JPS6224487B2 - - Google Patents
Info
- Publication number
- JPS6224487B2 JPS6224487B2 JP14766484A JP14766484A JPS6224487B2 JP S6224487 B2 JPS6224487 B2 JP S6224487B2 JP 14766484 A JP14766484 A JP 14766484A JP 14766484 A JP14766484 A JP 14766484A JP S6224487 B2 JPS6224487 B2 JP S6224487B2
- Authority
- JP
- Japan
- Prior art keywords
- slopping
- sloping
- furnace
- converter
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4673—Measuring and sampling devices
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
産業上の利用分野
本発明は転炉操業においてスロツピングを抑制
する方法に関するものである。
従来の技術
転炉操業の目的は、転炉吹錬中に供給される酸
素により、溶湯中に含まれる炭素を低減すると共
に、炉内に投入する造滓剤を滓化させ、生成した
溶融スラグと溶湯との反応により、脱燐・脱硫等
の作用を営ませることにある。
この場合スラグの滓化状態が操業の成果を左右
する大きな因子で、滓化が過度に進むと、スラグ
のフオーミング状態を助長し、遂にはスラグが炉
外に溢流する異常反応すなわちスロツピングを生
じ、作業効率の低下、鉄歩留の低下、従業環境の
悪化、装置の損傷など、種々の問題が生ずる。
これに反し、滓化不良の場合は、脱燐作用等が
低下し、所望の品質を得ることができない。
したがつて、滓化を充分行わせながらスロツピ
ングを生じさせない操業方法がとられるべきで、
そのためには第1のスロツピングを予知する方
法、第2にスロツピングを抑制する方法が明確に
される必要がある。この両者は密接に関係があ
り、スロツピングを予知する的確な方法がなけれ
ば、スロツピングを抑制する具体的方法も見出し
得ないのは当然である。
転炉炉況の把握のため従来種々の提案が行われ
ている。
すなわち転炉排ガス解析法(特開昭52−101618
号)、音響測定法(特開昭54−33790号)、振動測
定法(特開昭54−114414号)、炉内圧測定法(特
開昭55−104417号)、マイクロ波測定法(特開昭
57−140812号)、炉体表面温度測定法(特開昭58
−48615号)等が開示されている。
しかしながらこれらの公知方法によつて、スロ
ツピング発生を予知しスロツピングを抑制する的
確な方法、例えばスロツピング抑制に最も有効と
考えられるスロツピング抑制材の投入の具体的な
方法等については、何の提示もなされていない。
この理由は、前述の各種提案のスロツピング予知
の方法が必らずしも実行容易で、且つ精度の高い
ものでなかつたことに起因すると推察される。
発明が解決しようとする問題点
以上の事情に鑑み、本発明は本出願人が出願
(特開昭60−228931)した転炉スロツピング検出
装置を用いたスロツピング抑制の具体的方法を提
供するものである。
問題点を解決するための手段・作用
本発明は、転炉側壁に2以上の貫通孔を設け、
少なくとも一方に光検出装置を設け、他方にスロ
ツピング抑制材急速吹込装置を設け、前記光検出
装置によるスロツピング発生状況検出後長くとも
15秒以内に、炉容トン当り1分間に0.3Kgを超え
る速度でスロツピング抑制材を炉内に吹込むこと
を特徴とする転炉操業方法である。
以下本発明を図面を用いて説明する。
第1図は、本発明の方法を実施するための装置
の一例を模式的に示した説明図である。
第1図に示すように、転炉1の側壁2に炉内3
まで貫通する貫通孔4,4′を設ける。この貫通
孔は少なくとも2ケ設け、その一つは出鋼孔であ
つてもよい。
出鋼孔以外の貫通孔は、閉塞を防ぐため吹錬
時、出鋼時および溶銑装入時等に、溶湯に容易に
は浸漬されない炉体側壁の任意の場所を選ぶこと
ができる。
貫通孔のうち少なくとも一つには、光検出装置
を設置する。光検出装置とは、炉況観測用光プロ
ーブと、得られた映像を解析処理してスロツピン
グ発生の有無を判定する一連の装置を言う。
第1図はその一例であつて、転炉近傍に支持架
台5を設け、支持架台5にとりつけられたレール
81上に跨設した移動架台82に光プローブ7を
載置し、移動装置8によつて光プローブが、貫通
孔内に挿入離脱自在に移動できるように設備され
る。
このように光プローブが貫通孔内に挿入離脱自
在になしたのは、光プローブを実際に炉内状況を
検出する必要のあるときのみ挿入し、出鋼時、次
回吹錬までの待時間、あるいは原材料チヤージ時
間等に、不要な熱負荷や粉塵などの悪環境から避
けるためであり、また出鋼時に完全に離脱可能で
ある故に、出鋼孔も前述のごとく本発明方法の貫
通孔に利用できるのである。
光プローブとは、光導体を内蔵する筒状物であ
る。ここで光導体とは、例えば石英系光フアイバ
ーの如く、高温物体から放射される放射光を低損
失で伝送する導体を言う。光プローブは前述の如
く貫通孔に挿入されて、高温の炉内に面するの
で、損耗のおそれがあり、少なくともその先端は
何等かの手段により冷却保護すると共に、貫通孔
の閉塞防止手段も必要で、通常不活性ガスで冷却
した後炉内に放出する装置を備える。
光導体の先端で把えられる光の映像は、コネク
タ9を介して取付けられる光電変換素子10によ
り、光電変換映像信号に変換される。ここで光電
変換素子とは、光をその強度に比例して波長別に
電気信号に変換させる機能を有するもので、例え
ばITVカメラ、分光器と組合せた光電子増倍管等
である。これらは苛酷な条件下にある光導体の受
光面から充分離れた距離にあるので、その機能を
発揮する好環境下にある。
ところで転炉操業開始後、炉内の滓化がある程
度進行して、スラグ16上部のガス18の温度が
スラグの温度よりも高くなると、ガス雰囲気の発
する光と、スラグの発する光の、波長と強度の関
係は明らかに差があらわれ、この差を特異的に取
り出すことによつて、スロツピング発生状況を検
出できる。これを第1図には分別装置11、演算
装置12、判定装置13としたが、炉内光受光か
らスロツピング検出信号出力までを第2図のブロ
ツク図によつてさらに詳細に述べる。
光導体の先端で把えられた炉内の光の映像は、
前述の如く、光電変換素子10で光電変換信号6
1としてとり出され、その信号を分別装置11に
よつて波長別にB(青)、G(緑)、R(赤)に分
別し、3種の光電変換信号62として出力する。
この信号はアナログ信号であるので、次の演算装
置にかけるために、2値化回路51でそれぞれ適
当なスレシヨルドレベルで2値化する。
スロツピング発生は、スラグの量と、その量の
変化の大きさに相関があると考えられるので、ま
ず3種の2値化信号から面積演算装置12にて、
全映像面積中に占める色別の面積量を色別面積量
信号63としてとり出し、判定に便ならしめるた
め2値化回路55を通し、色別面積量2値化信号
64として判定装置13に入力する。
前述の色別の面積量は、例えば垂直同期信号を
リセツトパルス(16.7msec)とし、カウントパ
ルスを0.143μsec(7MHz)として、これに前述
の2値化R信号、2値化G信号、2値化B信号を
のせ、1リセツトパルス間のパルスの2値化信号
の論理積から、例えば黄色についてはR・Gon、
Boffのパルス数をカウントして得られる。
次に面積量の変化をとらえるために、上述の面
積演算装置からの色別面積量信号63を高域透過
フイルター52、正値化回路53、2値化回路5
4を通して、色別面積量変化量2値化信号65と
して判定装置13に入力する。
スロツピング判断基準については、前記色別の
面積量の2値化信号と変化量を強調した色別の面
積量2値化信号の組合せより第1表のようにな
る。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a method for suppressing slopping in converter operation. Conventional technology The purpose of converter operation is to reduce the carbon contained in the molten metal using oxygen supplied during converter blowing, and to turn the slag-forming agent introduced into the furnace into sludge, thereby reducing the generated molten slag. The purpose is to cause dephosphorization, desulfurization, etc. to occur through the reaction between the molten metal and the molten metal. In this case, the slagging state of the slag is a major factor that determines the operational results.If the slag slag progresses excessively, it will promote the forming state of the slag and eventually cause an abnormal reaction in which the slag overflows outside the furnace, that is, slopping. Various problems arise, such as reduced work efficiency, reduced iron yield, deterioration of the working environment, and damage to equipment. On the other hand, in the case of poor slag formation, the dephosphorization effect and the like deteriorate, making it impossible to obtain the desired quality. Therefore, it is necessary to adopt an operating method that does not cause slopping while allowing sufficient slag formation.
To this end, it is necessary to clarify the first method of predicting sloping and the second method of suppressing sloping. The two are closely related, and it goes without saying that unless there is an accurate way to predict sloping, it is impossible to find a specific method to suppress sloping. Various proposals have been made to understand the status of converters. In other words, converter exhaust gas analysis method (Japanese Patent Application Laid-Open No. 52-101618
), acoustic measurement method (JP-A-54-33790), vibration measurement method (JP-A-54-114414), furnace pressure measurement method (JP-A-55-104417), microwave measurement method (JP-A-54-104417), Akira
No. 57-140812), Furnace Surface Temperature Measuring Method (Unexamined Japanese Patent Publication No. 58
-48615) etc. have been disclosed. However, with these known methods, no suggestion has been made regarding an accurate method for predicting the occurrence of sloping and suppressing sloping, such as a specific method for introducing a sloping suppressing material, which is considered to be the most effective method for suppressing sloping. Not yet.
The reason for this is presumed to be that the various methods of sloping prediction proposed above are not necessarily easy to implement and highly accurate. Problems to be Solved by the Invention In view of the above circumstances, the present invention provides a specific method for suppressing slopping using a converter sloping detection device, which was filed by the applicant (Japanese Patent Laid-Open No. 60-228931). be. Means/effect for solving the problem The present invention provides two or more through holes in the side wall of the converter,
A photodetection device is provided on at least one side, and a sloping suppressing material rapid injection device is provided on the other side.
This is a converter operating method characterized by injecting a slopping suppressant into the furnace at a rate exceeding 0.3 kg per minute per ton of furnace volume within 15 seconds. The present invention will be explained below using the drawings. FIG. 1 is an explanatory diagram schematically showing an example of an apparatus for implementing the method of the present invention. As shown in FIG.
Through-holes 4, 4' are provided that penetrate up to the point. At least two through holes may be provided, one of which may be a tapping hole. In order to prevent blockage, the through holes other than the tapping hole can be selected at any location on the side wall of the furnace body that is not easily immersed in molten metal during blowing, tapping, charging of hot metal, etc. A photodetector is installed in at least one of the through holes. The optical detection device refers to a series of devices including an optical probe for observing the furnace condition and analyzing and processing the obtained images to determine the presence or absence of slopping. FIG. 1 shows an example of this, in which a support pedestal 5 is provided near the converter, an optical probe 7 is placed on a movable pedestal 82 that is placed astride a rail 81 attached to the support pedestal 5, and the optical probe 7 is mounted on a movable device 8. Therefore, the optical probe is installed so that it can be inserted into and removed from the through hole. The reason why the optical probe can be freely inserted and removed from the through hole is that the optical probe can be inserted only when it is actually necessary to detect the situation inside the furnace, and the waiting time between tapping and next blowing can be reduced. Alternatively, the tapping hole is also used as a through hole in the method of the present invention, as mentioned above, to avoid unnecessary heat load and bad environment such as dust during raw material charging time, etc., and because it can be completely removed during tapping. It can be done. An optical probe is a cylindrical object containing a light guide. Here, the optical conductor refers to a conductor, such as a quartz-based optical fiber, that transmits radiation light emitted from a high-temperature object with low loss. As mentioned above, the optical probe is inserted into the through-hole and faces the inside of the high-temperature furnace, so there is a risk of wear and tear, so at least its tip must be protected by some means of cooling, and it is also necessary to take measures to prevent the through-hole from clogging. It is usually equipped with a device that cools it with an inert gas and then discharges it into the furnace. The optical image captured at the tip of the photoconductor is converted into a photoelectric conversion image signal by a photoelectric conversion element 10 attached via a connector 9. Here, the photoelectric conversion element has a function of converting light into an electric signal for each wavelength in proportion to its intensity, and is, for example, an ITV camera, a photomultiplier tube combined with a spectrometer, or the like. These are located at a sufficient distance from the light-receiving surface of the light guide, which is under severe conditions, and are therefore in a favorable environment to perform their functions. By the way, after the start of converter operation, when slag formation in the furnace progresses to a certain extent and the temperature of the gas 18 above the slag 16 becomes higher than the temperature of the slag, the wavelengths of the light emitted by the gas atmosphere and the light emitted by the slag become different. A clear difference appears in the strength relationship, and by specifically extracting this difference, it is possible to detect the occurrence of sloping. This is shown as a sorting device 11, a computing device 12, and a determining device 13 in FIG. 1, and the process from receiving the in-furnace light to outputting the slopping detection signal will be described in more detail with reference to the block diagram in FIG. The image of the light inside the furnace captured by the tip of the light guide is
As mentioned above, the photoelectric conversion element 10 converts the photoelectric conversion signal 6 into
1, and the signal is separated by wavelength into B (blue), G (green), and R (red) by the separation device 11, and output as three types of photoelectric conversion signals 62.
Since this signal is an analog signal, it is binarized by a binarization circuit 51 at an appropriate threshold level in order to be applied to the next arithmetic unit. It is thought that the occurrence of sloping is correlated with the amount of slag and the magnitude of the change in the amount of slag, so first, from the three types of binary signals, the area calculation device 12 calculates
The area amount of each color that occupies in the total image area is extracted as a color-specific area amount signal 63, and is passed through a binarization circuit 55 and sent to the determination device 13 as a color-specific area amount binary signal 64 for convenience in judgment. input. The above-mentioned area amount for each color can be determined by, for example, setting the vertical synchronization signal as a reset pulse (16.7 msec) and the count pulse as 0.143 μsec (7 MHz), and adding the above-mentioned binary R signal, binary G signal, and binary For example, for yellow, R・Gon,
Obtained by counting the number of Boff pulses. Next, in order to capture the change in area amount, the area amount signal 63 for each color from the above-mentioned area calculation device is passed through a high-pass transmission filter 52, a positive value conversion circuit 53, and a binarization circuit 5.
4, and is inputted to the determination device 13 as a binarized color-by-color area amount change amount signal 65. The slopping judgment criteria are as shown in Table 1, based on the combination of the color-based area amount binary signal and the color-based area amount binary signal that emphasizes the amount of change.
【表】
しかして、実際には判断時の転炉の操業状況も
考慮する必要がある。すなわち、吹錬初期ではス
ロツピングはおこり得ないし、炉内ガス温度も低
いから、前表の判断は正確でない。また鉱石投入
や生石灰、ドロマイト等の副材投入が予め操業シ
ーケンスに組込まれている時点では、敢て警報は
要らないし、溶銑中のシリコン量が予め定められ
た値よりも高くなつている場合はスロツピングの
可能性は大きい。これらを第2図には転炉プロセ
ス56、鉱石副材等投入信号66として示した。
このような判断ロジツクも加え、第1表のスロツ
ピング発生可能性大のケースを展開すると第2表
のようになる。
何れにしても、色別の面積量2値化信号、およ
び色別の面積量変化量の2値化信号の基準となる
スレシヨルドレベルをどこにとるかが判断の基本
となるもので、これは多数の操業実績と該装置に
よるこれら信号との相関から決定されなければな
らない。[Table] However, in reality, it is necessary to consider the operational status of the converter at the time of judgment. That is, in the early stage of blowing, slopping cannot occur and the gas temperature in the furnace is low, so the judgment in the previous table is not accurate. Furthermore, when the input of ore and the addition of auxiliary materials such as quicklime and dolomite have been incorporated into the operation sequence, there is no need to issue an alarm, and if the amount of silicon in the hot metal is higher than a predetermined value, The possibility of slopping is large. These are shown in FIG. 2 as a converter process 56 and an input signal 66 for ore auxiliary materials, etc.
When such judgment logic is added and the cases in Table 1 where there is a high possibility of slopping occurring are expanded, the result is as shown in Table 2. In any case, the basis of judgment is where to set the threshold level that serves as the standard for the area amount binary signal for each color and the area amount change amount for each color binary signal. must be determined from a large number of operating records and the correlation of these signals from the equipment.
【表】
以上のような判定の基準を予め決めておき、こ
の基準と前述の2種類の面積量2値化信号とを比
較して、スロツピング発生の可能性大、小、無し
に応じてスロツピング検出信号67を判定装置1
3から出力することができる。
このようにして実炉で実施したスロツピング検
出の成績例を以下に述べる。
170t/CHの上底吹転炉の、炉底から約4mの
高さの炉体側壁に貫通孔を設け、光検出装置を設
け、第1表の基準に従つてスロツピングの可能性
を判断しつつ操業し、第3表の結果を得た。この
時の溶銑条件は〔Si〕含有量が0.30〜0.50%であ
る。[Table] The criteria for judgment as described above is determined in advance, and this criterion is compared with the two types of area binary signals described above, and the sloping is determined depending on whether the possibility of sloping occurring is high, low, or absent. The detection signal 67 is determined by the determination device 1
It can be output from 3. An example of the results of slopping detection conducted in an actual reactor in this manner will be described below. A through hole was made in the side wall of the furnace body at a height of approximately 4 m from the bottom of the 170 t/CH top-bottom blowing converter, and a light detection device was installed to determine the possibility of slopping according to the criteria in Table 1. The results shown in Table 3 were obtained. The hot metal conditions at this time are that the [Si] content is 0.30 to 0.50%.
【表】
第3表で明らかなようにスロツピング警報が有
つて、スロツピングが実際に発生しなかつたのは
95回中5回すなわち過検出率は5.3%であり、警
報が無くてスロツピングが発生したことは皆無と
いう結果である。
なおスロツピング抑制操作としては、公知の方
法例えば底吹流量増加、送酸量増加、コークス
粉・石炭粉などの抑制材投入等を行つたもので、
この表でのスロツピング抑制操作の成功率は60%
である。
以上の如き実績により、上述のスロツピング予
知方法は充分な精度をもつこと、および従来のス
ロツピング抑制操作は不充分であることから、該
スロツピング予知方法を用いてスロツピング抑制
操作について種々検討を加えた。
すなわち、上吹き又は上底吹転炉の場合通常最
も普通に行われる制御は、ランス上吹ジエツトお
よび底吹ガスの調整であるが、これらは何れもス
ラグ−メタル間の攬拌状態を変化せしめ、酸化反
応・環元反応のバランスを変えて徐々に平衝する
スラグ中酸素ポテンシヤルを変化させるために、
操作後の反応変化が遅く、迅速適切な効果の発現
は期待できない。
これに反し環元剤例えばコークス、石炭などの
炭素源を含む資材は、スラグ中のFeOと反応して
Feに環元し、スラグ量を減少させる効果を発揮
してスロツピング抑制に速効性のあることが期待
される。
さらに、反応開始を速かに行わせるためには、
スロツピング抑制材投入装置とスロツピング検出
装置とを連動させること、および抑制材と炉内内
容物とを迅速にしかも万遍なく接触させるため
に、抑制材を粉体として気流輸送し、転炉側壁に
設けた貫通孔からノズルによつてキヤリヤーガス
と共に吹込むこと、が好ましいとの判断から、ス
ロツピング抑制材急速吹込装置を設けた。
第1図によつて説明すれば、判定装置13から
発せられるスロツピング検出信号67は吹込制御
装置14に入力する。吹込制御装置は、止弁25
を開いて抑制材の供給タンク70に不活性ガス源
30からのガスを流入させてタンクを加圧し、ま
た供給タンクの出口弁71の開度を調節し、さら
に抑制材キヤリヤーガスの配管系21の流量調節
装置23を制御して、抑制材とキヤリヤーガスの
吹込量を調節する。
キヤリヤーガスに同伴した抑制材は、貫通孔
4′に挿入されるノズルによつて炉内に吹込まれ
る。
本発明でスロツピング抑制材急速吹込装置と
は、吹込制御装置14からノズルまでの一連の抑
制材吹込装置を言い、さらに第3図に説明する装
置は好ましい一例である。
すなわち抑制材吹込ノズル90も、光プローブ
と同様に貫通孔に挿入され、高熱に曝されながら
キヤリヤーガスと共にスロツピング抑制材を吹込
むのであるから、少なくともノズル先端部は冷却
ガスによつて冷却されることが望ましい。この場
合、常温のキヤリヤーガスおよび冷却ガスによつ
てノズル90の先端、および貫通孔の炉内側壁に
スラグや前記抑制材が付着成長し、貫通孔が閉塞
することがある。
この付着成長を防止するために、本発明者の経
験によれば、ノズルの外筒91に流入させるノズ
ル冷却用ガスにO2を添加することが効果的であ
つた。すなわち第3図に例示する如く、ノズル外
筒冷却ガス配管系40の他に、O2の配管系45
を設け、流量調節弁41、46の開度を比率設定
器15で調節し、O2の添加量が冷却ガスと混合
後のガス全量に対し、30〜55%程度とすれば、閉
塞防止の目的を達することができた。この冷却ガ
スへのO2の添加は、前記の光プローブ挿入用の
貫通孔閉塞防止についても全く同じに機能するも
のである。
またノズル90についても、前記光プローブの
場合と全く同様の理由で、貫通孔へ挿入又は貫通
孔からの離脱が可能であることは好ましく、この
装置は前記光プローブの場合と同様である。しか
して挿入・離脱の変位は、配管系とノズルとの結
合の間に、フレキシブル管を一部使用することに
よつて容易に吸収することができる。
以上のスロツピング検出装置及びスロツピング
検出方法、スロツピング抑制材急速吹込装置によ
り、スロツピング抑制材の吹込方法、すなわちス
ロツピング検出後抑制材吹込までの時間、および
スロツピング材の吹込速度について具体的指針を
得るための試験を行つた。
先ず予備的な試験で、スロツピング抑制材は環
元性材であればコークスであつても石炭であつて
も大差のないこと、また抑制材の粒度は、炉内の
反応性、気流輸送の効率等から、5mm以下が好適
との結論を得た。
キヤリヤーガスについては、前述の抑制材と反
応することなく、炉内に吹込まれた場合に炉内内
容物とも容易に反応することなく、且つ目的とす
る鋼の成分に影響を与えないガスが好ましく、
CO2,Ar,N2などがこれに該当するが、試験に
はCO2を用いた。
試験炉には170t上底吹転炉を用い、先ずスロツ
ピング発生予知後、スロツピング抑制アクシヨン
をとらなかつた場合の、炉口からのスラグ溢出ま
での時間の頻度分布を求めた。これを第4図に示
した。この結果はスロツピング発生予知後10分以
内にアクシヨンをとる必要のあることを示唆する
ものであるが、さらに詳細に前記の2つの要因の
スロツピング抑制効果に及ぼす影響を試験し、第
4表に示す結果をを得た。
すなわちスロツピング発生予知後、抑制材吹込
開始までの時間tmは15秒以内好ましくは10秒以
内で、且つスロツピング抑制材の吹込み速度Vm
は、転炉炉容t当り1分間に0.3Kgを超える量、
好ましくは0.6Kgを超える量である場合に、きわ
めてよいスロツピング抑制の成功率が得られるこ
とが明らかになり、本発明を完成したものであ
る。
なお抑制材の吹込みの継続は、スロツピング発
生警報終了時までとし、その継続時間は0.5分〜
1.0分程度であり、tmの小さいほどまたVmの大
きいほど、吹込継続時間が短い傾向がみられた。
この結果に基き、100t転炉および300t転炉にお
いてスロツピング抑制を試み、同様の結果を得
た。
なお炉容が大で単位時間の抑制材の吹込量が大
きい場合は、貫通孔およびノズルの数を増して対
処することができる。[Table] As is clear from Table 3, sloping did not actually occur even though there was a sloping warning.
The overdetection rate was 5.3% out of 95, and there were no alarms and no slopping occurred. The slopping suppression operations were carried out using known methods such as increasing the bottom blowing rate, increasing the amount of oxygen being fed, and adding suppressants such as coke powder and coal powder.
The success rate of the slopping suppression operation in this table is 60%
It is. Based on the results described above, the above-mentioned sloping prediction method has sufficient accuracy, and since the conventional sloping suppression operation is insufficient, various studies were conducted on sloping suppression operations using the sloping prediction method. In other words, in the case of a top-blown or top-bottom blown converter, the most common control is to adjust the lance top-blown jet and bottom-blown gas, both of which change the state of agitation between slag and metal. In order to change the balance of oxidation reaction and ring element reaction and gradually balance out the oxygen potential in the slag,
Changes in response after manipulation are slow, and rapid onset of appropriate effects cannot be expected. On the other hand, materials containing carbon sources such as ring agents such as coke and coal react with FeO in the slag.
It is expected to have an immediate effect on suppressing slopping by reducing the amount of slag by reducing it to Fe. Furthermore, in order to start the reaction quickly,
In order to link the slopping suppressant feeding device and the sloping detection device, and to bring the suppressant into contact with the contents of the furnace quickly and evenly, the suppressant is transported in the form of a powder by air flow, and is deposited on the side wall of the converter. Based on the judgment that it would be preferable to blow the material together with a carrier gas through a nozzle through the provided through hole, a device for rapidly blowing the slopping suppressant material was provided. To explain with reference to FIG. 1, a slopping detection signal 67 issued from the determining device 13 is input to the blowing control device 14. The blow control device includes a stop valve 25
to allow gas from the inert gas source 30 to flow into the suppressant supply tank 70 to pressurize the tank, to adjust the opening of the supply tank outlet valve 71, and to open the suppressant carrier gas piping system 21. The flow rate adjustment device 23 is controlled to adjust the amount of the suppressing material and carrier gas blown into the flow control device 23 . The suppressant entrained in the carrier gas is blown into the furnace by a nozzle inserted into the through hole 4'. In the present invention, the slopping suppressing material rapid blowing device refers to a series of suppressing material blowing devices from the blowing control device 14 to the nozzle, and the device illustrated in FIG. 3 is a preferred example. That is, the suppressor injection nozzle 90 is also inserted into the through hole in the same way as the optical probe, and the slopping suppressant is injected together with the carrier gas while being exposed to high heat, so at least the tip of the nozzle is cooled by the cooling gas. is desirable. In this case, slag and the above-mentioned suppressing material may adhere and grow on the tip of the nozzle 90 and the inner wall of the through hole due to the carrier gas and cooling gas at room temperature, and the through hole may become clogged. In order to prevent this adhesion growth, according to the experience of the present inventor, it is effective to add O 2 to the nozzle cooling gas flowing into the outer cylinder 91 of the nozzle. That is, as illustrated in FIG. 3, in addition to the nozzle outer cylinder cooling gas piping system 40, the O 2 piping system 45
If the amount of O 2 added is about 30 to 55% of the total amount of gas after mixing with the cooling gas, the opening degree of the flow rate control valves 41 and 46 can be adjusted using the ratio setting device 15 to prevent blockage. I was able to reach my goal. The addition of O 2 to the cooling gas also functions in exactly the same way in preventing the through hole for insertion of the optical probe from being clogged. Further, it is preferable that the nozzle 90 can be inserted into or removed from the through hole for exactly the same reason as the optical probe, and this device is similar to the optical probe. Insertion/removal displacements can thus be easily absorbed by partially using flexible pipes between the piping system and the nozzle connection. Using the above-described sloping detection device, slopping detection method, and sloping suppressant rapid injection device, it is possible to obtain specific guidelines regarding the sloping suppressing material injection method, that is, the time required to inject the suppressing material after sloping detection, and the sloping material blowing speed. I conducted a test. First, preliminary tests showed that there is no big difference whether the slopping suppressant is a cyclic material, whether it is coke or coal, and that the particle size of the suppressant depends on the reactivity in the furnace and the efficiency of air transport. From the above, it was concluded that 5 mm or less is preferable. The carrier gas is preferably a gas that does not react with the above-mentioned suppressor, does not easily react with the contents of the furnace when blown into the furnace, and does not affect the components of the target steel.
Examples of this include CO 2 , Ar, and N 2 , but CO 2 was used in the test. A 170-ton top-bottom blowing converter was used as the test furnace, and first, after the occurrence of sloping was predicted, the frequency distribution of the time until slag overflowed from the furnace mouth was determined when no sloping suppression action was taken. This is shown in Figure 4. Although this result suggests that it is necessary to take action within 10 minutes after predicting the occurrence of slopping, we conducted a more detailed examination of the influence of the above two factors on the sloping suppression effect, and the results are shown in Table 4. Got results. In other words, the time tm from when the occurrence of slopping is predicted until the start of the injection of the suppressor is within 15 seconds, preferably within 10 seconds, and the injection speed of the sloping suppressor is Vm.
is an amount exceeding 0.3 kg per minute per ton of converter furnace volume,
It has become clear that an extremely good success rate in suppressing slopping can be obtained when the amount is preferably over 0.6 kg, and the present invention has been completed. The injection of suppressant should continue until the end of the slopping alarm, and the duration should be 0.5 minutes or more.
It was approximately 1.0 minutes, and there was a tendency that the smaller the tm and the larger the Vm, the shorter the blowing duration time. Based on this result, we attempted to suppress slopping in a 100t converter and a 300t converter, and obtained similar results. Note that if the furnace volume is large and the amount of suppressant injected per unit time is large, the number of through holes and nozzles can be increased to cope with the problem.
【表】
発明の効果
以上詳細に述べたように、本発明の方法によ
り、スロツピングの発生を大巾に抑制することが
可能となり、転炉操業に及ぼす効果は極めて大き
い。[Table] Effects of the Invention As described in detail above, the method of the present invention makes it possible to greatly suppress the occurrence of slopping, and has an extremely large effect on converter operation.
第1図は本発明の概略説明図、第2図は光検出
装置のブロツク図、第3図はスロツピング抑制材
急速吹込装置の一例を示す説明図、第4図はスロ
ツピング発生頻度分布を示す図である。
1……転炉、2……側壁、3……炉内、4,
4′……貫通孔、5……支持架台、7……光プロ
ーブ、8……移動装置、81……レール、82…
…移動架台、9……コネクタ、10……光電変換
素子、11……分別装置、12……演算装置、1
3……判定装置、14……吹込制御装置、15…
…比率設定器、16……スラグ、17……溶湯、
18……ガス、19……ランス、20……キヤリ
ヤーガス配管系、21……止弁、22……減圧
弁、23……流量調節装置、24……止弁、25
……止弁、30……不活性ガス源、40……冷却
ガス配管系、41……流量調節弁、45……O2
ガス配管系、46……流量調節弁、51……2値
化回路、52……高域透過フイルター、53……
正値化回路、54……2値化回路、55……2値
化回路、56……転炉プロセス、61……光電変
換映像信号、62……波長域毎の映像信号、63
……色別面積量信号、64……色別面積量2値化
信号、65……色別面積量変化量2値化信号、6
6……鉱石・副材等投入信号、67……スロツピ
ング検出信号、70……供給タンク、71……出
口弁、72……受入れタンク、90……吹込ノズ
ル、91……外筒。
Fig. 1 is a schematic explanatory diagram of the present invention, Fig. 2 is a block diagram of a photodetection device, Fig. 3 is an explanatory diagram showing an example of a sloping suppressing material rapid injection device, and Fig. 4 is a diagram showing a sloping occurrence frequency distribution. It is. 1... Converter, 2... Side wall, 3... Furnace interior, 4,
4'...Through hole, 5...Support frame, 7...Optical probe, 8...Movement device, 81...Rail, 82...
...Moving frame, 9...Connector, 10...Photoelectric conversion element, 11...Separation device, 12...Arithmetic device, 1
3...determination device, 14...blow control device, 15...
... Ratio setting device, 16 ... Slag, 17 ... Molten metal,
18... Gas, 19... Lance, 20... Carrier gas piping system, 21... Stop valve, 22... Pressure reducing valve, 23... Flow rate adjustment device, 24... Stop valve, 25
... Stop valve, 30 ... Inert gas source, 40 ... Cooling gas piping system, 41 ... Flow rate control valve, 45 ... O 2
Gas piping system, 46...flow control valve, 51...binarization circuit, 52...high-pass transmission filter, 53...
Positive value conversion circuit, 54... Binarization circuit, 55... Binarization circuit, 56... Converter process, 61... Photoelectric conversion video signal, 62... Video signal for each wavelength range, 63
... Area amount signal for each color, 64... Binarized area amount signal for each color, 65... Binarized signal for amount of change in area amount for each color, 6
6...Input signal for ore, auxiliary materials, etc., 67...Slopping detection signal, 70...Supply tank, 71...Outlet valve, 72...Receiving tank, 90...Blowing nozzle, 91...Outer cylinder.
Claims (1)
も一方に光検出装置を設け、他方にスロツピング
抑制材急速吹込装置を設け、前記光検出装置によ
るスロツピング発生状況検出後長くとも15秒以内
に、炉容トン当り1分間に0.3Kgを超える速度で
スロツピング抑制材を炉内に吹込むことを特徴と
する転炉操業方法。1. Two or more through holes are provided in the side wall of the converter, a photodetection device is provided in at least one, and a rapid injection device for slopping suppressant is provided in the other, and within 15 seconds at the most after the photodetection device detects the occurrence of slopping, A converter operating method characterized by injecting a slopping suppressant into the furnace at a rate exceeding 0.3 kg per minute per ton of furnace volume.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14766484A JPS6126714A (en) | 1984-07-18 | 1984-07-18 | Operating method of converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14766484A JPS6126714A (en) | 1984-07-18 | 1984-07-18 | Operating method of converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6126714A JPS6126714A (en) | 1986-02-06 |
JPS6224487B2 true JPS6224487B2 (en) | 1987-05-28 |
Family
ID=15435474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14766484A Granted JPS6126714A (en) | 1984-07-18 | 1984-07-18 | Operating method of converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6126714A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0395577U (en) * | 1990-01-18 | 1991-09-30 |
-
1984
- 1984-07-18 JP JP14766484A patent/JPS6126714A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0395577U (en) * | 1990-01-18 | 1991-09-30 |
Also Published As
Publication number | Publication date |
---|---|
JPS6126714A (en) | 1986-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3620542B1 (en) | Converter operation monitoring method and converter operation method | |
KR102521711B1 (en) | Converter slope prediction method, converter operation method, and converter slope prediction system | |
US4651976A (en) | Method for operating a converter used for steel refining | |
DE69801360D1 (en) | Method and device for minimizing slag overflow when tapping an oxygen blowing converter during steel production | |
JP6954262B2 (en) | How to operate the converter | |
TW202225418A (en) | Converter operation method and converter blowing control system | |
CA1250356A (en) | Method and apparatus for measuring slag-forming conditions within converter | |
JPS6224487B2 (en) | ||
Batista et al. | Slopping detection system for LD converters using sound signal digital and image processing | |
JP3164976B2 (en) | Method for predicting slopping in a converter and its prevention | |
US4749171A (en) | Method and apparatus for measuring slag-foam conditions within a converter | |
JPS628484B2 (en) | ||
EP1190104B1 (en) | Method of decarburisation and dephosphorisation of a molten metal | |
JPH056654B2 (en) | ||
JP7052716B2 (en) | How to operate a converter | |
JPS6224488B2 (en) | ||
Ayres et al. | Measurement of thickness of oxygen lance skull in LD converters using artificial vision | |
JPH0820813A (en) | Blowing operation method and blowing operation device | |
TWI840756B (en) | Converter operating method and molten steel manufacturing method | |
JPH06346130A (en) | Slag forming detection method by image processing | |
JP2958844B2 (en) | Converter refining method | |
JPH0238510A (en) | Method for prediction-restraining slopping | |
JPS62228423A (en) | Method for collecting information on refining | |
JPH09118908A (en) | Method for controlling blowing in converter | |
JPS6224484B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |