[go: up one dir, main page]

JPS62249046A - Oxygen sensor for internal combustion engine - Google Patents

Oxygen sensor for internal combustion engine

Info

Publication number
JPS62249046A
JPS62249046A JP61091219A JP9121986A JPS62249046A JP S62249046 A JPS62249046 A JP S62249046A JP 61091219 A JP61091219 A JP 61091219A JP 9121986 A JP9121986 A JP 9121986A JP S62249046 A JPS62249046 A JP S62249046A
Authority
JP
Japan
Prior art keywords
voltage
oxygen
pump
electrodes
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61091219A
Other languages
Japanese (ja)
Inventor
Yasuhide Inoue
靖秀 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP61091219A priority Critical patent/JPS62249046A/en
Publication of JPS62249046A publication Critical patent/JPS62249046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To eliminate oscillation and overshoot by gradually changing an impressed voltage in the stage of changing over the direction of the impression. CONSTITUTION:An oxygen concn. detecting part 6 is formed by juxtaposing measuring electrodes 3, 4 on a substrate 2 and printing an oxide semiconductor 5 thereon. An oxygen pump part 10 is formed by providing pump electrodes 8, 9 to both faces of a solid electrolyte 7. The oxygen pump part 10 is laminated via a spacer 11 onto the oxygen concn. detecting part 6 and an introducing hole 13 to introduce an exhaust gas is formed to a spacing part 12 formed therebetween. The change of the resistance value of the oxide semiconductor 5 between the measuring electrodes 3 and 4 is taken out as the partial voltage e1 of a resistor R1 and is compared with a reference voltage e2 in an operational amplifier Op. The output voltage e3 of the operational amplifier Op inverts to positive and negative according to the result of the comparison between the voltage e1 and e2. An input resistor R3 is interposed to the input side of the amplifier Op and a negative feedback resistor R4 is interposed thereto so that the impressed voltage is gradually changed in the stage of changing over the impression direction of the impressed voltage.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の排気系に装着して該機関に供給さ
れる混合気の空燃比と密接な関係にある排気中の酸素濃
度を検出し、空燃比フィードバック制御におけるフィー
ドバック信号の提供などに用いる酸素センサに関し、特
にその制御回路部分の改良に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention is installed in the exhaust system of an internal combustion engine to measure the oxygen concentration in the exhaust gas, which is closely related to the air-fuel ratio of the mixture supplied to the engine. The present invention relates to an oxygen sensor used for detecting and providing a feedback signal in air-fuel ratio feedback control, and particularly relates to improvements in the control circuit portion thereof.

〈従来の技術) 従来、この種の酸素センサとしては、酸素濃度の高い領
域(空燃比リーン領域)から低い領域(空燃比リンチ領
域)まで広範囲に検出できるものが、SAEペーパー8
50378あるいは特願昭60−167440号におい
て提案されている。
(Prior art) Conventionally, this type of oxygen sensor has been able to detect a wide range of oxygen concentrations from a high oxygen concentration region (air-fuel ratio lean region) to a low oxygen concentration region (air-fuel ratio lynch region), according to SAE Paper 8.
50378 or Japanese Patent Application No. 60-167440.

これを第5図により説明する。加熱ヒータlを埋設した
アルミナ等からなる基板2上に一対の白金からなる測定
電極3.4を並設し、これらの測定電極3,4上に酸素
濃度に応じて抵抗値が変化するチタニア等の酸化物半導
体5を印刷して、酸素濃度検知部6を形成しである。ま
た、ジルコニア等からなる酸素イオン伝導性の固体電解
質7の両面に一対の白金からなるポンプ電極8.9を設
けて、酸素ポンプ部10を形成しである。そして、酸素
濃度検知部6の上方に例えばアルミナで形成した枠状の
スペーサ11を介して酸素ポンプ部10を積層して、酸
素濃度検知部6と酸素ポンプ部10との間に密閉された
間隙部12を形成し、かつ、この間隙部12に機関排気
を導入するための導入孔13を酸素ポンプ部IOの固体
電解質7に形成しである。
This will be explained with reference to FIG. A pair of measurement electrodes 3 and 4 made of platinum are arranged side by side on a substrate 2 made of alumina or the like in which a heating heater l is embedded, and on these measurement electrodes 3 and 4 there is a material such as titania whose resistance value changes depending on the oxygen concentration. The oxygen concentration sensing portion 6 is formed by printing the oxide semiconductor 5 . Further, a pair of pump electrodes 8 and 9 made of platinum are provided on both sides of an oxygen ion conductive solid electrolyte 7 made of zirconia or the like to form an oxygen pump section 10. Then, the oxygen pump section 10 is stacked above the oxygen concentration detection section 6 via a frame-shaped spacer 11 made of alumina, for example, so that a sealed gap is created between the oxygen concentration detection section 6 and the oxygen pump section 10. An introduction hole 13 for introducing engine exhaust gas into the gap 12 is formed in the solid electrolyte 7 of the oxygen pump section IO.

かかる構成によれば、間隙部12内の酸素量の変化に応
じて酸化物半導体5の抵抗値が変化することから、この
抵抗値変化に基づいて間隙部12内の雰囲気を検出し、
この検出結果に応じて間隙部12内の雰囲気を一定(例
えば理論空燃比)に保つように酸素ポンプ部lOに流す
電流量を制御し、その時の電流量から排気中の酸素濃度
を検出できる。
According to this configuration, since the resistance value of the oxide semiconductor 5 changes according to the change in the amount of oxygen in the gap 12, the atmosphere in the gap 12 is detected based on this resistance value change,
According to this detection result, the amount of current flowing through the oxygen pump section IO is controlled so as to keep the atmosphere in the gap 12 constant (for example, at a stoichiometric air-fuel ratio), and the oxygen concentration in the exhaust gas can be detected from the amount of current at that time.

例えば、排気中の酸素濃度の高いリーン領域での空燃比
を検出する場合には、外側のポンプ電極8を陽極、間隙
部側のポンプ電極9を陰極にして電圧を印加する。する
と、電流に比例した酸素(酸素イオン0ト)が間隙部1
2内から外側に汲み出される。そして、印加電圧が所定
値以上になると、流れる電流は限界値に達し、この限界
電流値を測定することにより排気中の酸素濃度、言換え
れば空燃比を検出できる。逆に、ポンプ電極8を陰極、
ポンプ電極9を陽極にして間隙部12内に酸素を汲み入
れるようにすれば、排気中の酸素濃度の低いリッチ領域
での検出ができる。
For example, when detecting the air-fuel ratio in a lean region where the oxygen concentration in the exhaust gas is high, a voltage is applied using the outer pump electrode 8 as the anode and the gap side pump electrode 9 as the cathode. Then, oxygen (0 oxygen ions) proportional to the current flows into the gap 1.
2 It is pumped from the inside to the outside. Then, when the applied voltage exceeds a predetermined value, the flowing current reaches a limit value, and by measuring this limit current value, the oxygen concentration in the exhaust gas, in other words, the air-fuel ratio can be detected. Conversely, the pump electrode 8 is a cathode,
By using the pump electrode 9 as an anode to pump oxygen into the gap 12, detection can be performed in a rich region where the oxygen concentration in the exhaust gas is low.

このため、測定電極3,4間の酸化物半導体5の抵抗値
変化を抵抗R,との分圧電圧e1として取出し、オペア
ンプOFにおいて基準電圧e2と比較する。このオペア
ンプO7は入力される分圧電圧81に対し第6図に示す
ような出力電圧e。
Therefore, the change in the resistance value of the oxide semiconductor 5 between the measurement electrodes 3 and 4 is extracted as a divided voltage e1 with respect to the resistor R, and compared with a reference voltage e2 in the operational amplifier OF. This operational amplifier O7 has an output voltage e as shown in FIG. 6 with respect to the input divided voltage 81.

の特性を有し、eIとe2との比較結果に応じ出力電圧
e、が正負に反転する。そして、この出力電圧e3をポ
ンプ電極8.9間に印加し、このポンプ電極8.9間に
流れる電流I、を電流検出用抵抗Rtの両端から電圧V
、、V2として取出すことにより、酸素濃度を検出する
The output voltage e is reversed between positive and negative depending on the comparison result between eI and e2. Then, this output voltage e3 is applied between the pump electrodes 8.9, and the current I flowing between the pump electrodes 8.9 is applied to the voltage V from both ends of the current detection resistor Rt.
, , V2 to detect the oxygen concentration.

このようにして、かかる酸素センサは広範囲な酸素濃度
領域で検出を行うことができ、広域空燃比センサとも呼
ばれる。
In this way, such an oxygen sensor can perform detection over a wide range of oxygen concentrations, and is also called a wide range air-fuel ratio sensor.

〈発明が解決しようとする問題点〉 しかしながら、このような従来の酸素センサにおいては
、酸素濃度検知部と酸素ポンプ部との間に距離があるた
め、第7図に示すような発振現象、すなわち酸素センサ
を一定雰囲気においた状態においても検知部とポンプ部
との間の時間遅れのためポンプ部が酸素の出し入れを過
度に行って電流■、が安定しない現象を生じたり、また
、第8図に示すようなオーバーシュート現象、すなゎ雰
囲気が変わって電流■2が変化する際に一旦I、が大き
く変化しその後安定する現象を生じ、正確な空燃比の検
出ができないという問題点があった。
<Problems to be Solved by the Invention> However, in such a conventional oxygen sensor, since there is a distance between the oxygen concentration detection part and the oxygen pump part, an oscillation phenomenon as shown in FIG. Even when the oxygen sensor is placed in a constant atmosphere, due to the time delay between the detection part and the pump part, the pump part may excessively pump in and out oxygen, causing the current to become unstable, or as shown in Figure 8. There is an overshoot phenomenon as shown in Figure 2, that is, when the atmosphere changes and the current 2 changes, I changes significantly and then stabilizes, making it impossible to accurately detect the air-fuel ratio. Ta.

本発明はこのような従来の問題点に鑑み、発振やオーバ
ーシュート現象を緩和して、より正確な空燃比の検出が
できるようにすることを目的とする。
In view of these conventional problems, it is an object of the present invention to alleviate oscillation and overshoot phenomena to enable more accurate air-fuel ratio detection.

(問題点を解決するための手段〉 このため、本発明は、測定電極間の酸化物半導体の抵抗
値に基づく分圧電圧を基準電圧と比較し、比較結果に応
じてポンプ電極間に印加する電圧の印加方向を切浚える
ようにして、ポンプ電極間に流れる電流に基づいて酸素
濃度を検出する場合に、ポンプ電極間への印加電圧の印
加方向の切換時に印加電圧を徐々に変化させる手段を設
けるようにしたものである。
(Means for solving the problem) Therefore, the present invention compares a divided voltage based on the resistance value of the oxide semiconductor between the measurement electrodes with a reference voltage, and applies the voltage between the pump electrodes according to the comparison result. Means for gradually changing the applied voltage when switching the direction of application of the voltage between the pump electrodes when detecting the oxygen concentration based on the current flowing between the pump electrodes by changing the direction of the voltage application It is designed to provide a.

〈作用〉 上記の構成においては、印加電圧の印加方向の切換時に
印加電圧を徐々に変化させるため、発振やオーバーシェ
ード現象をなくすことができる。
<Function> In the above configuration, since the applied voltage is gradually changed when switching the direction of application of the applied voltage, oscillation and overshading phenomenon can be eliminated.

〈実施例〉 以下に本発明の詳細な説明する。<Example> The present invention will be explained in detail below.

第1図は第1の実施例を示し、従来例と異なるところは
、ポンプ電極8,9間への印加電圧の印加方向の切換時
に印加電圧を徐々に変化させる手段として、オペアンプ
OFの入力側に入力抵抗R1を介装すると共に、出力側
と入力側との間に負帰還抵抗R4を介装しである。尚、
R4>R3である。
FIG. 1 shows a first embodiment, which differs from the conventional example in that the input side of the operational amplifier OF is used as a means for gradually changing the applied voltage when switching the direction of applying the voltage between the pump electrodes 8 and 9. An input resistor R1 is interposed between the output side and the input side, and a negative feedback resistor R4 is interposed between the output side and the input side. still,
R4>R3.

このようにして、オペアンプOFにゲインをもたせ、差
を増巾するようにすることで、オペアンプOpの出力電
圧e3の特性は、第2図に示すようになり、所定の傾き
をもつ。この傾きはR3゜R4の選択により設定するこ
とができる。これにより、発振やオーバーシュート現象
を緩和することができる。
In this way, by providing a gain to the operational amplifier OF and amplifying the difference, the characteristics of the output voltage e3 of the operational amplifier Op become as shown in FIG. 2, and have a predetermined slope. This slope can be set by selecting R3° and R4. Thereby, oscillation and overshoot phenomena can be alleviated.

第3図は第2の実施例を示し、従来例と異なるところは
、ポンプ電極8,9間への印加電圧の印加方向の切換時
に印加電圧を徐々に変化させる手段として、オペアンプ
O1の出力側に抵抗RsとコンデンサCとからなる遅延
回路を設けである。
FIG. 3 shows a second embodiment, which differs from the conventional example in that the output side of the operational amplifier O1 is used as a means for gradually changing the applied voltage when switching the direction of application of the voltage between the pump electrodes 8 and 9. A delay circuit consisting of a resistor Rs and a capacitor C is provided.

このようにして、オペアンプO2の出力電圧e。In this way, the output voltage e of the operational amplifier O2.

が反転した際、印加電圧e4を第4図に示すように徐々
に立ち上げることで、発振やオーバーシュート現象を防
止するのである。
When the voltage is reversed, the applied voltage e4 is gradually raised as shown in FIG. 4 to prevent oscillation and overshoot phenomena.

〈発明の効果) 以上説明したように本発明にれれば、前述の発振やオー
バーシュート現象をなくして、正確な空燃比の検出が可
能になるという効果が得られる。
<Effects of the Invention> As explained above, according to the present invention, the above-mentioned oscillation and overshoot phenomenon can be eliminated, and the effect that accurate air-fuel ratio detection can be obtained can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す酸素センサの構成
図、第2図は同上第1の実施例におけるオペアンプの出
力電圧の特性図、第3図は本発明の第2の実施例を示す
酸素センサの構成図、第4図は同上第2の実施例におけ
る出力電圧の特性図、第5図は従来例を示す酸素センサ
の構成図、第6図は同上従来例におけるオペアンプの出
力電圧の特性図、第7図は発振現象を示す図、第8図は
オーバーシュート現象を示す図である。
FIG. 1 is a configuration diagram of an oxygen sensor showing a first embodiment of the present invention, FIG. 2 is a characteristic diagram of the output voltage of an operational amplifier in the first embodiment, and FIG. 3 is a diagram showing a second embodiment of the present invention. A configuration diagram of an oxygen sensor showing an example, FIG. 4 is a characteristic diagram of output voltage in the second embodiment of the same as above, FIG. 5 is a configuration diagram of an oxygen sensor showing a conventional example, and FIG. A characteristic diagram of the output voltage, FIG. 7 is a diagram showing an oscillation phenomenon, and FIG. 8 is a diagram showing an overshoot phenomenon.

Claims (1)

【特許請求の範囲】[Claims]  基板上に一対の測定電極を並設しこれらの測定電極上
に酸素濃度に応じて抵抗値が変化する酸化物半導体を積
層して酸素濃度検知部を形成すると共に、この酸素濃度
検知部の上方に枠状のスペーサを介して、機関排気の導
入孔を有する酸素イオン伝導性の固体電解質の両面に一
対のポンプ電極を設けて形成される酸素ポンプ部を設け
てなり、前記測定電極間の酸化物半導体の抵抗値に基づ
く分圧電圧を基準電圧と比較し、比較結果に応じて前記
ポンプ電極間に印加する電圧の印加方向を切換え、前記
ポンプ電極間に流れる電流に基づいて酸素濃度を検出す
る内燃機関用酸素センサにおいて、前記ポンプ電極間へ
の印加電圧の印加方向の切換時に印加電圧を徐々に変化
させる手段を設けたことを特徴とする内燃機関用酸素セ
ンサ。
A pair of measurement electrodes are arranged side by side on a substrate, and an oxide semiconductor whose resistance value changes depending on the oxygen concentration is laminated on these measurement electrodes to form an oxygen concentration detection section. An oxygen pump section is provided with a pair of pump electrodes on both sides of an oxygen ion conductive solid electrolyte having an introduction hole for engine exhaust gas through a frame-shaped spacer, and the oxidation between the measurement electrodes is Comparing a divided voltage based on the resistance value of the physical semiconductor with a reference voltage, switching the direction of applying the voltage between the pump electrodes according to the comparison result, and detecting the oxygen concentration based on the current flowing between the pump electrodes. An oxygen sensor for an internal combustion engine, characterized in that the oxygen sensor for an internal combustion engine is provided with means for gradually changing the applied voltage when switching the direction of application of the voltage between the pump electrodes.
JP61091219A 1986-04-22 1986-04-22 Oxygen sensor for internal combustion engine Pending JPS62249046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61091219A JPS62249046A (en) 1986-04-22 1986-04-22 Oxygen sensor for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61091219A JPS62249046A (en) 1986-04-22 1986-04-22 Oxygen sensor for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62249046A true JPS62249046A (en) 1987-10-30

Family

ID=14020311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61091219A Pending JPS62249046A (en) 1986-04-22 1986-04-22 Oxygen sensor for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62249046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084418A (en) * 1996-02-28 2000-07-04 Denso Corporation Method for accurately detecting sensor element resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130649A (en) * 1980-03-03 1981-10-13 Ford Motor Co Method of measuring oxygen partial pressure and electrochemical apparatus therefor
JPS6063457A (en) * 1983-09-17 1985-04-11 Mitsubishi Electric Corp Air-fuel ratio sensor of engine
JPS60236056A (en) * 1984-05-09 1985-11-22 Nissan Motor Co Ltd Air-fuel ratio sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130649A (en) * 1980-03-03 1981-10-13 Ford Motor Co Method of measuring oxygen partial pressure and electrochemical apparatus therefor
JPS6063457A (en) * 1983-09-17 1985-04-11 Mitsubishi Electric Corp Air-fuel ratio sensor of engine
JPS60236056A (en) * 1984-05-09 1985-11-22 Nissan Motor Co Ltd Air-fuel ratio sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084418A (en) * 1996-02-28 2000-07-04 Denso Corporation Method for accurately detecting sensor element resistance

Similar Documents

Publication Publication Date Title
US5236569A (en) Air/fuel ratio sensor having resistor for limiting leak current from pumping cell to sensing cell
US5413683A (en) Oxygen sensing apparatus and method using electrochemical oxygen pumping action to provide reference gas
JPH0414305B2 (en)
JPH0548420B2 (en)
EP0147988B1 (en) Air/fuel ratio detector
JP4415771B2 (en) Gas concentration detector
KR100355133B1 (en) Limit Current Sensor for Determining Lambda Values in Gas Mixtures
US20100126883A1 (en) Sensor element having suppressed rich gas reaction
JP2017207396A (en) Gas concentration detecting device
JPH10153576A (en) Air-fuel ratio sensor
CN1108522C (en) Device for finding concentration of component in gas mixture
JPS62249046A (en) Oxygen sensor for internal combustion engine
JPH07117527B2 (en) Oxygen concentration detector
US20020189942A1 (en) Gas concentration measuring device
JPH07104324B2 (en) Air-fuel ratio detector
US20210270767A1 (en) Method for operating a sensor for detecting at least a portion of a measurement gas component having bound oxygen in a measurement gas
JPS62203056A (en) Oxygen concentration detector
JP2008304272A (en) Gas concentration detector
EP1298430A2 (en) Gas sensor with error compensation
JPH0422286Y2 (en)
JP4616754B2 (en) Sensor control device
JP2792080B2 (en) Oxygen sensor
JP3712541B2 (en) Air-fuel ratio sensor control apparatus and air-fuel ratio measurement method
JPS61161445A (en) Air/furl ratio detector
JPS61144563A (en) Air fuel ratio detecting method