225103B2 (en) | 1987-06-01 |
Family
ID=14370267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10404679A Granted JPS5628855A (en) | 1979-08-17 | 1979-08-17 | Laminated bag* which can be sterilized by retort* having excellent stacking pressure resisting property |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5628855A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0021578A1 (en) * | 1979-06-13 | 1981-01-07 | Imperial Chemical Industries Plc | Heat-bondable laminates of polyester and metal foil and containers made from them |
US4623216A (en) * | 1983-02-10 | 1986-11-18 | Canon Kabushiki Kaisha | Light beam scanning apparatus |
JPS6487534A (en) * | 1987-09-29 | 1989-03-31 | Hoya Corp | Method for improving chemical durability of glass body |
JPH01148337U (en) * | 1987-12-16 | 1989-10-13 |
-
1979
- 1979-08-17 JP JP10404679A patent/JPS5628855A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5628855A (en) | 1981-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4311742A (en) | Retort-sterilizable laminated pouch comprising a flexible gas-barrier substrate and blended crystalline olefin layer | |
JP4188835B2 (en) | Packaging laminate for hermetically sterilizable packaging containers | |
JP2025062012A (en) | Heat-resistant, recyclable retort packaging | |
JPH01215539A (en) | Multilayer sheet material and package | |
JP2018516182A (en) | Multiple films for sterilization or sterilization processes | |
JPS6228355A (en) | Heat seal vessel | |
JPH01157847A (en) | Packaging member easy to open | |
JP2025062013A (en) | Recyclable lid film | |
JPS6225103B2 (en) | ||
WO2001098082A1 (en) | Strip tape | |
US20050031815A1 (en) | Resin composition, and container packaging film, container packaging bag and container package using the resin composition | |
JPS6225104B2 (en) | ||
JPS6327254A (en) | Easy-open package | |
JPH0564592B2 (en) | ||
JP3760003B2 (en) | Coextrusion composite film | |
US5932305A (en) | Composite sheet and sealed container | |
RU2825276C1 (en) | Recyclable coating film | |
JP2002052660A (en) | Packaging material | |
JP5017844B2 (en) | Retort sterilization method for paper containers | |
RU2811922C1 (en) | Heat-resistant, autoclavable packaging ready for recycling | |
JP3393809B2 (en) | Sealed container | |
JPH02204035A (en) | Multi-layered sheet | |
JP2951340B2 (en) | Composite film for deep drawing | |
JP3035023B2 (en) | Sealed container | |
JP2022189318A (en) | Deep drawn package and multi-layer film for deep drawn package |