JPS62238709A - Method and apparatus for manufacturing conductive molding material - Google Patents
Method and apparatus for manufacturing conductive molding materialInfo
- Publication number
- JPS62238709A JPS62238709A JP61082757A JP8275786A JPS62238709A JP S62238709 A JPS62238709 A JP S62238709A JP 61082757 A JP61082757 A JP 61082757A JP 8275786 A JP8275786 A JP 8275786A JP S62238709 A JPS62238709 A JP S62238709A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- fiber bundle
- die
- metal fiber
- thermoplastic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012778 molding material Substances 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 title description 6
- 229920005989 resin Polymers 0.000 claims abstract description 41
- 239000011347 resin Substances 0.000 claims abstract description 41
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 35
- 239000000835 fiber Substances 0.000 claims description 70
- 239000002184 metal Substances 0.000 claims description 60
- 229910052751 metal Inorganic materials 0.000 claims description 60
- 239000008188 pellet Substances 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 5
- 238000001816 cooling Methods 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 239000006185 dispersion Substances 0.000 abstract description 3
- 238000005470 impregnation Methods 0.000 abstract description 3
- 229920000914 Metallic fiber Polymers 0.000 abstract 7
- 238000010276 construction Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 238000006073 displacement reaction Methods 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000233855 Orchidaceae Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
- B29B9/14—Making granules characterised by structure or composition fibre-reinforced
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分腎〕
本発明は金属繊維を含有する導電性成形材料の製造方法
および装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Applications] The present invention relates to a method and apparatus for producing a conductive molding material containing metal fibers.
熱可塑性樹脂に金属繊維を配合して、電磁波シールド材
(以下、シールド材という)として用いられる導電性成
形材料を製造する方法として、連続金属繊維束に溶融樹
脂を被覆し、これを冷却後、切断してペレットにする方
法が知られている(特開昭51−59944号公報)。As a method of manufacturing a conductive molding material used as an electromagnetic wave shielding material (hereinafter referred to as shielding material) by blending metal fibers with thermoplastic resin, a continuous metal fiber bundle is coated with molten resin, and after cooling, A method of cutting into pellets is known (Japanese Unexamined Patent Publication No. 51-59944).
しかしながら、この方法で得られたペレット又はこのペ
レットと熱可塑性樹脂とから成形品をつくるとき、金属
繊維を樹脂中に均一に分散させることが困難であって、
シールド効果あるいは外観等の点で不満足なものであっ
た。However, when making a molded article from the pellets obtained by this method or from the pellets and a thermoplastic resin, it is difficult to uniformly disperse the metal fibers in the resin.
The shielding effect and appearance were unsatisfactory.
本発明は、成形品としたときの熱可塑性樹脂中への金属
繊維の分散が改善された導電性成形材料の製造方法及び
装置を提供することを目的とする。An object of the present invention is to provide a method and apparatus for producing a conductive molding material that has improved dispersion of metal fibers into a thermoplastic resin when molded.
本発明は溶融状態の熱可塑性樹脂に連続金属繊維束を4
人し、金属繊維を樹脂被覆した導電性成形材料を製造す
る方法において、金属繊維束をダイス内又はダイス出口
部において、被覆される溶融樹脂に対し少なくとも1回
軸方向と直角方向に変位させることによセ導電性成形材
料を製造する方法である。In the present invention, four continuous metal fiber bundles are attached to a thermoplastic resin in a molten state.
In a method for manufacturing a conductive molding material in which metal fibers are coated with resin, the metal fiber bundle is displaced at least once in a direction perpendicular to the axial direction with respect to the molten resin to be coated within a die or at the exit of the die. This is a method of manufacturing an electrically conductive molding material.
また、第2番目の発明はダイス流路に少なくとも1つの
屈曲部を設けたダイスである。Moreover, the second invention is a die in which at least one bent portion is provided in the die flow path.
本発明で使用する熱可塑性樹脂には特に制限はなく、ポ
リスチレン、As樹脂、ABS樹脂等のスチレン系樹脂
、ポリプロピレン等のオレフィン系樹脂、ポリカーボネ
ート、ポリアミド、ポリエステル等の各種の樹脂が使用
できる。The thermoplastic resin used in the present invention is not particularly limited, and various resins such as styrene resins such as polystyrene, As resin, and ABS resin, olefin resins such as polypropylene, polycarbonate, polyamide, and polyester can be used.
金属繊維としては導電性を有するものであれば特に制限
はなく、例えばステンレス鋼繊維、銅繊維などが使用で
きる。金属繊維は断面形状が円形又は楕円形状で、直径
が8〜25μmのものが望ましい。直径が8μm未満で
あると溶融した熱可塑性樹脂の金属繊維への含浸が困難
となり、分散が不良となる。また、直径が25μmを越
えると単位重量当たりの表面積が低下するためシールド
効果が低下する。金属繊維は例えば500〜5000本
程度を束状としたものが原料として使用される。金属繊
維の使用量は熱可塑性樹脂と金属繊維の合計量に対し5
0〜85重量%が望ましい。The metal fiber is not particularly limited as long as it has conductivity; for example, stainless steel fiber, copper fiber, etc. can be used. The metal fiber preferably has a circular or elliptical cross-sectional shape and a diameter of 8 to 25 μm. If the diameter is less than 8 μm, it will be difficult to impregnate the metal fiber with the molten thermoplastic resin, resulting in poor dispersion. Moreover, if the diameter exceeds 25 μm, the surface area per unit weight decreases, and the shielding effect decreases. For example, a bundle of about 500 to 5000 metal fibers is used as a raw material. The amount of metal fiber used is 5% of the total amount of thermoplastic resin and metal fiber.
0 to 85% by weight is desirable.
金属繊維束は熔融熱可塑性樹脂で被覆される。The metal fiber bundle is coated with molten thermoplastic resin.
熱可塑性樹脂を溶融するための装置としては、樹脂な可
塑化、溶融することのできる装置であればどのようなも
のでもよく、樹脂類の押出成形などに使用されている押
出機等が適当である。また金属繊維束に溶融熱可塑性樹
脂を被覆するための装置としては従来公知のものが使用
できる。例えば、電線被覆等に用いられるvL置を使用
することができる。このような装置としては、金属繊維
束を導入するためのマンドレル、マンドレルを出た金属
繊維束の周囲から溶融熱可塑性樹脂を連続的に流入させ
て被覆するための手段および溶融熱可塑性樹脂で被覆さ
れた金属繊維束をストランド状に成形するためのダイス
からなるものがある。ここで、金属繊維束は溶融樹脂で
被覆する際に金属繊維束の表面で溶融樹脂が冷却されず
、内部に浸透しやすくするようにするため、加熱装置を
設置し、ここで事前に予熱することが望ましい。また、
マンドレルは入口形状が金r%ta維束の断面より若干
大きめの偏平形状とすることが好ましく、そして出口の
先端は入口部で偏平状とされた金属繊維束が熔融熱可塑
性樹脂の粘性によりまるまるのを防止するため、偏平状
金属繊維束の偏平面の上下方向からだけ溶融熱可塑性樹
脂を流入させるようにするための長い側壁を設けた形状
であることが好ましい。The device for melting the thermoplastic resin may be any device that can plasticize and melt the resin, and an extruder used for extrusion molding of resins is suitable. be. Further, as a device for coating the metal fiber bundle with molten thermoplastic resin, conventionally known devices can be used. For example, a vL arrangement used for covering electric wires, etc. can be used. Such devices include a mandrel for introducing the metal fiber bundle, a means for continuously flowing molten thermoplastic resin from around the periphery of the metal fiber bundle exiting the mandrel, and a means for coating the metal fiber bundle with molten thermoplastic resin. There are some types of dies that are used to form metal fiber bundles into strands. Here, when the metal fiber bundle is coated with molten resin, a heating device is installed to preheat it in advance so that the molten resin does not cool down on the surface of the metal fiber bundle and can easily penetrate inside. This is desirable. Also,
It is preferable that the inlet of the mandrel has a flat shape that is slightly larger than the cross section of the gold r%ta fiber bundle, and the outlet tip is such that the metal fiber bundle, which has been made flat at the entrance, is rounded by the viscosity of the molten thermoplastic resin. In order to prevent this, it is preferable that the shape is provided with long side walls to allow the molten thermoplastic resin to flow only from above and below the flat surface of the flat metal fiber bundle.
本発明においては金属繊維束がダイス内又はダイス出口
部において被覆される溶融熱可塑性樹脂に対し、少なく
とも1回軸方向と直角方向に変位させられる力を加えら
れる。従って、ダイスは流路が直線状となった通常のも
のでもよいが、流路に少なくとも1つの屈曲部を設けた
構造が好ましい。すなわち、ダイスから押出されたスト
ランド状等の金属繊維束樹脂被覆体は引張りローラー等
で連続的に引取られるためその引張り力がダイス内にも
及ぶ。そこで、ダイス内に屈曲部があれば金属繊維束は
直線状になろうとして溶融熱可塑性樹脂に対し軸方向と
直角方向に変位することとなる。そして屈曲部の大きさ
が大きいほど変位する力は強まるので、ダイス内の抵抗
が高まる。しかし、なめらかな屈曲部であれば屈曲を大
きくしても抵抗はさほど生じないので、太き(すること
ができる。屈曲部の大きさ、即ち屈曲部の最大変位幅は
ダイス2jiL路の種以上、好ましくは径の2倍以上で
あることが好ましい、更に、屈曲部を2以上設ければ金
属繊維束の変位が2回以上起こり、又、屈曲の方向を変
えて2以上を設ければ、変位による金属繊維束中への溶
融熱可塑性樹脂の付着、含浸効果がより向上する。In the present invention, a force is applied to the molten thermoplastic resin coated with the metal fiber bundle within the die or at the exit of the die so as to displace the metal fiber bundle at least once in a direction perpendicular to the axial direction. Therefore, although the die may be a normal die with a straight channel, it is preferable to have a structure in which the channel has at least one bend. That is, since the metal fiber bundle resin coating in the form of a strand extruded from the die is continuously pulled off by a tension roller or the like, its tensile force also extends into the die. Therefore, if there is a bent part in the die, the metal fiber bundle tends to become straight and is displaced in a direction perpendicular to the axial direction with respect to the molten thermoplastic resin. The larger the size of the bent portion, the stronger the force of displacement, which increases the resistance within the die. However, if the bend is smooth, even if the bend is increased, there will not be much resistance, so it can be made thicker.The size of the bend, that is, the maximum displacement width of the bend , preferably at least twice the diameter.Furthermore, if two or more bent portions are provided, the displacement of the metal fiber bundle will occur two or more times, and if two or more bent portions are provided by changing the direction of bending, The adhesion and impregnation effect of the molten thermoplastic resin into the metal fiber bundle due to displacement is further improved.
また、金属繊維束への溶融熱可塑性樹脂の含浸、混合を
促進するため、ダイス入口部および/又は出口部の流路
形状を偏平状又は楕円状とすることが好ましく、人口部
から出口部に至る流路が順次狭くなる形状が好ましい。In addition, in order to promote impregnation and mixing of the molten thermoplastic resin into the metal fiber bundle, it is preferable that the flow path shape of the die inlet and/or outlet is flat or elliptical. It is preferable that the flow path is gradually narrowed.
更に、ダイス流路の長さは一定の滞留時間を確保するた
め10mm以上であることがよい。Further, the length of the die channel is preferably 10 mm or more in order to ensure a constant residence time.
金属繊維束を変位させるためには、ダイス流路に屈曲部
を設ける他、ダイス出口から押出される金属繊維束樹脂
被覆体が可塑性を有している間にこれをダイス出口から
直線上とはならない位置にローラ等を介して引き取るよ
うにすれば、出口部コーナにおいて変位が生ずるので、
屈曲部を設けたと同様の効果を生ずる。In order to displace the metal fiber bundle, in addition to providing a bend in the die flow path, while the metal fiber bundle resin coating extruded from the die outlet has plasticity, it must be moved in a straight line from the die outlet. If you use rollers etc. to take it to a position where it should not be, displacement will occur at the exit corner, so
This produces the same effect as when a bent portion is provided.
ダイスから押出された金属繊維束樹脂被覆体はダイス内
又はダイス出口で充分に金属繊維束に溶融熱可塑性樹脂
が含浸、付着されたのち、ローラー等で引取られ、次い
で必要に応じてペレタイザーでペレット化される。なお
、屈曲部等を設けたため、抵抗が大きい場合は、ペレタ
イザーの前に上下ロールを設置し、引張補助装置とする
ことが望ましい。このペレットは単独で、好ましくは同
種の又は他種の溶融熱可塑性樹脂と混合されて、成形さ
れ、成形品とされる。The metal fiber bundle resin coated body extruded from the die is sufficiently impregnated and adhered to the molten thermoplastic resin inside the die or at the exit of the die, and then taken off with a roller or the like, and then pelletized with a pelletizer as necessary. be converted into If the resistance is large due to the provision of bent portions, it is desirable to install upper and lower rolls in front of the pelletizer to serve as a tensioning auxiliary device. The pellets are molded into molded articles, either alone or preferably mixed with the same or other molten thermoplastic resins.
以下、図面により本発明を説明する。The present invention will be explained below with reference to the drawings.
熱可塑性樹脂は押出機lのホッパー2より装入され、ス
クリュー3で溶融、押出され、樹脂被覆装置4に供給さ
れる。金属繊維束5は加熱装置6で予熱された後、樹脂
被覆装置4に供給される。The thermoplastic resin is charged from the hopper 2 of the extruder 1, melted and extruded by the screw 3, and supplied to the resin coating device 4. After the metal fiber bundle 5 is preheated by a heating device 6, it is supplied to a resin coating device 4.
樹脂被覆装rIL4は金属繊維束5の導入のためのマン
ドレル7、溶融熱可塑性樹脂槽8とダイス9からなる。The resin coating system rIL4 consists of a mandrel 7 for introducing the metal fiber bundle 5, a molten thermoplastic resin bath 8, and a die 9.
樹脂被覆装置4において金属繊維束5は熱可塑性樹脂に
含浸、被覆され、ダイス9から金属繊維束樹脂被覆体1
0がストランド状に押出され、冷却後ペレタイザー11
で切断され、ペレットとされる。In the resin coating device 4, the metal fiber bundle 5 is impregnated and coated with thermoplastic resin, and from the die 9, the metal fiber bundle resin coated body 1
0 is extruded into a strand shape, and after cooling, the pelletizer 11
It is cut into pellets.
第2図および第3図は、本発明に用いられるダイス9の
形状の例を示すものである。第2図は滑らかに且つ大き
く屈曲した屈曲部12をダイス流路13に有するダイス
9を示している。そして、このダイス流路13は出口部
へ向かって流路が狭くなっている。第3図は比較的鋭く
且つ小さな屈曲部12を3個ダイス流路13に有するダ
イス9を示している。第2図あるいは第3図のダイスを
使用する場合に、ダイス出口部14から押出されるスト
ランドを水平方向に引取れば、金属繊維束は各屈曲部1
2において軸方向とは直角方向に移動する力が与えられ
、変位することになる。2 and 3 show examples of the shape of the die 9 used in the present invention. FIG. 2 shows a die 9 having a smoothly and largely bent portion 12 in the die flow path 13. The die channel 13 becomes narrower toward the outlet. FIG. 3 shows a die 9 having three relatively sharp and small bends 12 in the die channel 13. When using the die shown in FIG. 2 or 3, if the strand extruded from the die outlet section 14 is taken in the horizontal direction, the metal fiber bundle is
At point 2, a force is applied to move in a direction perpendicular to the axial direction, resulting in displacement.
第4図は本発明の他の実施の1例を示すものであり、溶
融熱可塑性樹脂はダイス入口16から供給され、金属繊
維束5は導入口15から供給され、熱可塑性樹脂で含浸
、被覆されたストランドはダイス出口18から押出され
る。この場合も、ダイス9の中央部付近で溶融熱可塑性
樹脂で被覆された金属繊維束5は導入口15の出口部1
9に押し付けられるように変位する力を与えられる。FIG. 4 shows an example of another embodiment of the present invention, in which the molten thermoplastic resin is supplied from the die inlet 16, the metal fiber bundle 5 is supplied from the inlet 15, and is impregnated and coated with the thermoplastic resin. The resulting strand is extruded from the die outlet 18. In this case as well, the metal fiber bundle 5 coated with the molten thermoplastic resin near the center of the die 9 is placed at the outlet 1 of the inlet 15.
9 is given a force to displace it so that it is pressed against it.
第5図は本発明の他の1例を示す図であり、屈曲部を有
さないダイス9から押し出されたストランド10をダイ
ス9の出口とは水平とはならない位置に配置されたロー
ラー17により曲げて引き取る構造になっている。この
場合ストランド10の熱可塑性樹脂は可塑性を有してい
るため、ストランド中の金属繊維束はダイス出口部にお
いて軸方向とは直角方向に変位する力を与えられる。FIG. 5 is a diagram showing another example of the present invention, in which a strand 10 extruded from a die 9 having no bent portion is moved by a roller 17 disposed at a position not parallel to the exit of the die 9. It has a structure that can be bent and removed. In this case, since the thermoplastic resin of the strand 10 has plasticity, a force is applied to the metal fiber bundle in the strand at the die exit in a direction perpendicular to the axial direction.
尚、第5図の場合、ダイス9は屈曲部を有するものを使
用することも可能であることは勿論である。In the case of FIG. 5, it is of course possible to use a die 9 having a bent portion.
金属繊維束の変位が生ずると、金属繊維束は溶融熱可塑
性樹脂の中を軸と直角方向に移動することになるため、
金属繊維束中への溶融熱可塑性樹脂の浸透が促進され、
また金属繊維束が流路に押しつけられる際、東が広がっ
たり、内部に含まれる気泡を放出したりするため、溶融
熱可塑性樹脂の付着、浸透を容易にする。そして、この
ようにして得られた金属繊維束樹脂被覆体または金属繊
維束樹脂被覆体と熱可塑性樹脂を用いて成形品を成形す
ると、金属繊維束中の1本1本の金属繊維に熱可塑性樹
脂が良好に付着しているため、金属繊維の分散が良好と
なる。When the metal fiber bundle is displaced, the metal fiber bundle moves in the molten thermoplastic resin in a direction perpendicular to the axis.
Penetration of the molten thermoplastic resin into the metal fiber bundle is promoted,
Furthermore, when the metal fiber bundle is pressed into the channel, it expands and releases the air bubbles contained inside, which facilitates the adhesion and penetration of the molten thermoplastic resin. When a molded article is molded using the thus obtained metal fiber bundle resin coating or metal fiber bundle resin coating and thermoplastic resin, each metal fiber in the metal fiber bundle has thermoplastic properties. Since the resin adheres well, the metal fibers are well dispersed.
実施例1
第1図に示す構成の装置を用いた。ホッパー2からAS
樹脂(新日鐵化学(Iit製、エスチレンAS−30)
を供給し、金属繊維束供給用のマンドレル7からは連続
ステンレス鋼繊維束5 (フィラメント直径15μm、
1500本、日本晴線■製)を供給した。Example 1 An apparatus having the configuration shown in FIG. 1 was used. AS from hopper 2
Resin (Nippon Steel Chemical (manufactured by Iit, Esterene AS-30)
A continuous stainless steel fiber bundle 5 (filament diameter 15 μm,
1,500 units (manufactured by Nippon Seisen ■) were supplied.
押出機はシリンダ一温度170〜200℃、ダイス部温
度を260℃としスクリュー回転数は10rpmとした
。押出機から吐出した樹脂と加熱装置6で230℃〜2
70℃にあたためられたステンレス鋼繊維束が一体とな
り、第2図に示すダイス通過時に引張力により凸部に押
しつけられ、樹脂が繊維束に含浸付着し、ストランド状
の金属繊維束樹脂被覆体が得られた。このダイスの入口
部はクチ1O1−×ヨコ6龍の楕円形状で、出口部はタ
テ0. 71×ヨコ6龍の楕円形状であり、そして屈曲
部の最大変位幅は8鶴である。このストランドを冷却後
ペレタイザー11で6fi長に剪断し、ペレット化した
。ペレタイザー11における剪断状況は良好であった。The extruder had a cylinder temperature of 170 to 200°C, a die temperature of 260°C, and a screw rotation speed of 10 rpm. The resin discharged from the extruder and the heating device 6 are heated to 230℃~2
The stainless steel fiber bundles heated to 70°C are united and pressed against the convex part by tensile force as they pass through the die shown in Figure 2, and the resin is impregnated and adhered to the fiber bundles, forming a strand-shaped metal fiber bundle resin coating. Obtained. The entrance part of this die has an elliptical shape of 1 O 1 - x 6 dragons horizontally, and the exit part has a vertical 0. It has an elliptical shape of 71 x 6 dragons, and the maximum displacement width of the bent part is 8 cranes. After cooling, this strand was sheared to a length of 6fi using a pelletizer 11 to form pellets. The shearing condition in pelletizer 11 was good.
このベレ7)におけるステンレス鋼繊維の含存率は約7
0%であった。得られたベレットとABS樹脂とをステ
ンレス鋼繊維が8wt%になるようトライブレンドし、
射出成形機にて150mX150酊×3鶴厚の試験片を
調整しシールド効果の測定と外観観察を行った。The content rate of stainless steel fiber in this bere 7) is approximately 7
It was 0%. The obtained pellet and ABS resin were triblended so that the stainless steel fiber content was 8wt%,
A test piece of 150 m x 150 mm x 3 thick was prepared using an injection molding machine, and the shielding effect was measured and the appearance was observed.
シールド効果
電界 磁界
実施例! (100MHz)50dB 22dB参
考3龍鋼板(100MHz)58dB 49dB上記
の如く良好なシールド効果を示すと共に、試験片表面に
は繊維のかたまり等は観察されずほとんど良好な外観で
あった。Shield effect electric field magnetic field example! (100 MHz) 50 dB 22 dB Reference 3 Dragon Steel Plate (100 MHz) 58 dB 49 dB In addition to exhibiting a good shielding effect as described above, no lumps of fibers were observed on the surface of the test piece, and the appearance was almost good.
実施例2
As樹脂のかわりに、cp−ps樹脂(新日鐵化学■製
、エスチレンG−32)を用い、ABS樹脂のかわりに
HI −P S樹脂(新日鐵化学側製、エスチレンH−
65)を用いた他は実施例1と同様に製造し、測定した
。その結果シールド効果は電界、磁界とも実施例1の結
果と同様に良好であった。しかし外観は銀条が多く、全
体として実施例1よりもやや劣っていた。Example 2 Instead of As resin, CP-PS resin (manufactured by Nippon Steel Chemical Co., Ltd., Estyrene G-32) was used, and instead of ABS resin, HI-PS resin (manufactured by Nippon Steel Chemical Co., Ltd., Estyrene H-32) was used.
The sample was manufactured and measured in the same manner as in Example 1, except that 65) was used. As a result, the shielding effect was good in both the electric field and the magnetic field, similar to the results of Example 1. However, the appearance was somewhat inferior to Example 1 as a whole, with many silver stripes.
実施例3
実施例1と同様の原材料、装置を用い、ダイスを第3図
に示すダイスを採用した。このダイスは屈曲部を3個有
するダイスであり、入口形状はタテlO龍×ヨコ6蘭、
出口形状はタテ0.7nxヨコ6fiである。その結果
、シールド性、外観性とも実施例1と同様に良好であっ
た。Example 3 The same raw materials and equipment as in Example 1 were used, and the die shown in FIG. 3 was employed. This die has three bent parts, and the entrance shape is vertical 10 dragon x horizontal 6 orchid.
The exit shape is 0.7nn vertically x 6fi horizontally. As a result, the shielding properties and appearance were as good as in Example 1.
実施例4
実施例1と同様の原材料を用い、押出機の先端部に第4
図に示すダイスを採用した。Example 4 Using the same raw materials as in Example 1, a fourth
The die shown in the figure was used.
その結果、シールド効果は100MHzで電界51dB
、磁界23dBで実施例1と同様に良好であり、外観性
も良好であった。As a result, the shielding effect is 51 dB electric field at 100 MHz.
, the magnetic field was 23 dB, which was as good as in Example 1, and the appearance was also good.
比較例1
マンドレルおよびダイス形状が円形でダイスに屈曲部を
有しない以外は実施例1及び2と同様の原材料、装置を
用い実施例1と同様シールド効果の測定と外観観察を行
った。Comparative Example 1 The shielding effect was measured and the appearance was observed in the same manner as in Example 1 using the same raw materials and equipment as in Examples 1 and 2, except that the mandrel and die were circular in shape and the die did not have a bent part.
シールド効果
電界 磁界
As/AB3 33dB 4dB
CP/H134dB 5dB
上記の如く、シールド効果は劣り、外観性も成形物中に
繊維の偏在が認められ、一様でなくやや不良の状態であ
った。Shielding effect electric field Magnetic field As/AB3 33 dB 4 dB CP/H134 dB 5 dB As mentioned above, the shielding effect was poor, and the appearance was uneven and somewhat poor, with uneven distribution of fibers in the molded product.
本発明の製造方法による電磁波シールド材料は樹脂量が
少なくかつ金属繊維束に樹脂を含浸付着させることが出
来、少ない金属繊維の充填率で電磁波シールド性、分散
性、外観性の効果に優れた成形材料を得ることが出来る
。The electromagnetic shielding material manufactured by the manufacturing method of the present invention has a small amount of resin and can be impregnated with resin into metal fiber bundles, and is molded with excellent electromagnetic shielding properties, dispersibility, and appearance effects with a small filling rate of metal fibers. Materials can be obtained.
第1図は本発明を実施するための1例を示す製造方法の
装置の概略図、第2図、第3図および第4図はダイスの
部分断面図、第5図は本発明を実施するための他の1例
を示す概略図である。
5・・・金属繊維束
9・・・ダイス
12・・・屈曲部
13・・・ダイス流路
14・・・ダイス出口部FIG. 1 is a schematic diagram of an apparatus for a manufacturing method showing one example for implementing the present invention, FIGS. 2, 3, and 4 are partial cross-sectional views of a die, and FIG. 5 is a diagram for implementing the present invention. It is a schematic diagram showing another example for. 5...Metal fiber bundle 9...Dice 12...Bending part 13...Dice channel 14...Dice outlet part
Claims (4)
し、金属繊維を樹脂被覆した導電性成形材料を製造する
方法において、金属繊維束をダイス内又はダイス出口部
において、被覆される溶融樹脂に対し少なくとも1回軸
方向と直角方向に変位させることを特徴とする導電性成
形材料の製造方法。(1) In a method for producing a conductive molding material in which a continuous metal fiber bundle is introduced into a molten thermoplastic resin and the metal fibers are coated with resin, the metal fiber bundle is introduced into a die or at the exit of the die, and the molten resin is coated with a continuous metal fiber bundle. A method for producing a conductive molding material, which comprises displacing a resin at least once in a direction perpendicular to an axial direction.
イスを使用する特許請求の範囲第1項記載の導電性成形
材料の製造方法。(2) The method for producing a conductive molding material according to claim 1, which uses a die having at least one bent portion in the die flow path.
囲第1項記載の導電性成形材料の製造方法。(3) The method for producing a conductive molding material according to claim 1, wherein the metal fiber bundle is preheated before being introduced.
とを特徴とするダイス。(4) A die characterized in that the die flow path is provided with at least one bent portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61082757A JPS62238709A (en) | 1986-04-10 | 1986-04-10 | Method and apparatus for manufacturing conductive molding material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61082757A JPS62238709A (en) | 1986-04-10 | 1986-04-10 | Method and apparatus for manufacturing conductive molding material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62238709A true JPS62238709A (en) | 1987-10-19 |
Family
ID=13783314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61082757A Pending JPS62238709A (en) | 1986-04-10 | 1986-04-10 | Method and apparatus for manufacturing conductive molding material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62238709A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6676870B1 (en) * | 1997-10-17 | 2004-01-13 | Chisso Corporation | Process for the preparation of fiber-filled thermoplastic resin composition |
-
1986
- 1986-04-10 JP JP61082757A patent/JPS62238709A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6676870B1 (en) * | 1997-10-17 | 2004-01-13 | Chisso Corporation | Process for the preparation of fiber-filled thermoplastic resin composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6090319A (en) | Coated, long fiber reinforcing composite structure and process of preparation thereof | |
US3709773A (en) | Glass reinforced injection molding pellet | |
CA2832823C (en) | Composite core for electrical transmission cables | |
CA2831358C (en) | Continuous fiber reinforced thermoplastic rods and pultrusion method for its manufacture | |
US3742106A (en) | Production of impregnated rovings | |
US5268050A (en) | Process for using an extruder die assembly for the production of fiber reinforced thermoplastic pellets, tapes and similar products | |
EP0335186A2 (en) | Compositions containing metallic fibres and their application for manufacturing formed articles used for electromagnetic radiation protection | |
EP1105277B1 (en) | Coated, long fiber reinforcing composite structure and process of preparation thereof | |
CA2333126C (en) | Continuous-strand pellets and method and device for preparing continuous-strand pellets | |
EP0613414B1 (en) | Process and plant for producing pencils | |
JP2829323B2 (en) | Equipment for manufacturing fiber-reinforced resin molding materials | |
JP3234877B2 (en) | Method for producing fiber reinforced resin pellets | |
JPH06254857A (en) | Manufacture of fiber reinforced thermoplastic resin composition and apparatus for making the same | |
JPS62238709A (en) | Method and apparatus for manufacturing conductive molding material | |
JP3330402B2 (en) | Method for producing fiber-reinforced thermoplastic resin structure | |
JPS63132036A (en) | Manufacture of fiber reinforced composite material | |
JPH0739125B2 (en) | Equipment for coating continuous fibers with resin containing solid powder dispersed | |
EP0330932A2 (en) | Method of manufacturing plastics articles reinforced with short fibres | |
DE2045571A1 (en) | Process for the production of coated glass fibers | |
JPH04278311A (en) | Manufacture of fiber reinforced thermoplastic resin and die therefor | |
JPH06246740A (en) | Granule of fiber-reinforced thermoplastic resin | |
JPS5949913A (en) | Preparation of conductive molding material | |
DE69916218T2 (en) | Long fiber reinforced thermoplastic resin material characterized by the addition of fillers and process for its production | |
JP2934017B2 (en) | Method and apparatus for producing fiber reinforced resin product | |
JP2688845B2 (en) | Method and apparatus for producing glass fiber-containing resin composition |