JPS62250158A - Steel for hot forging molds - Google Patents
Steel for hot forging moldsInfo
- Publication number
- JPS62250158A JPS62250158A JP9544286A JP9544286A JPS62250158A JP S62250158 A JPS62250158 A JP S62250158A JP 9544286 A JP9544286 A JP 9544286A JP 9544286 A JP9544286 A JP 9544286A JP S62250158 A JPS62250158 A JP S62250158A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- steel
- hot forging
- die
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Forging (AREA)
Abstract
Description
【発明の詳細な説明】 産′!Jk、の利用分野 本発明は、熱間鍛造に使用される金型出鋼に関する。[Detailed description of the invention] Birth! Field of use of Jk The present invention relates to die-molded steel used for hot forging.
従来の技術
従来、熱間鍛造用金型の素材としては該金型の平均使用
温度における高温強度を」−げ、熱間での耐摩耗性を向
上させることに主眼がおかれ、Mo等の析出強化型合金
元素の添加による高強度化を主体とした成分設計がなさ
れてきた。Conventional technology Conventionally, materials for hot forging molds have focused on increasing high-temperature strength at the average operating temperature of the mold and improving hot wear resistance, and materials such as Mo have been used. Component designs have been made mainly to increase strength by adding precipitation-strengthening alloying elements.
発明の目的
しかしながら、上記従来のMof)’th加により高温
強度を上げ熱間における耐摩耗性の向上をはかった合金
鋼を金型の素材として用いた場合は、高強度化に伴い靭
性が低下するため耐割損性が低ドし、特に大形金型にお
いて往々にして内部まで貫通ずる割れが発生するという
問題があった。Purpose of the Invention However, when alloy steel, which has increased high-temperature strength and improved hot wear resistance by the above-mentioned conventional Mof)'th addition, is used as a material for a mold, the toughness decreases as the strength increases. As a result, cracking resistance is low, and cracks that penetrate through to the inside often occur, especially in large molds.
本発明は上記従来の問題を解決し、金型表面温度が75
0℃未満の使用における金型寿命を向上させた熱間鍛造
金型用鋼を提供することを目的とする。The present invention solves the above-mentioned conventional problems, and the mold surface temperature is 75%.
The object of the present invention is to provide a steel for hot forging molds that has improved mold life when used at temperatures below 0°C.
発明の構成
本発明者は、上記従来の問題を解決するべ(種々の研究
を行なった結果、Moのような析出強化型合金元素には
属さず、オースブナイト相を安定化させるNiを添加す
ることにより高温での強度が増加し、しかも、金型の表
層部の酸化により該表層部においてNiが濃化して表層
部が特に強化され、熱間における耐摩耗性が向上するこ
とを兄出した。本発明は上記知見にバづいてなされたも
のであって、重量%でC:α50〜α70%、Si:α
50%以下、in:α20〜α90%、P: 0.03
5%以下、S:α015、%以下、C’r :α50−
40%、Mo:α20〜0.00%、V:0.04〜α
30%、酸溶解性、l(以Fsoff1.Aj2という
):0.10%以下を含仔し、更にNiを、Tを熱間鍛
造中の金型の表面温If(%)とするとき、−α025
T + 19≦Ni≦〜α025T + 21を1fl
j、よう社含■し、残りがFe12よび不可避不純物の
合金鋼からなる熱同鍛造金型用鋼に関する。Structure of the Invention In order to solve the above-mentioned conventional problems, the inventors of the present invention have found that, after conducting various studies, it is necessary to add Ni, which does not belong to precipitation-strengthening alloying elements such as Mo, but stabilizes the ausbunite phase. It has been found that the strength at high temperatures is increased by oxidation of the surface layer of the mold, and Ni is concentrated in the surface layer, particularly strengthening the surface layer, and the wear resistance in hot conditions is improved. The present invention was made based on the above findings, and includes C: α50 to α70%, Si: α
50% or less, in: α20 to α90%, P: 0.03
5% or less, S: α015, % or less, C'r: α50-
40%, Mo: α20-0.00%, V: 0.04-α
30%, acid solubility, l (hereinafter referred to as Fsoff1.Aj2): Contains 0.10% or less, further Ni, and T is the surface temperature If (%) of the mold during hot forging, -α025
T+19≦Ni≦~α025T+21 for 1fl
J, Yosha (1), and the remainder is Fe12 and unavoidable impurity alloy steel.
この発明によれば、金型表面温度750℃未満の使用に
おいて、その特徴が発揮される。According to this invention, its characteristics are exhibited when the mold surface temperature is lower than 750°C.
上記金型表面温度とは鍛造中における金型の極めて薄い
表層部の温度で、該表層部のミクロ組織の変化からそれ
に対応して求められる温度をいう。The above-mentioned mold surface temperature is the temperature of the extremely thin surface layer of the mold during forging, and is the temperature determined correspondingly from changes in the microstructure of the surface layer.
以下に金型の素材である合金鋼の組成ならびに金型の使
用温度をE記の通りに限定した理由を説明ずろ。Below, we will explain the composition of the alloy steel that is the material for the mold and the reason why the temperature at which the mold is used was limited to the values listed in E.
まず、C成分は、高強度化に「効であるが、重量%で0
.50%未満(以下単に%と紀社する)では十分な強度
が得られず、一方070%を超えると靭性が低下し金型
の前記耐割損性が低下することからその含有量を050
〜α70%と限定した。First, component C is effective in increasing strength, but it is 0% by weight.
.. If it is less than 50% (hereinafter simply referred to as %), sufficient strength cannot be obtained, while if it exceeds 0.70%, the toughness and the cracking resistance of the mold will decrease, so the content should be reduced to 0.50%.
It was limited to ~α70%.
Si成分は脱酸のために必要であると共に強度の確保の
ためにも作動であるが、α50%を超えると靭性に悪m
讐をおよぼすことからその含有!正をα50%以下と定
めた。The Si component is necessary for deoxidation and also works to ensure strength, but if it exceeds α50%, it will deteriorate the toughness.
Its inclusion because it provokes enemies! Positive is defined as α50% or less.
Mn成分ば焼入れ性を向上して強度および靭性を改善す
る作用を有するが、α20%未満ではマルテンサイトの
生成がmmとなって所望の強度が得られず、α90%を
超えると靭性が低下することからその含有量をα20〜
α90%と限定した。The Mn component has the effect of improving hardenability and improving strength and toughness, but if α is less than 20%, martensite will be formed in mm and the desired strength cannot be obtained, and if α exceeds 90%, toughness will decrease. Therefore, the content is α20 ~
It was limited to α90%.
P右よびS成分はいずれも不可避的に含まれる不純物で
両者ともその含「息を低減させることは強靭化に極めて
有効であるため、P成分は0.035%以下、S成分は
α015%以下と定めた0両者とも含有量は極力少ない
方がよい。Both P and S components are impurities that are unavoidably contained, and reducing their content is extremely effective for strengthening, so the P component is 0.035% or less, and the S component is α015% or less. It is better to keep the content of both of them as low as possible.
Cr成分は強度および靭性を向」ユさせる作用を任する
が、α50%未満では所望の強度が得られず、2.0%
を超えると靭性が劣化することからその含有量をα50
%以下%と限定した。The Cr component has the effect of improving strength and toughness, but if α is less than 50%, the desired strength cannot be obtained;
If the content exceeds α50, the toughness will deteriorate.
% or less.
Mo成分はC「成分と同様に強度および靭性を向上させ
る作用を育するが、020%未満では所望の強度が得ら
れず、α60%を超えると靭性が劣化することからその
含有量をα20〜α60%と限定した。The Mo component has the effect of improving strength and toughness like the C component, but if it is less than 020%, the desired strength cannot be obtained, and if it exceeds α60%, the toughness deteriorates, so the content should be reduced from α20 to It was limited to α60%.
■成分も強度および靭性を向上させる作用を■するが、
α04%未満では向上効果は十分ではなく、030%を
超えると靭性が劣化することからその含有量を0.04
〜α30%と限定した。■Although the ingredients also have the effect of improving strength and toughness,
If α is less than 04%, the improvement effect is not sufficient, and if it exceeds α030%, the toughness will deteriorate, so the content should be reduced to 0.04%.
It was limited to ~α30%.
AJ2成分は脱酸のために添加されるが、含有量がα1
0%を超えると靭性が低下することからその含有量をs
oi、 AIlα10%以下と定めた。AJ2 component is added for deoxidation, but the content is α1
If the content exceeds 0%, the toughness decreases, so the content is
oi, AIlα was set at 10% or less.
Ni成分は前記のように高温での強度を増加させる作用
を有すると共に、金型の表層部の酸化により該表層部に
おいてNiが濃化し、表層部を高温においてフェライト
相よりも高強度のオーステナイト相に変化させることに
より前記金型の表層部を特に強化するが、含有量が低い
と効果は小さく、一方Ni含イf量が鍛造中の金型表面
温度に依存して定まる特定の値(以下臨界Ni含有量と
いう)を超えると金型表層部の延性が著しく低下し脆性
亀裂を主体とした別離が生ずるので、その含有量を
一α025T + 1.9≦Ni≦−α025T +2
1 ・・・・・・(鳳)但し、Tは鍛造中の金型表面温
度(℃)を填す範囲に限定した。As mentioned above, the Ni component has the effect of increasing the strength at high temperatures, and the oxidation of the surface layer of the mold causes Ni to become concentrated in the surface layer, causing the surface layer to form an austenite phase with higher strength than the ferrite phase at high temperatures. The surface layer of the die is particularly strengthened by changing the Ni content to a specific value determined depending on the die surface temperature during forging (hereinafter referred to as If the critical Ni content is exceeded (called the critical Ni content), the ductility of the surface layer of the mold will decrease significantly and separation mainly due to brittle cracks will occur.
1... (Otori) However, T was limited to a range that accommodates the mold surface temperature (°C) during forging.
第1図はNi含有量と伸びとの関係をm道中の金を表面
!!度の異る場合を想定して調査した結果を示す線図で
、横軸はNi含有量を、縦軸は伸びを示す。図中の実綜
喀引張試験温度が700℃で金型表面温度が比較的低い
700℃に該当する場合、破線は引張試験温度が780
℃で金型表面温度が比較的高い780℃に該当する場合
である。同図において、Ntffi有量が臨界Ni含有
量を超える。と伸びが急激に低下するが、該臨界Ni含
有量は金型表面温度が700℃の場合はa5%、780
%の場合は1.5%と金型表面程度の上昇に伴って低下
する。Figure 1 shows the relationship between Ni content and elongation of gold on the surface! ! This is a diagram showing the results of investigation assuming different degrees of strength, where the horizontal axis shows the Ni content and the vertical axis shows the elongation. In the figure, when the actual heddle tensile test temperature is 700℃ and the mold surface temperature is relatively low at 700℃, the broken line indicates the tensile test temperature is 780℃.
This is a case where the mold surface temperature corresponds to a relatively high 780°C. In the figure, the amount of Ntffi exceeds the critical Ni content. However, the critical Ni content is a5% when the mold surface temperature is 700°C, and the elongation decreases rapidly.
%, it is 1.5% and decreases as the mold surface level increases.
いまこの関係を一次式
%式%
y=1.5とおいてaおよびbを求めると、a=−00
25、b=21となり、(2)式は前記Ni含有量の範
囲を示す(1)式の上限を示す式となる。また、後述す
る実施例から金型表面温度700℃におけるNiの下限
値は1.5%であるので、前記(2)式においてχ=7
00、y=t、5とおき温度勾配&は変らないと仮定し
てa=−0,025としbを求めるとb=19となり、
■式は前記Ni含有琶の範囲を示す(1)式のド限を示
す式となる。Now, if we set this relationship as a linear formula% formula% y=1.5 and find a and b, a=-00
25, b=21, and the equation (2) becomes an equation showing the upper limit of the equation (1) showing the range of the Ni content. Also, from the example described later, the lower limit of Ni at a mold surface temperature of 700°C is 1.5%, so in the above equation (2), χ = 7
00, y=t, 5 and assuming that the temperature gradient & does not change, set a=-0,025 and find b, then b=19.
Equation (2) represents the limit of Equation (1), which indicates the range of the Ni-containing range.
つぎに、金型の使用温度すなわち前記(1)式に1ける
金型表面温rxTの適用範囲であるが、前記第1図にみ
られるようにNi含有Jul、が2%!’1度よりも低
い領域では金型表面温度が低ドすると金型表層部の延性
が低Fする傾向にあり、脆性亀裂を主体とした♀り離が
進行する。従って例えば21 ?、品の重電が減少して
金型との接触時間が短縮する等により鍛造中の金型表面
温度が低下する場合には、金型表層部の延性を確保する
ことが必要になる。Next, regarding the applicable range of the mold usage temperature, that is, the mold surface temperature rxT in equation (1) above, as seen in FIG. 1, the Ni content Jul is 2%! In the region below 1 degree, when the mold surface temperature is low, the ductility of the mold surface layer tends to be low, and delamination mainly consisting of brittle cracks progresses. Therefore, for example, 21? When the surface temperature of the mold during forging decreases due to a decrease in the heavy electrical current of the product and a shortening of the contact time with the mold, it is necessary to ensure the ductility of the surface layer of the mold.
一方、金型表面温度が高い場合には本発明者が出願した
昭和61年4月 日付特許El(rA間鍛造運命川用
j4(1) )の明細書に記αしたように、延性を確保
するよりもむしろ靭性の低下を回避するという観点から
Ni含有量の上限値を定める必要があり、前記(1)式
を適用することは出来ない。On the other hand, when the mold surface temperature is high, ductility can be ensured as stated in the specification of patent El (J4 (1) for rA forging fate river) filed in April 1986 by the present inventor. It is necessary to determine the upper limit of the Ni content from the viewpoint of avoiding a decrease in toughness rather than reducing the toughness, and the above formula (1) cannot be applied.
以上から、本発明に烏ける金型は金型表面温度が比較的
低い場合に適用され、その温度領域は金型表面温度が比
較的低い場合に該当する700℃と、比較的高い場合に
該当する780℃との中間付近の温度を境界温度にとっ
て750℃未15と限定した。From the above, the mold according to the present invention is applied when the mold surface temperature is relatively low, and the temperature range is 700°C, which corresponds to a relatively low mold surface temperature, and 700°C, which corresponds to a relatively high mold surface temperature. The boundary temperature was defined as a temperature near the middle between 780°C and 750°C.
実 施 例 以下、実施例に基づいて説明する。Example The following will explain based on examples.
本発明の組成を有する合金鋼を溶製し焼入焼戻の熱処理
を施した後、直径500−m、高さ700鰭の平盤金型
を作製し、 1250℃に加熱した109に、/個の
炭素鋼を1000個wr造し、金型における割れ発生の
存無を調査すると共に鍛造後の金型表層部の摩耗量を測
定した。金型表面温度は700℃である。また、摩耗量
の測定は前記金型の表面に試験に用いた金型と同材質の
直径50龍、高さ50−の摩耗量測定用の供試材を埋込
み、!81造終了後抜出して表面の摩耗量を求めた。な
お、比較のために本発明の組成からはずれる組成を(「
する比較鋼についても同様の試験を行なった。第1表に
供試材の化学組成を示す。After melting alloy steel having the composition of the present invention and subjecting it to heat treatment of quenching and tempering, a flat mold with a diameter of 500 m and a height of 700 m was made, and heated to 1250 ° C. 1,000 pieces of carbon steel were forged, and the presence or absence of cracks in the mold was investigated, and the amount of wear on the surface layer of the mold after forging was measured. The mold surface temperature is 700°C. In addition, to measure the amount of wear, a sample material for measuring the amount of wear made of the same material as the mold used for the test and having a diameter of 50 mm and a height of 50 mm was embedded in the surface of the mold. After completing the 81-year construction, it was taken out and the amount of wear on the surface was determined. For comparison, a composition that deviates from the composition of the present invention ("
Similar tests were conducted on comparative steel. Table 1 shows the chemical composition of the sample materials.
試験の結果、金型における割れの発生は本発明鋼、比較
鋼のいずれにおいても認められなかった。摩耗量は前記
第1表に併せ示したように、本発明鋼においては比較鋼
に比べ約半分程度で、耐摩耗性が著しく改善されること
がわbる。なお、従来鋼は比較@ (22)、(23)
に近い組成を有するものである。As a result of the test, no cracking in the mold was observed in either the inventive steel or the comparative steel. As shown in Table 1 above, the amount of wear in the steel of the present invention is about half that of the comparative steel, indicating that the wear resistance is significantly improved. In addition, conventional steel is compared @ (22), (23)
It has a composition close to that of
発明の詳細
な説明したように、従来熱間a運用金型の累月として用
いられていたMo等の析出強化型合金元素の添加による
高強度化をはかった合金鋼に代えて、NNを添加すると
共にその他の成分の含存量も適切な゛範囲に定めた本発
明のa間!8I造金型用鋼を用いることにより、高強度
化に伴う靭性の低下が生じず金型の割れを防止できるほ
か、耐摩耗性が著しく向上し、金型の大幅な寿命延長を
はかることができる。As described in detail of the invention, instead of the alloy steel that was conventionally used as a material for hot-operation molds and which was made to have high strength by adding precipitation-strengthening alloy elements such as Mo, NN was added. At the same time, the content of other ingredients is also set within an appropriate range. By using 8I steel for mold making, it is possible to prevent the mold from cracking without reducing toughness due to high strength, and the wear resistance is significantly improved, significantly extending the life of the mold. can.
第1図は熱間@運用金型素材のNi含affiと伸びと
の関係を示す線図である。
第1図
Ni官等t<x)FIG. 1 is a diagram showing the relationship between Ni-containing affi and elongation of a hot@operation mold material. Figure 1 Ni officials, etc. t<x)
Claims (1)
%以下、Mn:0.20〜0.90、P:0.035%
以下、S:0.015%以下、Cr:0.50〜2.0
%、Mo:0.20〜0.60%、V:0.04〜0.
30%、酸溶解性Al:0.10%以下を含有し、更に
Niを、Tを熱間鍛造中の金型の表面温度(℃)とする
とき、 −0.025T+19≦Ni≦−0.025T+21を
満すように含有し、残りがFeおよび不可避不純物の合
金鋼からなることを特徴とする熱間鍛造金型用鋼。[Claims] In weight%, C: 0.50 to 0.70%, Si: 0.50
% or less, Mn: 0.20-0.90, P: 0.035%
Below, S: 0.015% or less, Cr: 0.50 to 2.0
%, Mo: 0.20-0.60%, V: 0.04-0.
30%, acid-soluble Al: 0.10% or less, and further contains Ni, where T is the surface temperature of the mold during hot forging (°C), -0.025T+19≦Ni≦-0. 1. Steel for hot forging dies, characterized in that it contains alloy steel that satisfies 025T+21, and the remainder is Fe and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9544286A JPS62250158A (en) | 1986-04-24 | 1986-04-24 | Steel for hot forging molds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9544286A JPS62250158A (en) | 1986-04-24 | 1986-04-24 | Steel for hot forging molds |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62250158A true JPS62250158A (en) | 1987-10-31 |
Family
ID=14137807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9544286A Pending JPS62250158A (en) | 1986-04-24 | 1986-04-24 | Steel for hot forging molds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62250158A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06256897A (en) * | 1993-03-02 | 1994-09-13 | Sumitomo Metal Ind Ltd | Steel for hot forging die |
EP1471160A1 (en) * | 2003-04-24 | 2004-10-27 | BÖHLER Edelstahl GmbH | Cold-worked Steel Object |
JP2011195917A (en) * | 2010-03-23 | 2011-10-06 | Sanyo Special Steel Co Ltd | Hot work tool steel excellent in toughness |
-
1986
- 1986-04-24 JP JP9544286A patent/JPS62250158A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06256897A (en) * | 1993-03-02 | 1994-09-13 | Sumitomo Metal Ind Ltd | Steel for hot forging die |
EP1471160A1 (en) * | 2003-04-24 | 2004-10-27 | BÖHLER Edelstahl GmbH | Cold-worked Steel Object |
US7682417B2 (en) | 2003-04-24 | 2010-03-23 | Bohler Edelstahl Gmbh | Cold work steel article |
JP2011195917A (en) * | 2010-03-23 | 2011-10-06 | Sanyo Special Steel Co Ltd | Hot work tool steel excellent in toughness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900006605B1 (en) | Manufacturing method of high strength stainless steel with excellent workability and no welding softening | |
US3567434A (en) | Stainless steels | |
US2793113A (en) | Creep resistant steel | |
US3065067A (en) | Austenitic alloy | |
US3291655A (en) | Alloys | |
US3807991A (en) | Ferritic stainless steel alloy | |
US4798634A (en) | Corrosion resistant wrought stainless steel alloys having intermediate strength and good machinability | |
JPH06116635A (en) | Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance | |
US3342590A (en) | Precipitation hardenable stainless steel | |
US3347663A (en) | Precipitation hardenable stainless steel | |
JPS5946300B2 (en) | Steel for cold forging with excellent machinability and its manufacturing method | |
US4049430A (en) | Precipitation hardenable stainless steel | |
JPS62250158A (en) | Steel for hot forging molds | |
JPS61272349A (en) | Bearing steel | |
US2949355A (en) | High temperature alloy | |
US3820981A (en) | Hardenable alloy steel | |
JPS5853711B2 (en) | Nickel-chromium-molybdenum-based high strength, high toughness thick wall steel for pressure vessels | |
JPS6132384B2 (en) | ||
US2978319A (en) | High strength, low alloy steels | |
JPH07228947A (en) | Alloy with high strength and low thermal expansion | |
WO1987004731A1 (en) | Corrosion resistant stainless steel alloys having intermediate strength and good machinability | |
JPS5845360A (en) | Low alloy steel with temper embrittlement resistance | |
US4049432A (en) | High strength ferritic alloy-D53 | |
JP4465490B2 (en) | Precipitation hardened ferritic heat resistant steel | |
JP7665090B2 (en) | High strength and high toughness maraging stainless steel for ultra-low temperature engineering and its manufacturing method |