[go: up one dir, main page]

JPS62245205A - Thin film optical waveguide and its production - Google Patents

Thin film optical waveguide and its production

Info

Publication number
JPS62245205A
JPS62245205A JP8932086A JP8932086A JPS62245205A JP S62245205 A JPS62245205 A JP S62245205A JP 8932086 A JP8932086 A JP 8932086A JP 8932086 A JP8932086 A JP 8932086A JP S62245205 A JPS62245205 A JP S62245205A
Authority
JP
Japan
Prior art keywords
film
optical waveguide
single crystal
thin film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8932086A
Other languages
Japanese (ja)
Inventor
Shogo Matsubara
正吾 松原
Yoichi Miyasaka
洋一 宮坂
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8932086A priority Critical patent/JPS62245205A/en
Publication of JPS62245205A publication Critical patent/JPS62245205A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To resolve the anxiety about mixture of impurities and to shorten the work time considerably by forming an insulator film on a silicon single crystal substrate and forming an optical waveguide area consisting of an epitaxial crystal film or a perovskite type oxide and an area consisting of an amorphous film on said insulator film. CONSTITUTION:An amorphous film which should be the perovskite type oxide by heat treatment is formed on the substrate consisting of an insulator epitaxial film and a silicon single crystal and is irradiated with a laser beam. The irradiated part is heated by absorbing the light and is made crystalline to become an epitaxial film reflecting the crystallizability of the insulator film of the substrate. Since the crystalline part and the amorphous part are different in refractive index from each other, an optical waveguide is formed. Since the film is made crystalline by the laser beam, the beam diameter of the laser beam is controlled to the precision of the shape of the waveguide, and the irradiation time required for this treatment is very short to not only improve the precision of waveform formation but also simplify the process in comparison with plasma etching.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体層と、絶縁層からなり、半導体基板上に
形成することを可能にする薄膜光導波路及びその作製方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film optical waveguide that is made up of a semiconductor layer and an insulating layer and can be formed on a semiconductor substrate, and a method for manufacturing the same.

(従来の技術) 電気的集積回路をより高密度化、高速度化する為に光集
積回路の研究が進められている。光集積回路を構成する
には導波路、及び導波光制御素子を必要とする。(Pt
)t−x La、)(ZryTiZ)1−X/403(
以下PLZTと称す)に代表される一般構造式ABO3
型のペロプスカイト酸化物は優れた電気光学効果を有し
、従来のLiNbO3に代わる導波路材料と期待されて
いる。PLZT薄膜を用いた導波光制御素子はたとえば
ナショナルテクニカルレボ−) (NationalT
echnical Report)第29巻6号90頁
〜99頁に報告されている。
(Prior Art) Research into optical integrated circuits is being advanced in order to make electrical integrated circuits more dense and faster. To configure an optical integrated circuit, a waveguide and a waveguide light control element are required. (Pt
)t-x La,)(ZryTiZ)1-X/403(
General structural formula ABO3 represented by (hereinafter referred to as PLZT)
Perovskite oxides have excellent electro-optic effects and are expected to be a waveguide material that can replace traditional LiNbO3. A waveguide light control device using a PLZT thin film is available from, for example, National Technical Review.
29, No. 6, pp. 90-99.

(発明が解決しようとする問題点) この場合、PLZT薄膜はサファイヤ基板上に形成され
ている。PLZT系のペロプスカイト酸化物薄膜の結晶
性は基板材料に大きく依存し、サファイヤ、マグネシア
、チタン酸ストロンチウム等の単結晶基板上にエピタキ
シャル成長することが知られている。しかしこれらの酸
化物単結晶基板は高価であり、大口径の単結晶基板を安
価に製造することは極めて困難である。また上記のPL
ZT導波光制御素子は、PLZT薄膜をサファイヤ基板
上にエピタキシャル成長した後、PLZT膜をプラズマ
エツチングしてリッチ型の導波路を作製しているが、プ
ラズマエツチングにおいては加工精度、ガスの混入、エ
ツチング時間等に問題が多い。さらに上記導波光制御素
子はYAGレーザー光に対する伝播損失が5dB/am
と従来のLiNbO3結晶の0.2dB/amに比べ1
0倍以上の値を示す。これはPLZT膜の結晶性の問題
とともに、リッヂ型導波路の側壁部の形状の荒さによる
ものと考えられる。
(Problems to be Solved by the Invention) In this case, the PLZT thin film is formed on a sapphire substrate. The crystallinity of a PLZT-based peropskite oxide thin film largely depends on the substrate material, and it is known that it is epitaxially grown on a single crystal substrate of sapphire, magnesia, strontium titanate, or the like. However, these oxide single crystal substrates are expensive, and it is extremely difficult to manufacture large diameter single crystal substrates at low cost. Also, the above PL
In the ZT waveguide optical control device, a rich type waveguide is fabricated by epitaxially growing a PLZT thin film on a sapphire substrate and then plasma etching the PLZT film. There are many problems with this. Furthermore, the waveguide light control element has a propagation loss of 5 dB/am for YAG laser light.
1 compared to 0.2 dB/am of conventional LiNbO3 crystal.
Indicates a value of 0 times or more. This is considered to be due to the problem of the crystallinity of the PLZT film as well as the rough shape of the side wall portion of the ridge-type waveguide.

本発明はこれらの問題を解決するための薄膜光導波路及
びその作製方法を提供するものである。
The present invention provides a thin film optical waveguide and a method for manufacturing the same to solve these problems.

(問題点を解決するための手段) シリコン単結晶基板上に絶縁体膜が形成され、該絶縁体
膜上にペロプスカイト型酸化物のエピタキシャル結晶膜
からなる光導波路領域と非晶質膜からなる領域とが形成
されていることを特徴とする薄膜光導波路。
(Means for solving the problem) An insulating film is formed on a silicon single crystal substrate, and an optical waveguide region made of an epitaxial crystal film of perovskite type oxide and an amorphous film are formed on the insulating film. A thin film optical waveguide characterized in that a region is formed.

その作製方法として、シリコン単結晶基板上に絶縁体膜
を形成し、該絶縁体膜上に熱処理することによってペロ
プスカイト型酸化物とすべき非晶質膜を形成した後、該
非晶質膜の先導波路とすべき部分のみをレーザー光を用
いて局部的に加熱してエピタキシャル結晶膜とすること
を特徴とする薄膜光導波路の作製方法。
As a manufacturing method, an insulating film is formed on a silicon single crystal substrate, an amorphous film to be made into a perovskite oxide is formed by heat treatment on the insulating film, and then the amorphous film is A method for manufacturing a thin film optical waveguide, characterized in that only a portion to be a leading waveguide is locally heated using a laser beam to form an epitaxial crystal film.

(作用) 本出願人はペロプスカイト型酸化物のエピタキシャル膜
を絶縁体エピタキシャル膜を介してシリコン単結晶上に
形成する方法を特開昭59−17358号公報において
提案しており、本発明はそれを先導波路およびその作製
法として更に発展応用したものである。即ち絶縁体エピ
タキシャル膜とシリコン単結晶からなる基板上に熱処理
することによってペロブスカイト型酸化物とすべき非晶
質膜を形成し非晶質膜にレーザー光を照射する。照射さ
れた部分は光を吸収して加熱されて結晶化し、しがも、
基板の絶縁体膜の結晶性を反映したエピタキシャル膜と
なる。また、結晶質部分と非晶質部分は屈折率が異なる
ので先導波路を作製できる。本発明の利点はレーザー光
により結晶化を行うので、導波路の形状精度がレーザー
光のビーム径を制御することによって高められ、しかも
照射時間は極めて短時間でもよく、前述のプラズマエツ
チングよりも導波路形成の精度、及びプロセスの簡略さ
において優れていることにある。また形状加工を必要と
しないので不純物の混入がなく構造的にも埋込み型導波
路となり、リッヂ型の場合に見られるような側壁荒れに
よる光伝播の損失を避けることができるという利点を有
する。またシリコン単結晶基板は大口径かつ安価であり
、サファイヤ基板を用いるよりもコストを大幅に下げる
ことができる。
(Function) The present applicant has proposed a method of forming an epitaxial film of a perovskite type oxide on a silicon single crystal via an insulating epitaxial film in Japanese Patent Application Laid-open No. 17358/1983, and the present invention is directed to that method. This method has been further developed and applied as a leading waveguide and its manufacturing method. That is, an amorphous film to be made into a perovskite-type oxide is formed by heat-treating a substrate made of an insulator epitaxial film and a silicon single crystal, and a laser beam is irradiated onto the amorphous film. The irradiated area absorbs the light, heats up, and crystallizes.
This results in an epitaxial film that reflects the crystallinity of the insulator film on the substrate. Furthermore, since the crystalline portion and the amorphous portion have different refractive indexes, a guiding waveguide can be created. The advantage of the present invention is that since crystallization is performed using laser light, the shape accuracy of the waveguide can be improved by controlling the beam diameter of the laser light, and the irradiation time can be extremely short. It is superior in the accuracy of wave path formation and the simplicity of the process. In addition, since no shape processing is required, there is no contamination of impurities and the structure becomes a buried type waveguide, which has the advantage of avoiding optical propagation loss due to sidewall roughness as seen in the case of a ridge type. Furthermore, a silicon single crystal substrate has a large diameter and is inexpensive, and the cost can be significantly reduced compared to using a sapphire substrate.

以下実施例によって説明する。This will be explained below using examples.

(実施例1) 面方位が(100)のSi単結晶基板上にマグネシウム
アルミネートスピネルをエピタキシャル成長し、その上
にスパッタ法により(Pbl−xLax)(ZryTl
z)i −X/4o3いわゆるPLZTの非晶質膜を形
成した。次にレーブー光を基板と垂直方向に、PLZT
非晶質膜側から照射し、非晶質膜を一部結晶化して先導
波路を形成した。第1図(a)、(b)、(c)は本実
施例の説明図で1は(100)Si単結晶基板、2は気
相成長法で成長したMgAl2O4エピタキシャル膜、
3はスパッタ法で作製したPLZTの非晶質膜、4はレ
ーザーアニールによって形成したPLZT単結晶膜であ
る。MgAl2O4の気相成長は本出願人がすでに提案
(特願昭57−136051) L、ている方法で成長
した。すなわち反応ガスとしてMgCl2.AIにMC
Iガスを反応させて生成したAlCl3.CO2,N2
ガスを用い、キャリアガスとしてN2ガスを用いた。M
gAl2O4の生成反応はMgCl2+2AIC13+
 4CO2+ 4H2−MgA1204 + 4CO+
 8HC1で表わされる。成長温度950°Cで膜厚2
000人成長し、X線回折及び電子線回折で(100)
方位のMgAl2O4がエピタキシャル成長しているこ
とを確認した。PLZT非晶質膜は高周波マグネトロン
スパッタリング法で作製した。ターゲットには(Pbx
 −x Lax)(Zry ’Thzh −X/403
の組成(x/y/z)が(9/65/35)のPLZT
セラミックスを用い、Ar −02混合ガス中セ、基板
温度150°Cで行なった。膜厚は3000Aである。
(Example 1) Magnesium aluminate spinel was epitaxially grown on a Si single crystal substrate with a plane orientation of (100), and (Pbl-xLax) (ZryTl) was grown on it by sputtering.
z) i -X/4o3 An amorphous film of so-called PLZT was formed. Next, the PLZT light is directed perpendicularly to the substrate.
Irradiation was performed from the amorphous film side to partially crystallize the amorphous film to form a leading waveguide. FIGS. 1(a), (b), and (c) are explanatory diagrams of this example, where 1 is a (100) Si single crystal substrate, 2 is an MgAl2O4 epitaxial film grown by vapor phase epitaxy,
3 is a PLZT amorphous film produced by sputtering, and 4 is a PLZT single crystal film formed by laser annealing. MgAl2O4 was grown in a vapor phase using a method already proposed by the applicant (Japanese Patent Application No. 136051/1982). That is, MgCl2. MC to AI
AlCl3. produced by reacting I gas. CO2, N2
N2 gas was used as the carrier gas. M
The production reaction of gAl2O4 is MgCl2+2AIC13+
4CO2+ 4H2-MgA1204 + 4CO+
It is represented by 8HC1. Film thickness 2 at growth temperature 950°C
000 people grew, and by X-ray diffraction and electron diffraction (100)
It was confirmed that MgAl2O4 was grown epitaxially in the same direction. The PLZT amorphous film was produced by high frequency magnetron sputtering method. The target is (Pbx
-x Lax) (Zry 'Thzh -X/403
PLZT whose composition (x/y/z) is (9/65/35)
The test was carried out using ceramics in an Ar-02 mixed gas at a substrate temperature of 150°C. The film thickness is 3000A.

X線回折によりこのPLZT膜が非晶質膜であることを
確認した。次に非晶質膜側からレーザー光を照射し、上
記非晶質膜の一部を結晶化した。レーザー光としては波
長1.0611mのYAGレーザーを用い、出力5W、
ビーム径20pm走査速度20mm/seeの条件で行
った。
It was confirmed by X-ray diffraction that this PLZT film was an amorphous film. Next, a laser beam was irradiated from the amorphous film side to crystallize a part of the amorphous film. A YAG laser with a wavelength of 1.0611 m was used as the laser beam, and the output was 5 W.
The experiment was carried out under the conditions of a beam diameter of 20 pm and a scanning speed of 20 mm/see.

YAGレーザー光を用いたのは、波長1.0611mの
光はPLZT非晶質膜および絶縁体膜は透過し、Si基
板のみに1吸収されるためである。すなわち、基板側が
加熱されてPLZT非晶質膜の結晶化がPLZT非晶質
膜と絶縁体エピタキシャル膜の界面から生じ、結晶化部
分がエピタキシャル成長する。電子線回折により、レー
ザー光により結晶化した部分がエピタキシャル成長して
いることを確認した。
The reason why YAG laser light was used is that light with a wavelength of 1.0611 m is transmitted through the PLZT amorphous film and the insulating film, but is absorbed only by the Si substrate. That is, the substrate side is heated, crystallization of the PLZT amorphous film occurs from the interface between the PLZT amorphous film and the insulator epitaxial film, and the crystallized portion grows epitaxially. Electron beam diffraction confirmed that the portion crystallized by laser light was epitaxially grown.

このようにして形成した光導波路のYAGレーザー光に
対する光の伝播損失を測定し、0.7dB/amが得ら
れた。
The propagation loss of the YAG laser beam of the optical waveguide thus formed was measured and was found to be 0.7 dB/am.

(実施例2) (100)Si単結晶基板上にエピタキシャル成長した
MgAl2O4膜上に、更にMgOエピタキシャル膜を
形成した基板を用いて実施例1と同じ工程で、PLZT
導波路を作製した。第2図(a)〜(d)は本実施例に
よってなる導波路の製造プロセスを示す。Si単結晶基
板1上にMgAl2O4エピタキシャル膜2を形成しく
第2図(a))。さらにMgOエピタキシャル膜5を形
成する(第2図(b))。この上にPLZT非晶質膜3
を形成しく第2図(C))、所定部分にレーザー光を照
射しPLZTエピタキシャル膜4を形成する(第2図(
d))。このときのYAG光に対する光伝播損失は0.
5dB/amであった。
(Example 2) Using a substrate in which an MgO epitaxial film was further formed on a MgAl2O4 film epitaxially grown on a (100) Si single crystal substrate, PLZT
A waveguide was fabricated. FIGS. 2(a) to 2(d) show the manufacturing process of the waveguide according to this embodiment. A MgAl2O4 epitaxial film 2 is formed on a Si single crystal substrate 1 (FIG. 2(a)). Furthermore, an MgO epitaxial film 5 is formed (FIG. 2(b)). On top of this is a PLZT amorphous film 3.
2 (C)) and irradiates a predetermined portion with laser light to form a PLZT epitaxial film 4 (Fig. 2 (C)).
d)). At this time, the optical propagation loss for YAG light is 0.
It was 5 dB/am.

MgA1□04膜上に形成されたMgOエピタキシャル
膜の単結晶性はMgAl2O4膜の単結晶性より優れ、
MgO膜のX線ロッキングカーブ半値幅はMgAl2O
4膜の半値幅より10%小さい値であった。
The single crystallinity of the MgO epitaxial film formed on the MgA1□04 film is superior to that of the MgAl2O4 film,
The half-value width of the X-ray rocking curve of MgO film is MgAl2O
The value was 10% smaller than the half width of the 4 films.

(実施例3) (100)Si単結晶基板上にエピタキシャル成長した
MgAl2O4膜を通しテSi基板を熱酸化し、MgA
l2O4膜とSi基板の間に5i02を形成した基板を
用いて実施例1と同じ工程でPLZT導波路を作製した
。第3図(a)〜(d)は本実施例からなる導波路の製
造プロセスを示す。Si単結晶基板1上にMgAl2O
4エピタキシャル膜2を形成しく第3図(a))、さら
に5i02熱酸化膜6を形成する(第3図(b))。こ
の上にPLZT非晶質膜3を形成しく第3図(C))、
所定部分にレーザー光を照射し、PLZTエピタキシャ
ル膜4を形成する(第2図(d))。このときのYAG
光に対する先伝播損失は0.3dB/cmであった。上
記熱酸化の条件は1100℃での水蒸気酸化である。熱
酸化によってMgAl2O4の単結晶性は改善され、X
線ロッキングカーブの半値幅は30%減少した。
(Example 3) (100) The MgAl2O4 film epitaxially grown on the Si single crystal substrate was thermally oxidized, and the MgA
A PLZT waveguide was fabricated in the same process as in Example 1 using a substrate in which 5i02 was formed between the l2O4 film and the Si substrate. FIGS. 3(a) to 3(d) show the manufacturing process of the waveguide according to this embodiment. MgAl2O on Si single crystal substrate 1
A 4-epitaxial film 2 is formed (FIG. 3(a)), and a 5i02 thermal oxide film 6 is further formed (FIG. 3(b)). On top of this, a PLZT amorphous film 3 is formed (FIG. 3(C)).
A predetermined portion is irradiated with laser light to form a PLZT epitaxial film 4 (FIG. 2(d)). YAG at this time
The forward propagation loss for light was 0.3 dB/cm. The above thermal oxidation conditions are steam oxidation at 1100°C. The single crystallinity of MgAl2O4 is improved by thermal oxidation, and X
The half-width of the line rocking curve decreased by 30%.

(実施例4) PLZTの代わりにPb(ZrO,55TiO,35)
03.PbTiO3゜BaTiO3,K(Tag、65
Nb□、35)03を用いて実施例1と同じ工程でMg
A12o4エピタキシヤル膜が形成されたSi基板上に
薄膜光導波路を作製した。第1表に示す如(、各材料を
用いた薄膜光導波路のYAGレーザー光に対する伝播損
失はそれぞれ1.0dB/cm以下であり、第1表 (発明の効果) このように本発明により作製した薄膜光導波路は、PL
ZT導波路を例にとれば、YAGレーザー光に対する光
伝播損失は従来の方法による導波路よりも1折返(改善
されていることがわかる。さらに本発明においてはレー
ザー光による結晶化によって導波路を作製するものであ
り、従来のようにプラズマエツチングのように形状加工
をする必要がなく、不純物の混入の心配がなく、作業時
間を大幅に短縮できる。また、基板として大口径、かつ
高品質が得られるSi半導体を用いることができるため
に、製造コストが低く、現在のSi半導体プロセスに入
れることができ、電気光学素子として動作させるために
必要な駆動回路も同一基板上に形成することが可能で実
用的価値は極めて大きい。
(Example 4) Pb(ZrO, 55TiO, 35) instead of PLZT
03. PbTiO3゜BaTiO3,K (Tag, 65
Mg in the same process as in Example 1 using Nb□, 35)
A thin film optical waveguide was fabricated on a Si substrate on which an A12o4 epitaxial film was formed. As shown in Table 1, the propagation loss for YAG laser light of the thin film optical waveguide using each material is 1.0 dB/cm or less. Thin film optical waveguide is PL
Taking the ZT waveguide as an example, it can be seen that the optical propagation loss for YAG laser light is improved by one fold (1 turn) compared to the waveguide made by the conventional method.Furthermore, in the present invention, the waveguide is There is no need for shape processing such as conventional plasma etching, there is no need to worry about contamination with impurities, and the work time can be significantly shortened.In addition, the substrate can be made with a large diameter and high quality. Since the obtained Si semiconductor can be used, the manufacturing cost is low, it can be incorporated into the current Si semiconductor process, and the drive circuit necessary to operate as an electro-optical element can also be formed on the same substrate. The practical value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は本発明による導波路の製造プロセスを示す
図。 図において、 1・・・Si単結晶基板 2・・・MgAl2O4エピ
タキシャル膜3・・・PLZT非晶質膜4・・−PLZ
Tエピタキシャル膜レーザし死 亭  2   面
1 to 3 are diagrams showing the manufacturing process of a waveguide according to the present invention. In the figure, 1...Si single crystal substrate 2...MgAl2O4 epitaxial film 3...PLZT amorphous film 4...-PLZ
T epitaxial film laser 2nd side

Claims (6)

【特許請求の範囲】[Claims] (1)シリコン単結晶基板上に絶縁体膜が形成され、該
絶縁体膜上にペロブスカイト型酸化物の結晶膜からなる
光導波路と非晶質膜からなる領域が形成されていること
を特徴とする薄膜光導波路。
(1) An insulating film is formed on a silicon single crystal substrate, and an optical waveguide made of a perovskite oxide crystal film and a region made of an amorphous film are formed on the insulating film. Thin film optical waveguide.
(2)絶縁体膜上に形成されるペロブスカイト型酸化物
がABO_3の一般式で表わされ、AとしてPb、Ba
、K及び希土類元素の群から選ばれる一種以上の元素、
BとしてTi、Zr、Ta及びNbの群から選ばれる一
種以上の元素からなることを特徴とする特許請求の範囲
第1項記載の薄膜光導波路。
(2) The perovskite oxide formed on the insulator film is represented by the general formula ABO_3, where A is Pb, Ba
, K and one or more elements selected from the group of rare earth elements,
2. The thin film optical waveguide according to claim 1, wherein B comprises one or more elements selected from the group of Ti, Zr, Ta, and Nb.
(3)シリコン単結晶基板上に形成される絶縁体膜がマ
グネシウムアルミネートスピネル(MgAl_2O_4
)膜であることを特徴とする特許請求の範囲第1項また
は第2項記載の薄膜光導波路。
(3) The insulator film formed on the silicon single crystal substrate is magnesium aluminate spinel (MgAl_2O_4
) The thin film optical waveguide according to claim 1 or 2, wherein the thin film optical waveguide is a film.
(4)シリコン単結晶基板上に形成される絶縁体膜がマ
グネシウムアルミネートスピネル(MgAl_2O_4
)膜と、さらにその上に形成されるマグネシア(MgO
)膜であることを特徴とする特許請求の範囲第1項また
は第2項記載の薄膜光導波路。
(4) The insulator film formed on the silicon single crystal substrate is magnesium aluminate spinel (MgAl_2O_4
) film and the magnesia (MgO) film formed on it.
) The thin film optical waveguide according to claim 1 or 2, wherein the thin film optical waveguide is a film.
(5)シリコン単結晶基板上に形成される絶縁体膜が該
シリコン基板表面に形成される二酸化シリコン(SiO
_2)層と、この上に形成される絶縁体膜とからなるこ
とを特徴とする特許請求の範囲第1項または第2項記載
の薄膜光導波路。
(5) The insulator film formed on the silicon single crystal substrate is
_2) The thin film optical waveguide according to claim 1 or 2, comprising a layer and an insulating film formed thereon.
(6)シリコン単結晶基板上に絶縁体膜を形成し、該絶
縁体膜上に非晶質膜を形成した後、該非晶質膜の所定の
部分のみにレーザー光を照射し、エピタキシャル結晶膜
とすることを特徴とする薄膜光導波路の作製方法。
(6) After forming an insulating film on a silicon single crystal substrate and forming an amorphous film on the insulating film, only a predetermined portion of the amorphous film is irradiated with a laser beam to form an epitaxial crystal film. A method for manufacturing a thin film optical waveguide, characterized by:
JP8932086A 1986-04-17 1986-04-17 Thin film optical waveguide and its production Pending JPS62245205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8932086A JPS62245205A (en) 1986-04-17 1986-04-17 Thin film optical waveguide and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8932086A JPS62245205A (en) 1986-04-17 1986-04-17 Thin film optical waveguide and its production

Publications (1)

Publication Number Publication Date
JPS62245205A true JPS62245205A (en) 1987-10-26

Family

ID=13967374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8932086A Pending JPS62245205A (en) 1986-04-17 1986-04-17 Thin film optical waveguide and its production

Country Status (1)

Country Link
JP (1) JPS62245205A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073254A1 (en) * 2001-03-09 2002-09-19 Corning Incorporated Laser-induced crystallization of transparent glass-ceramics
WO2002009148A3 (en) * 2000-07-24 2003-07-31 Motorola Inc Integrated radiation emitting system and process for fabricating same
WO2002027362A3 (en) * 2000-09-26 2003-07-31 Motorola Inc Electro-optic structure and process for fabricating same
US6806202B2 (en) 2002-12-03 2004-10-19 Motorola, Inc. Method of removing silicon oxide from a surface of a substrate
US6855992B2 (en) 2001-07-24 2005-02-15 Motorola Inc. Structure and method for fabricating configurable transistor devices utilizing the formation of a compliant substrate for materials used to form the same
US6885065B2 (en) 2002-11-20 2005-04-26 Freescale Semiconductor, Inc. Ferromagnetic semiconductor structure and method for forming the same
US6916717B2 (en) 2002-05-03 2005-07-12 Motorola, Inc. Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US6965128B2 (en) 2003-02-03 2005-11-15 Freescale Semiconductor, Inc. Structure and method for fabricating semiconductor microresonator devices
US6992321B2 (en) 2001-07-13 2006-01-31 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials
US7005717B2 (en) 2000-05-31 2006-02-28 Freescale Semiconductor, Inc. Semiconductor device and method
US7019332B2 (en) 2001-07-20 2006-03-28 Freescale Semiconductor, Inc. Fabrication of a wavelength locker within a semiconductor structure
US7045815B2 (en) 2001-04-02 2006-05-16 Freescale Semiconductor, Inc. Semiconductor structure exhibiting reduced leakage current and method of fabricating same
US7067856B2 (en) 2000-02-10 2006-06-27 Freescale Semiconductor, Inc. Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same
US7105866B2 (en) 2000-07-24 2006-09-12 Freescale Semiconductor, Inc. Heterojunction tunneling diodes and process for fabricating same
US7161227B2 (en) 2001-08-14 2007-01-09 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices for detecting an object
US7169619B2 (en) 2002-11-19 2007-01-30 Freescale Semiconductor, Inc. Method for fabricating semiconductor structures on vicinal substrates using a low temperature, low pressure, alkaline earth metal-rich process
US7211852B2 (en) 2001-01-19 2007-05-01 Freescale Semiconductor, Inc. Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate
US7342276B2 (en) 2001-10-17 2008-03-11 Freescale Semiconductor, Inc. Method and apparatus utilizing monocrystalline insulator
WO2024172075A1 (en) * 2023-02-14 2024-08-22 国立大学法人九州大学 Structure, waveguide, light modulator, and structure production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944004A (en) * 1982-09-06 1984-03-12 Matsushita Electric Ind Co Ltd Substrate for thin-film optical circuit
JPS60161635A (en) * 1984-02-02 1985-08-23 Nec Corp Substrate for electronic device
JPS60191207A (en) * 1984-03-12 1985-09-28 Matsushita Electric Ind Co Ltd Optical waveguide element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944004A (en) * 1982-09-06 1984-03-12 Matsushita Electric Ind Co Ltd Substrate for thin-film optical circuit
JPS60161635A (en) * 1984-02-02 1985-08-23 Nec Corp Substrate for electronic device
JPS60191207A (en) * 1984-03-12 1985-09-28 Matsushita Electric Ind Co Ltd Optical waveguide element

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067856B2 (en) 2000-02-10 2006-06-27 Freescale Semiconductor, Inc. Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same
US7005717B2 (en) 2000-05-31 2006-02-28 Freescale Semiconductor, Inc. Semiconductor device and method
WO2002009148A3 (en) * 2000-07-24 2003-07-31 Motorola Inc Integrated radiation emitting system and process for fabricating same
US7105866B2 (en) 2000-07-24 2006-09-12 Freescale Semiconductor, Inc. Heterojunction tunneling diodes and process for fabricating same
WO2002027362A3 (en) * 2000-09-26 2003-07-31 Motorola Inc Electro-optic structure and process for fabricating same
US7211852B2 (en) 2001-01-19 2007-05-01 Freescale Semiconductor, Inc. Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate
WO2002073254A1 (en) * 2001-03-09 2002-09-19 Corning Incorporated Laser-induced crystallization of transparent glass-ceramics
US6928224B2 (en) * 2001-03-09 2005-08-09 Corning Incorporated Laser-induced crystallization of transparent glass-ceramics
US7045815B2 (en) 2001-04-02 2006-05-16 Freescale Semiconductor, Inc. Semiconductor structure exhibiting reduced leakage current and method of fabricating same
US6992321B2 (en) 2001-07-13 2006-01-31 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials
US7019332B2 (en) 2001-07-20 2006-03-28 Freescale Semiconductor, Inc. Fabrication of a wavelength locker within a semiconductor structure
US6855992B2 (en) 2001-07-24 2005-02-15 Motorola Inc. Structure and method for fabricating configurable transistor devices utilizing the formation of a compliant substrate for materials used to form the same
US7161227B2 (en) 2001-08-14 2007-01-09 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices for detecting an object
US7342276B2 (en) 2001-10-17 2008-03-11 Freescale Semiconductor, Inc. Method and apparatus utilizing monocrystalline insulator
US6916717B2 (en) 2002-05-03 2005-07-12 Motorola, Inc. Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US7169619B2 (en) 2002-11-19 2007-01-30 Freescale Semiconductor, Inc. Method for fabricating semiconductor structures on vicinal substrates using a low temperature, low pressure, alkaline earth metal-rich process
US6885065B2 (en) 2002-11-20 2005-04-26 Freescale Semiconductor, Inc. Ferromagnetic semiconductor structure and method for forming the same
US6806202B2 (en) 2002-12-03 2004-10-19 Motorola, Inc. Method of removing silicon oxide from a surface of a substrate
US6965128B2 (en) 2003-02-03 2005-11-15 Freescale Semiconductor, Inc. Structure and method for fabricating semiconductor microresonator devices
WO2024172075A1 (en) * 2023-02-14 2024-08-22 国立大学法人九州大学 Structure, waveguide, light modulator, and structure production method

Similar Documents

Publication Publication Date Title
JPS62245205A (en) Thin film optical waveguide and its production
CN1140917C (en) Method of fabricating a semiconductor structure comprising a metal oxide interface with silicon
JP4483849B2 (en) Ferroelectric thin film
Nashimoto et al. Solid phase epitaxial growth of sol‐gel derived Pb (Zr, Ti) O3 thin films on SrTiO3 and MgO
JP3047316B2 (en) Epitaxial ferroelectric thin film device and method for producing the same
JPH10223476A (en) Ferroelectric thin film and method of manufacturing the same
JP4401300B2 (en) Method for forming (001) oriented perovskite film and apparatus having such perovskite film
JP3669860B2 (en) Laminated thin film
JP4142128B2 (en) Laminated thin film and method for producing the same
JP2004505444A (en) Thin film metal oxide structure and method of manufacturing the same
US20050162595A1 (en) Optical deflection element and method of producing the same
JP4399059B2 (en) Thin film structure
JPS60161635A (en) Substrate for electronic device
KR100795664B1 (en) (001) A method of forming an oriented perovskite film, and an apparatus having such a perovskite film
JPH07509689A (en) Cubic metal oxide thin film grown epitaxially on silicon
JPH05327034A (en) Epitaxial magnesium oxide as buffer layer for forming next layer on tetrahedron semiconductor
JPH10287493A (en) Laminated thin film and its production
JP2005053755A (en) Oxide epitaxial thin film and method for producing the same
Swartz et al. Sol-gel PZT films for optical waveguides
JP4316065B2 (en) Manufacturing method of optical waveguide element
JP2001116943A (en) Method for manufacturing metal oxide thin film element
JP2889463B2 (en) Oriented ferroelectric thin film device
JP2000329959A (en) Optical waveguide element and production of optical waveguide element
Nashimoto et al. Epitaxial growth of ferroelectric thin films on GaAs with MgO buffer layers by pulsed laser deposition
Cheng et al. Epitaxial growth of KNbO3 and Fe-doped KNbO3 films via sol-gel processing