JPS62250147A - Heat-resisting aluminum alloy improved in fatigue strength - Google Patents
Heat-resisting aluminum alloy improved in fatigue strengthInfo
- Publication number
- JPS62250147A JPS62250147A JP9433386A JP9433386A JPS62250147A JP S62250147 A JPS62250147 A JP S62250147A JP 9433386 A JP9433386 A JP 9433386A JP 9433386 A JP9433386 A JP 9433386A JP S62250147 A JPS62250147 A JP S62250147A
- Authority
- JP
- Japan
- Prior art keywords
- fatigue strength
- alloy
- heat
- aluminum alloy
- heat resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 26
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 239000000843 powder Substances 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 11
- 238000001816 cooling Methods 0.000 abstract description 9
- 238000007711 solidification Methods 0.000 abstract description 5
- 230000008023 solidification Effects 0.000 abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 abstract description 5
- 229910052742 iron Inorganic materials 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 abstract 1
- 238000000889 atomisation Methods 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000007712 rapid solidification Methods 0.000 description 8
- 238000005275 alloying Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 5
- 229910018084 Al-Fe Inorganic materials 0.000 description 4
- 229910018192 Al—Fe Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000011856 silicon-based particle Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000000516 activation analysis Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000376 effect on fatigue Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、急冷凝固法によって製造される耐熱性アルミ
ニウム合金の、殊に疲労強度を改善することに成功した
耐熱性アルミニウム合金に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat-resistant aluminum alloy manufactured by a rapid solidification method, and in particular to a heat-resistant aluminum alloy that has been successfully improved in fatigue strength. .
[従来の技術]
自動車産業や航空機産業においては、軽量性に冨み且つ
高温条件下でも高強度(疲労強度)を発揮することので
きる耐熱性材料への要望が強い。[Prior Art] In the automobile and aircraft industries, there is a strong demand for heat-resistant materials that are lightweight and can exhibit high strength (fatigue strength) even under high-temperature conditions.
現在、この様な要望を満たすべく多くの研究が行なわれ
ているが、そうした研究材料の1つにアルミニウム合金
、殊に急冷凝固法を応用して製造されるアルミニウム合
金を挙げることができる。Currently, a lot of research is being carried out to meet these demands, and one such research material is aluminum alloys, particularly aluminum alloys manufactured by applying the rapid solidification method.
該急冷凝固アルミニウム合金は、通常高溶質濃度の溶融
微粉化アルミニウム合金を例えば回転冷却ロール等に吹
き付け、即座に急冷凝固(103℃/秒以上の高速冷却
)することによって製造される。The rapidly solidified aluminum alloy is usually produced by spraying a molten pulverized aluminum alloy with a high solute concentration onto, for example, a rotating cooling roll and immediately rapidly solidifying it (high-speed cooling at 103° C./sec or more).
この様にして得られた急冷凝固アルミニウム合金は、粉
末状、薄帯状或は薄片状等を呈しているが、これらは、
上記溶質元素を過飽和状態から急冷凝固させたものであ
る為固溶性が良好であり、一般に耐熱性1強度、耐摩耗
性等が優れている。The rapidly solidified aluminum alloy thus obtained is in the form of a powder, a ribbon, or a flake.
Since the solute element is rapidly solidified from a supersaturated state, it has good solid solubility and generally has excellent heat resistance, strength, abrasion resistance, etc.
例えば上記溶質元素がFeであるA l−Fe系合金は
耐熱性に優れ(U S P437919− A、 1
00〜350℃域での強度に優れている)、又溶質元素
がSiであるAl−3i系合金は耐摩耗性に優れている
(特開昭59−13040号公報)。For example, the Al-Fe alloy in which the solute element is Fe has excellent heat resistance (US P437919-A, 1
(Excellent strength in the 00 to 350° C. range), and Al-3i alloys whose solute element is Si have excellent wear resistance (Japanese Patent Application Laid-open No. 13040/1983).
[発明が解決しようとする問題点]
本発明者等は、かねてより上記急冷凝固アルミニウム合
金のうち特にA l−Fe系耐熱性合金に着目し該合金
の疲労強度を改善すべく検討を続けてきた。上記Al−
Fe系耐熱性合金は、耐熱性については要求レベルを路
溝たすが、疲労強度については必ずしも満足できるとは
言い難く、例えば繰り返し応力のかかるコンロッドの様
な部品等に使用することが困難であった。[Problems to be Solved by the Invention] The present inventors have been focusing on Al-Fe heat-resistant alloys among the above-mentioned rapidly solidified aluminum alloys, and have been conducting studies to improve the fatigue strength of these alloys. Ta. The above Al-
Although Fe-based heat-resistant alloys meet the required level of heat resistance in roadways and grooves, they cannot necessarily be said to satisfy fatigue strength, making it difficult to use them in parts such as connecting rods that are subject to repeated stress. there were.
従って疲労強度を改善することは、上記Al−Fe系耐
熱性合金の材料的信頼性を確保する上で極めて意義深い
ことであり、この点が今後の解決課題としてクローズア
ップされる。Therefore, improving the fatigue strength is extremely significant in ensuring the material reliability of the Al-Fe-based heat-resistant alloy, and this point will be highlighted as a problem to be solved in the future.
本発明は、こうした事情を考慮してなされたものであっ
て、耐熱性を保証することは勿論のこと、疲労強度を優
れたものとすることのできる耐熱性アルミニウム合金を
提供しようとするものである。The present invention has been made in consideration of these circumstances, and aims to provide a heat-resistant aluminum alloy that not only guarantees heat resistance but also has excellent fatigue strength. be.
[問題点を解決する為の手段]
本発明に係る耐熱性アルミニウム合金とは、Fe:5〜
15ffEffi%(以下単に%という)及びSi:1
0〜20%を含み、且つ希土類金屑:1〜5%、cr:
t〜s%、 Mo :0.1〜5%。[Means for solving the problem] The heat-resistant aluminum alloy according to the present invention has Fe: 5 to
15ffEffi% (hereinafter simply referred to as %) and Si:1
Contains 0-20%, and rare earth metal scrap: 1-5%, cr:
t~s%, Mo: 0.1~5%.
Z r : 0.1〜5%、V:O,1〜5%よりなる
群から選択される1種以上を総計で5%以下含み、残部
がAI及び不可避不純物よりなるところにその要旨が存
在するものである。Zr: 0.1 to 5%, V:O, 1 to 5%, and the gist is that it contains 5% or less in total, and the remainder consists of AI and unavoidable impurities. It is something to do.
[作用]
本発明合金は、上述の説明から明らかな様に急+a固法
の利用を骨子とするものであるが、これは急冷凝固法に
おける以下の様な利点を活用しようとしているからであ
る。[Function] As is clear from the above description, the alloy of the present invention is based on the use of the rapid +a solidification method, and this is because it attempts to utilize the following advantages of the rapid solidification method. .
(^)各合金元素の固溶限を拡大することができる。(^) The solid solubility limit of each alloying element can be expanded.
(It)金属粒子や各種金属間化合物を微細に均一分散
することができる。(It) Metal particles and various intermetallic compounds can be finely and uniformly dispersed.
(C)上記償)及び(8)の結果として、強度、耐熱性
、熱間加工性、切削加工性等の諸特性を改善することが
できるとの期待がもてる。(C) As a result of the above compensation) and (8), it is expected that various properties such as strength, heat resistance, hot workability, and machinability can be improved.
ここに急冷凝固法の冷却速度とは、102℃/秒以上好
ましくは104℃/秒以上であり、また合金粉末として
はアトマイズ粉末に限らず急冷薄片や急冷薄帯を粉砕し
て得られるものも適用することができる。Here, the cooling rate of the rapid solidification method is 102° C./sec or more, preferably 104° C./sec or more, and the alloy powder is not limited to atomized powder, but also those obtained by crushing rapidly cooled flakes or ribbons. Can be applied.
本発明者等は、上記課題の解決手段を見出すに当たって
こうした急冷凝固法の利点に着目すると共に上記A l
−Fe系耐熱性合金の疲労強度が低いことの原因を究明
することから研究を開始した。その結果本発明者等は、
(1)高速度で冷却したことによってFe、Cr、Zr
、V、REM等の合金元素がAI中に固溶状態で微細分
散するから、疲労亀裂の伝帳に対する妨禦物となる比較
的粗大な分散層が存在しなくなったこと、(2)急冷凝
固アルミニウム合金粉末の表面には一般に酸化物が形成
されているが、該酸化物付着アルミニウム合金粉末を粉
末冶金法によって固化した場合、旧粉末粒界(以下PP
Bという場合もある)に沿って上記酸化物が配列される
為、応力印加時に該酸化物を通して疲労亀裂が生じると
共に該亀裂の伝帳が起こり易いこと等が疲労強度低さの
原因であることを知った。In finding a solution to the above-mentioned problem, the present inventors focused on the advantages of such a rapid solidification method, and the above-mentioned Al
We started our research by investigating the cause of the low fatigue strength of -Fe-based heat-resistant alloys. As a result, the inventors
(1) By cooling at high speed, Fe, Cr, Zr
, V, REM, and other alloying elements are finely dispersed in solid solution in AI, so there is no longer a relatively coarse dispersed layer that acts as a hindrance to fatigue crack propagation; (2) rapid solidification; Generally, oxides are formed on the surface of aluminum alloy powder, but when the oxide-adhered aluminum alloy powder is solidified by powder metallurgy, old powder grain boundaries (hereinafter referred to as PP)
Because the above oxides are arranged along the oxides (sometimes referred to as B), fatigue cracks occur through the oxides when stress is applied, and propagation of the cracks is likely to occur, which is the cause of the low fatigue strength. I learned.
そこで本発明者等は、341番に上記(1)の知見に注
目し、この方向から上記課題を解決すべく種々検討した
。その結果疲労強度の向上を期待し得る基本的合金元素
としてSiを選定し、上記Al−Fe耐熱性合金にこれ
を配合すると共に、他の合金元素についても厳密に規定
して本発明を完成するに至った。Therefore, the present inventors focused on the above finding (1) in No. 341, and conducted various studies from this direction in order to solve the above problem. As a result, Si was selected as a basic alloying element that can be expected to improve fatigue strength, and in addition to blending it into the above Al-Fe heat-resistant alloy, other alloying elements were also strictly specified to complete the present invention. reached.
以下本発明における合金元素の種類及び配合量ニツイて
それらの規定理由を明らかにしつつ説明する。Hereinafter, the types and amounts of alloying elements in the present invention will be explained while clarifying the reasons for specifying them.
■Fe:5〜15%
Feは、AIマトリックス及び他の合金元素と化合して
分散相又は固溶相を形成することによって耐熱性を向上
させる元素であるが、配合率が5%未満の場合は急冷凝
固による分散相の体積比が小すくなって所望の耐熱性を
得ることが困難となる。一方15%を超える場合には、
冷却速度を如何に速くしても粗大化分散相が生じてしま
い、この為該分散相の体積比が極端に大きくなって靭性
低下や熱間加工性低下等材質上の問題を招く結果となる
。■Fe: 5-15% Fe is an element that improves heat resistance by combining with the AI matrix and other alloying elements to form a dispersed phase or solid solution phase, but if the blending ratio is less than 5% The volume ratio of the dispersed phase due to rapid solidification becomes small, making it difficult to obtain the desired heat resistance. On the other hand, if it exceeds 15%,
No matter how fast the cooling rate is, a coarse dispersed phase is generated, and the volume ratio of the dispersed phase becomes extremely large, resulting in material problems such as decreased toughness and hot workability. .
■Si:10〜20%
Siは、単体でAIマトリックス中に分散し疲労クラッ
ク伝帳を妨げる作用を有している為、疲労強度の向上に
効果がある。しかし10%未満の配合率では、AIマト
リックス中のSi粒子が極端に微細化し所望の効果が得
られない。一方20%を超えると、AIマトリックス中
のSi粒子が粗大化すると共に靭性が低下するといった
問題点が生じる。■Si: 10 to 20% Si is dispersed in the AI matrix alone and has the effect of preventing fatigue crack propagation, so it is effective in improving fatigue strength. However, if the blending ratio is less than 10%, the Si particles in the AI matrix become extremely fine and the desired effect cannot be obtained. On the other hand, if it exceeds 20%, problems arise in that the Si particles in the AI matrix become coarse and the toughness decreases.
■希土類元素(REM)=1〜5%、Cr:1〜5%、
Mo二0.1〜5%、Zr:0.1〜5%、V:0.1
〜5%よりなる群から選択される1種以上を総計で5%
以下
これらの元素は、いずれもFeとの相互作用によってア
ルミニウム合金の耐熱性をより一層向上させるという効
果を有しているが、この様な効果を有効に発揮せしめる
には、例えはREM単独の場合1%以上必要であった。■Rare earth elements (REM) = 1-5%, Cr: 1-5%,
Mo2 0.1-5%, Zr: 0.1-5%, V: 0.1
5% in total of one or more species selected from the group consisting of ~5%
All of these elements have the effect of further improving the heat resistance of aluminum alloys through interaction with Fe, but in order to effectively demonstrate this effect, it is necessary to use REM alone. In some cases, 1% or more was required.
しかし5%を超えると、分散相の粗大化及び靭性の低下
を誘起する等、材質上の問題が生じる。こうした上限・
下限設定根拠はREV以外の元素についても同様である
。However, if it exceeds 5%, material problems will occur, such as coarsening of the dispersed phase and reduction in toughness. These upper limits
The basis for setting the lower limit is the same for elements other than REV.
ところで上記元素の総計が5%を超えた場合には、上記
分散相粗大化等の弊害が生じた。By the way, when the total amount of the above elements exceeds 5%, adverse effects such as the above-mentioned coarsening of the dispersed phase occur.
本発明は大略以上の様に構成されているが、本発明者等
は、前記(2)の知見、即ち固化後においては酸化物が
亀裂発生の原因になるという知見についても配慮しよう
と考え、上記酸化物を規制するという方向から検討を行
なった。その結果酸化物=1%以下という結果を得るに
至ったが、以下この点について説明する。Although the present invention is roughly configured as described above, the inventors of the present invention also considered the knowledge in (2) above, that is, the knowledge that oxides cause cracks to occur after solidification. We conducted a study from the perspective of regulating the above oxides. As a result, the result was that the oxide content was 1% or less, and this point will be explained below.
■酸化物=1.5%以下
Al合金溶湯を粉末状とする方法としては空気噴n法が
一般的であるが、該方法を用いて製造されたAl合金粉
末はその表面に1.5%以上もの酸化物(主としてAl
203)が不可避的に含まれている。■ Oxide = 1.5% or less The air injection method is a common method for turning molten Al alloy into powder, but the Al alloy powder produced using this method has a surface of 1.5% oxides (mainly Al
203) are inevitably included.
従来よりこれらの酸化物は、粉末固化時にAIマトリッ
クス中に分散すると共にこれによって耐熱性を向上させ
ると考えられてきた。しかし本発明者等が詳細に研究し
たところによると、1.5%を超えた場合においては耐
熱性の向上効果は小さく、むしろ前記(2)で述べた如
く疲労強度を著しく低下させるという結果が得られた。It has been conventionally believed that these oxides are dispersed in the AI matrix during powder solidification and thereby improve heat resistance. However, according to detailed research conducted by the present inventors, when the amount exceeds 1.5%, the effect of improving heat resistance is small, and in fact, as mentioned in (2) above, fatigue strength is significantly reduced. Obtained.
尚更に好ましくは140%以下に抑制することが推奨さ
れる。Even more preferably, it is recommended to suppress it to 140% or less.
従って本願発明者等はこの要件■を上記■〜■に加える
ことによって、より一層の疲労強度向上効果を発揮し得
ることを知った。尚こうしたアルミニウム合金を製造す
るに当たっては、噴霧の雰囲気ガスとして酸素濃度が1
0%以下のものを用いると良い。Therefore, the inventors of the present application have found that by adding this requirement (1) to the above (1) to (4), a further effect of improving fatigue strength can be achieved. In manufacturing such aluminum alloys, the oxygen concentration in the sprayed atmospheric gas is 1.
It is preferable to use one with a content of 0% or less.
[実施例]
下記第1表より組成の各種Al合金溶湯を作製し、気体
噴霧法を用いて急冷凝固することにより合金粉末を得た
。[Example] Molten Al alloys having various compositions were prepared according to Table 1 below, and alloy powders were obtained by rapid solidification using a gas atomization method.
尚噴霜気体としては、試料No、 9及び10について
は5%の酸素を混合した窒素を用い、また他の試料につ
いては空気を用いた。この様にして得られた粉末の冷却
速度は103℃/scc以上であった。As the frost gas, nitrogen mixed with 5% oxygen was used for samples No. 9 and 10, and air was used for the other samples. The cooling rate of the powder thus obtained was 103° C./scc or more.
上記の粉末を冷間で予備成形後、缶中で脱気処理し42
0℃で直接押出しを行なうことにより健全な固化材を得
た。After preforming the above powder in a cold state, it was degassed in a can.
A sound solidified material was obtained by direct extrusion at 0°C.
次に放射化分析法により各固化材の酸化物量を測定する
と共に酸化物量と各種材料特性との相関を調査しその結
果を第1表に併記した。Next, the amount of oxides in each solidified material was measured by activation analysis, and the correlation between the amount of oxides and various material properties was investigated, and the results are also listed in Table 1.
尚疲労強度試験や耐熱性試験については下記の通りであ
る。The fatigue strength test and heat resistance test are as follows.
疲労試験
平行部長さ15IIII11、直径8IIlffIすの
試験片を用い、室温で小野式回乾曲げ疲労試験を実施し
、S−N[llI線を作成し、これにより107サイク
ルにおける疲労強度を求め、第1表に併記する結果を得
た。Fatigue Test Using a test piece with a parallel length of 15III11 and a diameter of 8IIffI, an Ono dry bending fatigue test was carried out at room temperature, an S-N The results shown in Table 1 were obtained.
室温および高温に ける引張試験
平行部の径6ma+す、標点間距l!1130mmのテ
ストピースを用い、室温、100℃、200℃。Tensile test at room temperature and high temperature. Diameter of parallel part 6 m + gage distance l! A 1130 mm test piece was used at room temperature, 100°C, and 200°C.
300℃の各温度における引張試験を実施し第1表に併
記する結果を得た。また靭性値については室温における
切欠試験片の引張強度(cjNTs)と0.2%耐力(
ao、2)の比(oNTs /QQ、2 )から評価し
た。A tensile test was conducted at various temperatures of 300° C., and the results shown in Table 1 were obtained. Regarding toughness values, the tensile strength of the notched test piece at room temperature (cjNTs) and the 0.2% proof stress (
Evaluation was made from the ratio (oNTs/QQ,2) of ao,2).
Siの効果については、No、 1. 2.3.4(
本発明材)とNo、12.13,14.15 (比較材
)の結果から明らかである。即ちSiの添加によって顕
著な疲労強度の向上が認められる。またNo、 5及び
6と、No、16及び17との比較からSiの添加が上
限値を越える場合には靭性値が極端に低下しまた下限値
に溝なない場合には疲労強度改善の効果が不十分となる
ことは明らかである。またN017及び8並びにNo、
18及び19に示すようにSiiが適正な場合であって
もFeの含有量が上限値を越える場合においては靭性値
が低下し、また下限値に満たない場合にあっては十分な
耐熱性を付与することができておらない。Regarding the effect of Si, No. 1. 2.3.4 (
This is clear from the results of No. 12.13 and 14.15 (comparative materials). That is, the addition of Si significantly improves the fatigue strength. Furthermore, comparing Nos. 5 and 6 with Nos. 16 and 17, when the Si addition exceeds the upper limit, the toughness value decreases extremely, and when there is no groove in the lower limit, there is no effect on fatigue strength improvement. It is clear that this will be insufficient. Also, No. 017 and 8 and No.
As shown in 18 and 19, even if Sii is appropriate, if the Fe content exceeds the upper limit, the toughness value decreases, and if it does not meet the lower limit, the toughness value will decrease. I have not been able to grant it.
REM (Ce、 La)、 Mo、 Cr、
Zr、 V添加の効果はNo、22とN001〜4
の比較から明白であるが、上限値を越えたもの(比較材
19.20)ては靭性が極端に低下する。REM (Ce, La), Mo, Cr,
The effect of adding Zr and V is No, 22 and N001-4.
As is clear from the comparison, the toughness is extremely reduced when the upper limit is exceeded (comparative material 19.20).
[発明の効果]
本発明は上述の様に構成されているので、耐熱性に優れ
しかも疲労強度の著しく改善されたアルミニウム合金を
提供することができた。[Effects of the Invention] Since the present invention is configured as described above, it was possible to provide an aluminum alloy having excellent heat resistance and significantly improved fatigue strength.
Claims (1)
10〜20%を含み、且つ希土類金属:1〜5%、Cr
:1〜5%、Mo:0.1〜5%、Zr:0.1〜5%
、V:0.1〜5%よりなる群から選択される1種以上
を総計で5%以下含み、残部がAl及び不可避不純物よ
りなることを特徴とする疲労強度の改善された耐熱性ア
ルミニウム合金。Fe: 5 to 15% by weight (hereinafter simply referred to as %) and Si:
Contains 10-20%, and rare earth metal: 1-5%, Cr
:1~5%, Mo:0.1~5%, Zr:0.1~5%
, V: A heat-resistant aluminum alloy with improved fatigue strength, characterized in that it contains 5% or less in total of one or more selected from the group consisting of 0.1 to 5%, and the remainder consists of Al and unavoidable impurities. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9433386A JPH0657863B2 (en) | 1986-04-23 | 1986-04-23 | Heat resistant aluminum alloy with improved fatigue strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9433386A JPH0657863B2 (en) | 1986-04-23 | 1986-04-23 | Heat resistant aluminum alloy with improved fatigue strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62250147A true JPS62250147A (en) | 1987-10-31 |
JPH0657863B2 JPH0657863B2 (en) | 1994-08-03 |
Family
ID=14107353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9433386A Expired - Lifetime JPH0657863B2 (en) | 1986-04-23 | 1986-04-23 | Heat resistant aluminum alloy with improved fatigue strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0657863B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5053085A (en) * | 1988-04-28 | 1991-10-01 | Yoshida Kogyo K.K. | High strength, heat-resistant aluminum-based alloys |
US5240517A (en) * | 1988-04-28 | 1993-08-31 | Yoshida Kogyo K.K. | High strength, heat resistant aluminum-based alloys |
US5344507A (en) * | 1991-03-14 | 1994-09-06 | Tsuyoshi Masumoto | Wear-resistant aluminum alloy and method for working thereof |
-
1986
- 1986-04-23 JP JP9433386A patent/JPH0657863B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5053085A (en) * | 1988-04-28 | 1991-10-01 | Yoshida Kogyo K.K. | High strength, heat-resistant aluminum-based alloys |
US5240517A (en) * | 1988-04-28 | 1993-08-31 | Yoshida Kogyo K.K. | High strength, heat resistant aluminum-based alloys |
US5320688A (en) * | 1988-04-28 | 1994-06-14 | Yoshida Kogyo K. K. | High strength, heat resistant aluminum-based alloys |
US5368658A (en) * | 1988-04-28 | 1994-11-29 | Yoshida Kogyo K.K. | High strength, heat resistant aluminum-based alloys |
US5344507A (en) * | 1991-03-14 | 1994-09-06 | Tsuyoshi Masumoto | Wear-resistant aluminum alloy and method for working thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0657863B2 (en) | 1994-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63157831A (en) | Heat-resisting aluminum alloy | |
US4126487A (en) | Producing improved metal alloy products (Al-Fe alloy and Al-Fe-Si alloy) | |
Liu et al. | The solidification process of Al–Mg–Si alloys | |
CA2135790C (en) | Low density, high strength al-li alloy having high toughness at elevated temperatures | |
US5336342A (en) | Copper-iron-zirconium alloy having improved properties and a method of manufacture thereof | |
JPH0347941A (en) | High strength magnesium based alloy | |
JP7500726B2 (en) | Heat-resistant aluminum powder material | |
JPH03236442A (en) | High strength alloy based on rapidly hardened magnesium | |
HUT53681A (en) | Process for producing high-strength al-zn-mg-cu alloys with good plastic properties | |
JPS5887244A (en) | Copper base spinodal alloy strip and manufacture | |
EP0529993B1 (en) | Production of Aluminum matrix composite powder | |
US5160390A (en) | Rapidly solidified fe-cr-al alloy foil having excellent anti-oxidation properties | |
CA1224646A (en) | Aluminium alloys | |
JPS62270704A (en) | Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance | |
JP3909543B2 (en) | Aluminum alloy extruded material with excellent axial crushing properties | |
EP0171798B1 (en) | High strength material produced by consolidation of rapidly solidified aluminum alloy particulates | |
JPS62250147A (en) | Heat-resisting aluminum alloy improved in fatigue strength | |
JPH01147039A (en) | Wear-resistant aluminum alloy and its manufacture | |
JPS62250148A (en) | Heat-resisting aluminum alloy improved in fatigue strength | |
Webster et al. | Mechanical properties and microstructure of argon atomized aluminum-lithium powder metallurgy alloys | |
JP2711296B2 (en) | Heat resistant aluminum alloy | |
JP2024505349A (en) | Powder material with high thermal conductivity | |
JPS63277738A (en) | Al based alloy | |
JPH01316433A (en) | Heat-resistant aluminum alloy material and its manufacture | |
EP0137180B1 (en) | Heat-resisting aluminium alloy |