JPS62239994A - Method for transformation of cell of gramineous plant using spheroplast of escherichia coli - Google Patents
Method for transformation of cell of gramineous plant using spheroplast of escherichia coliInfo
- Publication number
- JPS62239994A JPS62239994A JP61084192A JP8419286A JPS62239994A JP S62239994 A JPS62239994 A JP S62239994A JP 61084192 A JP61084192 A JP 61084192A JP 8419286 A JP8419286 A JP 8419286A JP S62239994 A JPS62239994 A JP S62239994A
- Authority
- JP
- Japan
- Prior art keywords
- cells
- plant cells
- transformation
- escherichia coli
- spheroplasts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はイネ科植物の細胞へ所望の遺伝子を導入して形
質転換を行う方法に関し、さらに詳しくは、細胞融合の
手法により所望の遺伝子を含む大腸菌の遺伝子をイネ科
植物細胞内へ導入して形質転換を行う方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for transforming the cells of a grass family plant by introducing a desired gene into the cells thereof. The present invention relates to a method of transforming E. coli genes by introducing them into grass plant cells.
そして、本発明はイネへの新しい形質の付与による耐病
性、耐寒性、耐薬品性等有用品種の育種に利用し得るも
のである。Furthermore, the present invention can be utilized for breeding useful varieties such as disease resistance, cold resistance, and chemical resistance by imparting new traits to rice.
植物細胞に異種遺伝子を導入して形質転換する方法とし
て一般的には土壌細菌アグロバクテリウム0ツメフアシ
エンス(Agrobacterium tumefac
iens、以下、A、ツメファシェンスという。)の感
染力を利用して、Tiプラスミドをベクターとして用い
て行われている。この場合、最も効率よく、安全に遺伝
子を植物細胞内に導入する方法としては共存培養法(C
o−culture法)が知られており、10− ’の
頻度で形質転換細胞が得られる場合もある。Generally speaking, the soil bacterium Agrobacterium tumefaciens (Agrobacterium tumefaciens) is used for transformation by introducing a heterologous gene into plant cells.
iens, hereinafter referred to as A, tumefashens. ) is carried out using a Ti plasmid as a vector. In this case, the most efficient and safe method to introduce genes into plant cells is the coculture method (C
o-culture method) is known, and transformed cells may be obtained at a frequency of 10-' in some cases.
しかしながら、A、ツメファシェンスは多くの双子葉植
物、裸子植物に感染して植物細胞の形質転換を行うこと
ができるが、単子葉植物には感染できないという問題を
存する。すなわち、Tiプラスミドの植物細胞への導入
をA、ツメファシェンスの感染力に依存している限り、
適用可能な植物の範囲はA、ツメファシェンスの宿主範
囲によって限定されることになり、したがって、主要農
作物である穀類の多くのものが単子葉植物に属するため
、稲、麦等のイネ科の農作物に対してはA。However, A. tumefaciens can infect many dicotyledonous plants and gymnosperms and transform plant cells, but there is a problem in that it cannot infect monocotyledonous plants. That is, as long as the introduction of Ti plasmid into plant cells depends on the infectivity of A. tumefaciens,
The range of plants that can be applied is limited by the host range of A. tumefaciens. Therefore, since many of the major agricultural crops belong to monocotyledonous plants, it is difficult to apply to agricultural products of the Poaceae family such as rice and wheat. For A.
ツメファシェンスの感染力を利用した遺伝子の導入によ
る形質転換を行うことができない。Transformation by gene introduction using the infectivity of C. tumefaciens cannot be performed.
そこで、A、ツメファシェンスの感染力に依存しない形
質転換方法の開発が行われており、■植物プロトプラス
トへ単離したT1プラスミドをポリオルチニンあるいは
ポリエチレングリコールで処理することにより導入する
もの、■単離したプラスミドをマイクロインジェクショ
ンにより注射しようとするもの■リポソームに包んで導
入するものがある。Therefore, transformation methods that do not depend on the infectivity of A. tumefaciens have been developed. There are methods in which plasmids are injected by microinjection ■There are methods in which plasmids are introduced by wrapping them in liposomes.
これらの中で、■の方法は形質転換に成功したという報
告も存在するが、形質転換率が10−5以下と低い。ま
た、■の方法も植物プロトプラストに用いるには問題が
残されており、まだ、方法を開発しつつある段階である
。さらに、■の方法はタバコモザイクウィルスRNAの
導入には有効であるが、Tiプラスミドに関しては成功
例がない。Among these methods, there are reports that method (1) is successful in transformation, but the transformation rate is low at 10-5 or less. In addition, there are still problems with method (2) when it can be used for plant protoplasts, and the method is still in the development stage. Furthermore, although method (2) is effective for introducing tobacco mosaic virus RNA, there is no success story for Ti plasmid.
本発明の目的は、従来の植物細胞への遺伝子の導入によ
る形質転換法が有する問題点を解消することができ、イ
ネ科植物に対しても適用可能な遺伝子導入による形質転
換法を提供することである。An object of the present invention is to provide a transformation method by gene introduction that can solve the problems of conventional transformation methods by introducing genes into plant cells and is also applicable to grasses. It is.
本発明は、イネ科植物細胞へ所望の遺伝子の導入して形
質転換を行うに当たり、前記所望の遺伝子を含む大腸菌
のスフェロプラストとイネ科植物に由来する細胞のプロ
トプラストとを融合させ、大腸菌内に含まれる遺伝子を
イネ科植物細胞内に導入して形質転換を行うことにより
達成される。In the present invention, when a desired gene is introduced into a grass plant cell to perform transformation, the spheroplast of Escherichia coli containing the desired gene is fused with the protoplast of a cell derived from a grass plant. This is achieved by introducing the gene contained in the Poaceae plant cells into the Poaceae plant cells and performing transformation.
すなわち、本発明は、イネ科植物細胞内に遺伝子を導入
して形質転換を行う方法として、従来より行われている
A、ツメファシェンスの感染力を利用する代わりに一般
的に広く遺伝子操作に用いられている大腸菌をスフェロ
プラストにして植物細胞内に遺伝子を導入することによ
り形質転換を行うものである。That is, the present invention is a method for transforming a plant by introducing a gene into the cells of a grass family plant, which is generally widely used for genetic manipulation instead of utilizing the infectivity of A. tumefaciens, which has been conventionally used. Transformation is performed by converting Escherichia coli into spheroplasts and introducing genes into plant cells.
本発明の遺伝子の導入による形質転換法は、イネ、コム
ギ、オオムギ、トウモロコシ、芝、竹類等のイネ科植物
全般に広く適用することができる。The transformation method by gene introduction of the present invention can be widely applied to all gramineous plants such as rice, wheat, barley, corn, turf, and bamboo.
導入しようとする遺伝子は特に限定されないが、植物細
胞内で適切に機能する為のプロモーター領域をその遺伝
子の前につないだ方が望ましい。The gene to be introduced is not particularly limited, but it is preferable to connect a promoter region in front of the gene so that it functions properly in plant cells.
スフェロプラストは、肉汁培地、クルコース間9培地な
どの、大腸菌が増殖可能な培地のうちのいずれかで培養
した対数増殖期の大腸菌を用いて、細胞をリゾチーム処
理することにより得られる。Spheroplasts are obtained by treating cells with lysozyme using logarithmically growing E. coli cultured in any medium in which E. coli can grow, such as broth medium or crucose inter-9 medium.
プロトプラストは他の植物細胞の場合と同様の処理方法
によって得られる。すなわち、イネ科植物の葉身、根、
芽生えあるいは培養細胞をセルラーゼ及びペクトリアー
ゼをマニトール(0,4モル)に溶解した酵素溶液で処
理することにより得られる。Protoplasts are obtained by processing methods similar to those for other plant cells. In other words, the leaf blades, roots, and
It is obtained by treating sprouts or cultured cells with an enzyme solution in which cellulase and pectolyase are dissolved in mannitol (0.4 mol).
このようにして得られたイネプロトプラストと大腸菌ス
フェロプラストの融合は、プロトプラストとスフェロプ
ラストを混合し、その混合液に当量のMS培地に溶した
ポリエチレングリコール溶液あるいはポリビニルアルコ
ール溶液を添加して融合処理を行う。この場合、プロト
プラストとスフェロプラストの混合割合は、プロトプラ
スト1分に対してスフェロプラスト100〜1000部
が好ましい。スフェロプラストが100部より少ないと
形質転換率が低くなり、一方1000部より多くなると
形質転換作用が阻害される。Fusion of rice protoplasts and Escherichia coli spheroplasts obtained in this way is achieved by mixing protoplasts and spheroplasts, and adding an equivalent amount of polyethylene glycol solution or polyvinyl alcohol solution dissolved in MS medium to the mixture. Perform processing. In this case, the mixing ratio of protoplasts and spheroplasts is preferably 100 to 1000 parts of spheroplasts per minute of protoplasts. If the number of spheroplasts is less than 100 parts, the transformation rate will be low, while if it is more than 1000 parts, the transformation effect will be inhibited.
次に実施例により本発明を詳述する。Next, the present invention will be explained in detail with reference to Examples.
融合処理を行うための高等植物側の材料とじては、I+
■/lの2.4−Dを含むムラシゲとスクーグの液体培
地(MS培地)で培養しているイネの培養細胞を用いた
。対数増殖後期の細胞を2%のセルラーゼ・オノズカR
−10(あるいは1%のセルラーゼ・オノズカR3)
(ヤクルト)と0.05%のペクトリアーゼY−23
(盛進製薬)を0.4 Mマニトールに溶解した酵素溶
液(pH5,5)で、30℃、1時間処理することによ
ってプロトプラストが単離された。Materials for higher plants for fusion treatment include I+
Cultured rice cells cultured in Murashige and Skoog's liquid medium (MS medium) containing 2.4-D at 1/l were used. 2% Cellulase Onozuka R for late logarithmic growth cells.
-10 (or 1% Cellulase Onozuka R3)
(Yakult) and 0.05% pectolyase Y-23
(Seishin Pharmaceutical Co., Ltd.) was dissolved in 0.4 M mannitol (pH 5.5) and treated with an enzyme solution (pH 5.5) at 30°C for 1 hour to isolate protoplasts.
また、融合処理を行うための大腸菌としては、形質転換
された植物細胞を選択するのに用いられる薬剤耐性とし
て、細菌で知られるトランスボゾンTn5のカナマイシ
ン耐性遺伝子(ネオマイシンフォスフオドランフェラー
ゼ)がTiプラスミド上にあるツバリン合成遺伝子のプ
ロモーターの後に挿入されたプラスミドを構築し、(H
,W、Bevan。In addition, the E. coli used for the fusion treatment is a Ti plasmid with a kanamycin resistance gene (neomycin phosphoranferase) of transboson Tn5, which is known in bacteria, as a drug resistance used to select transformed plant cells. A plasmid inserted after the promoter of the tubalin synthesis gene above was constructed, and (H
, W. Bevan.
et al+Nature 304巻184〜7ページ
(1983)等参照)このプラスミドにより形質転換し
て得た大腸菌C−600株を用いた。そして大腸菌のス
フェロプラストは肉汁培地で1晩培養した対数増殖期の
細胞を用いて、リゾチーム処理することにより調整した
。リソ゛チーム溶ン夜は0.4gのリソ゛チーム(ベー
リンガー・マンハイム) 、3.72g 2 Na−E
DTA。et al+Nature, Vol. 304, pp. 184-7 (1983), etc.) E. coli strain C-600 obtained by transformation with this plasmid was used. Escherichia coli spheroplasts were prepared by treating cells with logarithmic growth phase that had been cultured overnight in a broth medium with lysozyme. Lysozyme melt: 0.4g Lysozyme (Boehringer Mannheim), 3.72g 2 Na-E
D.T.A.
100 m/ 0.025M )リス緩衝液(pH8,
2)を1)の0.4Mソルビトールに溶解したものを用
いた。100 m/0.025M) Squirrel buffer (pH 8,
A solution of 2) in 1) in 0.4M sorbitol was used.
このようにして得られたイネプロトプラストと大腸菌ス
フェロプラストを1:100の割合で混合し、その混合
液に当量のMS培地に溶した40%(wt/wt)
P E G (mol、wt、4000.和光純薬)溶
液を添加して融合処理を行った。The rice protoplasts and Escherichia coli spheroplasts thus obtained were mixed at a ratio of 1:100, and the mixture was mixed with 40% (wt/wt) dissolved in an equivalent amount of MS medium.
Fusion treatment was performed by adding a PEG (mol, wt, 4000. Wako Pure Chemical Industries) solution.
電子顕微鏡による観察からは、処理後10分ですでにプ
ロトプラストの表面にスフェロプラストが接着した点を
中心に細胞膜の陥入が開始されている像、はぼ細胞質に
取り込まれるぐらいまで陥入が進行している像、細胞膜
に包まれたベシクルとして細胞質中にみられる像が観察
された。Observation using an electron microscope showed that 10 minutes after treatment, the cell membrane had already begun to invaginate around the point where the spheroplast adhered to the protoplast surface, and the invagination had already begun to the point where it was incorporated into the cytoplasm. Progressing images and images of vesicles wrapped in cell membranes in the cytoplasm were observed.
また、DNAに特異的に結合する螢光色素DAPIであ
らかじめ処理した大腸菌のスフェロプラストを用いて融
合処理を行い、落射型の螢光顕微鏡で観察すると処理を
行ったプロトプラストの約80%に少なくとも1個以上
のスフェロプラストが観察された。また、平均して1個
のプロトプラスト当たり約10個のスフェロプラストが
取り込まれており、多い場合には100個程度のスフェ
ロプラストが取り込まれている例も認められた。In addition, fusion treatment was performed using Escherichia coli spheroplasts that had been previously treated with the fluorescent dye DAPI, which specifically binds to DNA, and when observed using an epifluorescence microscope, approximately 80% of the treated protoplasts showed at least One or more spheroplasts were observed. Furthermore, on average, about 10 spheroplasts were incorporated into each protoplast, and in some cases, about 100 spheroplasts were incorporated.
10分後、0.5 M CaC1zと0.4 M?:
トールを含む0.05Mのグリシン緩衝液(pH10,
5)をゆっくり添加して希釈した。さらに20分間、3
0℃でインキュベートしたのち0.4 Mのマニトール
溶液で遠心による洗浄を繰り返し、残存する大腸菌スフ
ェロプラストをできるだけ除去した。洗浄後、処理プロ
トプラストは植物ホルモンとして2.4−D O。After 10 minutes, 0.5 M CaC1z and 0.4 M? :
0.05M glycine buffer (pH 10,
5) was slowly added to dilute. Another 20 minutes, 3
After incubation at 0°C, the cells were washed repeatedly with a 0.4 M mannitol solution by centrifugation to remove as much of the remaining Escherichia coli spheroplasts as possible. After washing, treated protoplasts were treated with 2.4-D O as the phytohormone.
5mg/ l 、カイネチン0.3■7N、抗生物質と
して、ホスミシン25−50Mg/−及びヴアンコシン
100〜200μg/mf、0.4Mマンニトールを含
むMS培地に懸濁し、25℃で数週間培養した。プロト
プラストが分裂して10数個の細胞塊となった段階でM
S培地で洗浄し、1枚のプレート当り3X105個のコ
ロニーを、カナマイシンの1種G−418を50〜20
0■/−含むMS寒天培地に埋め込んで培養した。The cells were suspended in MS medium containing 5 mg/l, kinetin 0.37N, fosmicin 25-50 Mg/mf and vancosine 100-200 μg/mf as antibiotics, and 0.4 M mannitol, and cultured at 25°C for several weeks. At the stage when the protoplast divides and becomes a dozen cell clusters, M
Wash with S medium, collect 3 x 105 colonies per plate, and add 50 to 20 G-418, a kind of kanamycin.
The cells were cultured by embedding them in MS agar medium containing 0.0%/-.
約3週間後プレート当り少なくとも200個の薬剤に耐
性なコロニーが生じてきた。一方、スフェロプラストと
の融合処理を行わなかったプロトプラストからは薬剤に
耐性なコロニーは生じなかった。After about 3 weeks at least 200 drug resistant colonies per plate had developed. On the other hand, no drug-resistant colonies were generated from protoplasts that were not fused with spheroplasts.
以上の如く、薬剤耐性の遺伝子を植物細胞内に導入でき
、形質転換率は10−3程度であった。As described above, a drug-resistant gene could be introduced into plant cells, and the transformation rate was about 10-3.
本発明は、遺伝子組換え研究を行うにあたり、大腸菌内
で遺伝子を増巾させた後、殆どの場合遺伝子を抽出し、
既に知られているいくつかの適当な方法によって植物細
胞内に導入して形質転換していた従来の方法に比べ、大
腸菌からDNAを抽出することなしに直接植物細胞内に
導入して形質転換できる方法として簡便なものである。In conducting genetic recombination research, the present invention involves amplifying genes in E. coli and then extracting the genes in most cases.
Compared to the conventional method of introducing DNA into plant cells and transforming them using several known appropriate methods, it is possible to directly introduce DNA from E. coli and transform it into plant cells without extracting it. This is a simple method.
これにより、現在の植物に存在しない新しい耐病性、耐
寒性、耐薬品性等の形質を付与して革新的な優秀品種を
育種するための有力な手段を提供することものである。This provides a powerful means for breeding innovative and superior varieties by imparting new traits such as disease resistance, cold resistance, and chemical resistance that do not currently exist in plants.
Claims (4)
転換を行うに当たり、前記所望の遺伝子を含む大腸菌の
スフェロプラストとイネ科植物に由来する細胞のプロト
プラストとを融合させ、大腸菌内に含まれる遺伝子をイ
ネ科植物細胞内に導入することにより形質転換を行うこ
とを特徴とするイネ科植物細胞の形質転換法。(1) When transforming a desired gene into the cells of a grass family plant, spheroplasts of Escherichia coli containing the desired gene and protoplasts of cells derived from a grass family plant are fused, and 1. A method for transforming gramineous plant cells, characterized by carrying out transformation by introducing a gene contained in the gramineous plant cells into the gramineous plant cells.
能する為のプロモーター領域がつないであることを特徴
とする特許請求の範囲第1項記載のイネ科植物細胞の形
質転換法。(2) The method for transforming grass plant cells according to claim 1, characterized in that a promoter region for proper function in grass plant cells is connected in front of the desired gene.
物に由来する細胞のプロトプラストの割合が、100〜
1000対1であることを特徴とする特許請求の範囲第
1項記載のイネ科植物細胞の形質転換法。(3) The ratio of Escherichia coli spheroplasts to be fused to protoplasts of cells derived from gramineous plants is 100 to 100.
2. The method for transforming gramineous plant cells according to claim 1, wherein the ratio is 1000:1.
菌することを特徴とする特許請求の範囲第1項記載のイ
ネ科植物細胞の形質転換法。(4) The method for transforming gramineous plant cells according to claim 1, which comprises sterilizing cells with fosmicin and vancomycin after the fusion treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61084192A JPS62239994A (en) | 1986-04-14 | 1986-04-14 | Method for transformation of cell of gramineous plant using spheroplast of escherichia coli |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61084192A JPS62239994A (en) | 1986-04-14 | 1986-04-14 | Method for transformation of cell of gramineous plant using spheroplast of escherichia coli |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62239994A true JPS62239994A (en) | 1987-10-20 |
Family
ID=13823608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61084192A Pending JPS62239994A (en) | 1986-04-14 | 1986-04-14 | Method for transformation of cell of gramineous plant using spheroplast of escherichia coli |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62239994A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5595733A (en) * | 1987-05-20 | 1997-01-21 | Ciba-Geigy Corporation | Methods for protecting ZEA mays plants against pest damage |
-
1986
- 1986-04-14 JP JP61084192A patent/JPS62239994A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5595733A (en) * | 1987-05-20 | 1997-01-21 | Ciba-Geigy Corporation | Methods for protecting ZEA mays plants against pest damage |
US5766900A (en) * | 1987-05-20 | 1998-06-16 | Novartis Corporation | Method of regenerating fertile transgenic Zea mays plants from protoplasts |
US5824302A (en) * | 1987-05-20 | 1998-10-20 | Novartis Finance Corporation | Method of controlling insect larvae comprising feeding an insecticidal amount of a transgenic maize plant expressing a polypeptide having Bt-crystal protein toxic properties |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU611652B2 (en) | Process for the genetic modification of monocotyledonous plants | |
Clough | Floral dip: agrobacterium-mediated germ line transformation | |
US5731179A (en) | Method for introducing two T-DNAS into plants and vectors therefor | |
DE69929073T2 (en) | Methods and compositions for the transformation of plants | |
US6259003B1 (en) | Cotton plant promoters | |
JPS63502720A (en) | Haloarylnitrile degrading gene, its use and cells containing the gene | |
WO2007050715A2 (en) | Compositions and methods for safe delivery of biologically-active plant transformation agents using non-fibrous silicon carbide powder | |
JPH06502759A (en) | Recombinant ACC synthase | |
CN101208430A (en) | Method for producing plants forming nodules with high nitrogen-fixing activity | |
IL77362A (en) | Hygromycin b resistance conferred by aphiv gene asa selectable marker in plants | |
US5418153A (en) | Process for production of exogenous gene or its product in plant cells | |
CN114540372B (en) | Upland cotton GhLTP17-A and application thereof in aspect of regulating and controlling fiber development | |
KR100454047B1 (en) | Promoter sequences expressed in anthers and pollens | |
CN113832180B (en) | CRISPR/Cas13b mediated cotton RNA transcription regulation method | |
JPS62239994A (en) | Method for transformation of cell of gramineous plant using spheroplast of escherichia coli | |
CN114438056B (en) | CasF2 protein, CRISPR/Cas gene editing system and application thereof in plant gene editing | |
JPS62239993A (en) | Plant cell transformation method using Escherichia coli spheroplasts | |
US20060248608A1 (en) | Method of plastid transformation in asteraceae, vector for use therein and plants thus obtained | |
US20240352435A1 (en) | Polynucleotide including site-specific nuclease expression cassette | |
CN114181943B (en) | Method for creating early maturing corn germplasm and application thereof | |
CN114644697B (en) | Gene SCD1 related to plant photosynthetic function and application of coded protein thereof and related biological material | |
DE69014100T2 (en) | CDNS OF THE ORSV VIRUS GENE. | |
WO2005026345A1 (en) | Plant dwarfing gene | |
WO1997045547A2 (en) | Localised cell death in plants | |
AU733623B2 (en) | Method for transforming plants and vector therefor |