JPS62238505A - Lens connector type feedthrough - Google Patents
Lens connector type feedthroughInfo
- Publication number
- JPS62238505A JPS62238505A JP8251586A JP8251586A JPS62238505A JP S62238505 A JPS62238505 A JP S62238505A JP 8251586 A JP8251586 A JP 8251586A JP 8251586 A JP8251586 A JP 8251586A JP S62238505 A JPS62238505 A JP S62238505A
- Authority
- JP
- Japan
- Prior art keywords
- rod lens
- ceramic
- lens
- rod
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 claims abstract description 62
- 230000003287 optical effect Effects 0.000 claims abstract description 34
- 239000000853 adhesive Substances 0.000 claims abstract description 18
- 230000001070 adhesive effect Effects 0.000 claims abstract description 18
- 229910000679 solder Inorganic materials 0.000 claims abstract description 18
- 239000013307 optical fiber Substances 0.000 claims description 35
- 239000002241 glass-ceramic Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 abstract description 25
- 239000002184 metal Substances 0.000 abstract description 25
- 239000011521 glass Substances 0.000 abstract description 6
- 230000035939 shock Effects 0.000 abstract description 5
- 229910000881 Cu alloy Inorganic materials 0.000 abstract description 3
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 abstract description 3
- 230000007246 mechanism Effects 0.000 abstract description 2
- 238000012856 packing Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 12
- 239000004698 Polyethylene Substances 0.000 description 10
- 229920000573 polyethylene Polymers 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- -1 polyethylene Polymers 0.000 description 8
- 238000007789 sealing Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007526 fusion splicing Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/32—Optical coupling means having lens focusing means positioned between opposed fibre ends
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4415—Cables for special applications
- G02B6/4427—Pressure resistant cables, e.g. undersea cables
- G02B6/4428—Penetrator systems in pressure-resistant devices
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
【発明の詳細な説明】
(1)発明の属する技術分野
本発明は、海底光中継器筐体の光フアイバ導入部におい
て海底光フアイバケーブルの接続、交換が容易なように
光ファイバの接続機能を有し、耐圧、気密、耐熱性に優
れたレンズコネクタ型フィードスルに関するものである
。DETAILED DESCRIPTION OF THE INVENTION (1) Technical field to which the invention pertains The present invention provides an optical fiber connection function to facilitate the connection and replacement of submarine optical fiber cables at the optical fiber introduction part of a submarine optical repeater housing. This invention relates to a lens connector type feedthrough that has excellent pressure resistance, airtightness, and heat resistance.
(2)従来の技術とその問題点
第1図に海底光ケーブル伝送方式の中継器の構成の一例
を示す。lが海底光ケーブル、2がT−T接続部、3が
光フィードスル、4が中継器回路、5が端面板、6が耐
圧筐体、7が光ファイバ、8が光フアイバ融着接続部、
9がケーブル引留装置である。(2) Conventional technology and its problems Figure 1 shows an example of the configuration of a repeater for a submarine optical cable transmission system. 1 is a submarine optical cable, 2 is a T-T connection part, 3 is an optical feedthrough, 4 is a repeater circuit, 5 is an end plate, 6 is a pressure-resistant housing, 7 is an optical fiber, 8 is an optical fiber fusion splicing part,
9 is a cable retention device.
中継器は8000mにも及ぶ海底に敷設される可能性が
有り、光フィードスル3は最大800気圧にも及ぶ水圧
に耐え、かつ、耐圧筐体6の内部の湿度を低く抑えるた
めに優れた気密性が要求される。The repeater may be installed on the seabed as far as 8,000 meters, and the optical feedthrough 3 can withstand water pressures of up to 800 atmospheres, and has excellent airtightness to keep the humidity inside the pressure-resistant housing 6 low. sexuality is required.
第1図における光フィードスル3は、水圧に耐え、気密
を保ちつつ光ファイバ7を耐圧筺体6の内部に導入する
のみで、光ファイバ7の接続機能は有していないため、
別途、海底光ケーブル側の光ファイバと中継器回路側の
光ファイバを接続、収納するT−T接続部2を必要とす
る。従って、中継器筐体が大型化するとともに、前記T
−T接続部2における前記海底光ケーブル側の光ファイ
バと中継器回路側光ファイバの接続は、単一モード光フ
ァイバについては1μm以下という高精度な光軸合わせ
を伴う熱融着による接続であるため、長時間を要すると
いう欠点があった。The optical feedthrough 3 in FIG. 1 only introduces the optical fiber 7 into the pressure-resistant housing 6 while maintaining water pressure and airtightness, and does not have the function of connecting the optical fiber 7.
Separately, a T-T connection part 2 is required to connect and accommodate the optical fiber on the submarine optical cable side and the optical fiber on the repeater circuit side. Therefore, the repeater housing becomes larger and the T.
- Because the connection between the optical fiber on the submarine optical cable side and the optical fiber on the repeater circuit side at the T connection part 2 is a connection by thermal fusion with highly accurate optical axis alignment of 1 μm or less for single mode optical fibers. , which had the disadvantage of requiring a long time.
これらの欠点を解決するのがレンズコネクタ型フィード
スルであり、これに僅かに関係する従来の技術として、
中継器の小型化等を目的として、光ファイバを密着させ
たレンズを窓のように用いるフィードスルの従来例(特
願昭53−100872号。The lens connector type feedthrough solves these drawbacks, and the conventional technology slightly related to this is:
A conventional example of a feedthrough (Japanese Patent Application No. 100872/1983) uses a lens with an optical fiber tightly attached like a window for the purpose of downsizing the repeater.
特願昭53−36583号、特願昭53−115113
号)があるが、その製造は、レンズと光ファイバの接続
に高精度を要求され、工場内で長時間を要する。従って
、ケーブル障害修理等に際して、この部分でケーブルと
中継器を船上接続するのは不可能である。Japanese Patent Application No. 53-36583, Japanese Patent Application No. 53-115113
However, its manufacture requires high precision in connecting the lens and optical fiber, and takes a long time in the factory. Therefore, it is impossible to connect the cable and repeater on board at this part when repairing a cable fault or the like.
更に、これらの従来例には、最大800気圧の苛酷な海
底環境下で最大25年間の使用に耐える水密。Furthermore, these conventional examples are watertight and can withstand up to 25 years of use under harsh seabed environments of up to 800 atmospheres.
気密構造を具体的に開示した例はなく、いずれもレンズ
を端面板に「はめこむ」か又は「密着させる」との考え
方を抽象的に示しているに過ぎない。There is no example that specifically discloses an airtight structure, and all of them merely abstractly show the concept of "fitting" or "adhering" the lens to the end plate.
(3)発明の目的
本発明の目的は、ロッドレンズを用いて接続機能を有せ
しめることにより、中継器筐体の小型化。(3) Purpose of the Invention The purpose of the present invention is to miniaturize the repeater housing by providing a connection function using a rod lens.
接続時間の短縮、及び接続部周辺の機械加工精度の緩和
を可能とした高信頼のレンズコネクタ型フィードスルを
提供することにある。It is an object of the present invention to provide a highly reliable lens connector type feedthrough that enables shortening of connection time and relaxation of machining precision around the connection part.
(4)発明の構成
(4−1)発明の特徴と従来の技術との差異本発明は、
ロッドレンズ型コネクタを海底光中継器筐体の端面板部
(ベリリウム銅合金が主流)に装着して作業性のよい接
続機能を具備させるレンズコネクタ型フィードスルを構
成するに際して、ロッドレンズを端面板に確実に装着す
るためにロッドレンズと端面板間にセラミック部品を介
在させ、ロッドレンズとセラミック部品の間隙をガラス
・セラミック接着用半田で封着したことを最も主要な特
徴とする。(4) Structure of the invention (4-1) Differences between the characteristics of the invention and the conventional technology The present invention has the following features:
When constructing a lens connector type feedsle that provides an easy-to-work connection function by attaching a rod lens type connector to the end plate part of the submarine optical repeater housing (beryllium copper alloy is the mainstream), the rod lens is attached to the end plate part of the submarine optical repeater housing. The most important feature is that a ceramic component is interposed between the rod lens and the end plate to ensure secure attachment to the lens, and the gap between the rod lens and the ceramic component is sealed with glass-ceramic adhesive solder.
ガラス系材料による小径のロッドレンズをベリリウム銅
合金製が主流となっている端面板に対し直接、水密、気
密を保ち装着するためには、両材料の熱膨張率に大きな
差があり、また、ロッドレンズが通常φl龍〜φ2m1
11と小径なため問題がある。In order to attach a small-diameter rod lens made of glass-based material directly to the end plate, which is mainly made of beryllium copper alloy, in a watertight and airtight manner, there is a large difference in the coefficient of thermal expansion of the two materials. The rod lens is usually φl dragon ~ φ2m1
There is a problem because it has a small diameter of 11.
このような問題点を、本発明では、まずロッドレンズを
セラミック部品に確実に装着し、これを改めて端面板金
属に装着することにより解決するものである。ここで、
セラミック部品と端面板金属の装着構造には以下の二つ
の構成例がある。The present invention solves these problems by first reliably attaching the rod lens to the ceramic component and then attaching it again to the end plate metal. here,
There are the following two configuration examples of the mounting structure of the ceramic component and the end plate metal.
即ち、第一に、セラミック材料としてその熱膨張率がロ
ッドレンズと端面板金属のそれぞれの熱膨張率の中間の
値を有するものを選択し、端面板と半田接合する構成例
、第二に、セラミック材料として熱膨張率がロッドレン
ズと極めて近い値を有するものを選定し、セラミック部
品と端面板間にメタルCリングを装着する構成例である
。That is, firstly, a configuration example in which a ceramic material having a coefficient of thermal expansion intermediate between those of the rod lens and the end plate metal is selected, and the ceramic material is soldered to the end plate, and secondly, This is an example of a configuration in which a ceramic material having a coefficient of thermal expansion extremely close to that of the rod lens is selected, and a metal C ring is attached between the ceramic component and the end plate.
これら技術に対し、前記のレンズを用いるフィードスル
の従来例においても接続機能を有していないし、またレ
ンズの気密装着方法を具体的に示した例はない。In contrast to these techniques, the conventional feedthroughs using the lenses described above do not have a connection function, and there are no examples that specifically show how to attach the lenses in an airtight manner.
(4−2)実施例
第2図は本発明の第一の基本構造を説明する図であって
、10がロッドレンズA111がロッドレンズB、12
がセラミック部品A、13がセラミック部品B114が
メタルコート、15がガイド、16がガラス・セラミッ
ク用半田、17が0リング、18がセラミック製パイプ
、19が接着剤A、21が光ファイバA、22が光ファ
イバB、23が半田封止部である。(4-2) Example FIG. 2 is a diagram explaining the first basic structure of the present invention, in which 10 is a rod lens A, 11 is a rod lens B, 12
is ceramic part A, 13 is ceramic part B, 114 is metal coat, 15 is guide, 16 is solder for glass/ceramic, 17 is O ring, 18 is ceramic pipe, 19 is adhesive A, 21 is optical fiber A, 22 is the optical fiber B, and 23 is the solder sealing part.
本基本構造では、セラミック部品A12の材料としてロ
ッドレンズと端面板金属の中間の値の熱膨張率を有する
ものを選択し、端面板と半田接合している。In this basic structure, a material having a coefficient of thermal expansion between that of the rod lens and the end plate metal is selected as the material for the ceramic component A12, and is soldered to the end plate.
第3図に各材料の膨張率の範囲を示す。Figure 3 shows the range of expansion coefficients of each material.
第2図に示すレンズコネクタ型フィードスルは、通常は
金属等による耐圧構造内に位置し水圧を受けることはな
いが、ケーブル断線等による浸水により水圧を受ける可
能性がある。第2図中、端面板5の左側が高圧側、右側
が低圧側である。The lens connector type feedthrough shown in FIG. 2 is normally located within a pressure-resistant structure made of metal or the like and is not exposed to water pressure, but it may be exposed to water pressure due to water intrusion due to cable breakage or the like. In FIG. 2, the left side of the end plate 5 is the high pressure side, and the right side is the low pressure side.
以下、製造方法を工程順に示す。The manufacturing method will be shown below in order of steps.
まず、中継器回路側ではロッドレンズAIOの一方の端
面にこのロッドレンズAIOの外径より細い外径と、光
ファイバA21の外径より太い内径を有するセラミック
製パイプ18の一端を接着剤A19で固着する。First, on the repeater circuit side, one end of a ceramic pipe 18 having an outer diameter smaller than the outer diameter of the rod lens AIO and an inner diameter larger than the outer diameter of the optical fiber A21 is attached to one end surface of the rod lens AIO with adhesive A19. stick.
ロッドレンズAIOとセラミック部品A12間のガラス
・セラミック接着用半田16による接着は例えば封着部
を溶融したガラス・セラミック接着用半田16に浸し、
超音波振動を印加して気泡が介在しないように封着する
ことが考えられる。この時、ロッドレンズAIOの海底
光ケーブル側端面に付着したガラス・セラミック接着用
半田16は、ロッドレンズAIOの軸方向の長さを1/
4もしくは3/4ピツチ長に切断もしくは研磨すること
により除去する。To bond the rod lens AIO and the ceramic component A12 with the glass-ceramic bonding solder 16, for example, the sealing portion is immersed in the molten glass-ceramic bonding solder 16.
It is conceivable to apply ultrasonic vibration to seal the parts without intervening air bubbles. At this time, the glass-ceramic adhesive solder 16 attached to the end surface of the rod lens AIO on the submarine optical cable side reduces the axial length of the rod lens AIO by 1/1.
Remove by cutting or polishing into 4 or 3/4 pitch lengths.
次に、セラミック部品A12を端面板5に装着する。こ
こでは、0リング17により耐圧封止し、予め電着法、
イオンブレーティング、真空蒸着、スパッタリング等に
よりメタルコート14を施したセラミック部品A12と
端面板金属を半田封止23することにより気密を保つ。Next, the ceramic component A12 is attached to the end plate 5. Here, pressure-resistant sealing is performed using an O-ring 17, and electrodeposition is performed in advance.
Airtightness is maintained by solder-sealing 23 the ceramic component A12 coated with metal 14 by ion blasting, vacuum evaporation, sputtering, etc. and the end plate metal.
次に、ロッドレンズAIOと光ファイバA21を接続す
る。ここでは、例えば、前記セラミック製パイプ18の
内径より細い外径を有するセラミック製パイプB内部に
光ファイバA21を固定して、ロッドレンズAIOの海
底光ケーブル側端面から平行光を入射し、前記セラミッ
ク製パイプ18内でセラミック製パイプBを移動し、光
ファイバA21に入射する光の強度が最大の位置で固定
する方法を用いることができる。Next, the rod lens AIO and the optical fiber A21 are connected. Here, for example, the optical fiber A21 is fixed inside the ceramic pipe B having an outer diameter smaller than the inner diameter of the ceramic pipe 18, and parallel light is incident from the end surface of the rod lens AIO on the submarine optical cable side. A method can be used in which the ceramic pipe B is moved within the pipe 18 and fixed at a position where the intensity of light incident on the optical fiber A21 is maximum.
また、上記方法と同様にして、海底光ケーブル側端面か
ら平行光を入射し、セラミック製パイプ18の内部の穴
に偏心を与え、このセラミック製パイプの内径より僅か
に細い外径を有するセラミック製偏心パイプB”および
そのセラミック製偏心パイプB′の内径より僅かに細い
外径を有し光ファイバA21を内部に固定したセラミッ
ク製偏心パイプCを独立に回転して光軸合わせを行う二
重偏心法〔[単一モードファイバコネクタJ NTT発
行、研究実用化報告、28−6 (1979) p 9
99参照〕を用・ いることも有効である。In addition, in the same manner as the above method, parallel light is incident from the end face of the submarine optical cable to give eccentricity to the hole inside the ceramic pipe 18, and a ceramic eccentric having an outer diameter slightly smaller than the inner diameter of the ceramic pipe 18 is made. A double eccentric method in which optical axes are aligned by independently rotating a ceramic eccentric pipe C, which has an outer diameter slightly smaller than the inner diameter of the ceramic eccentric pipe B' and an optical fiber A21 fixed therein. [[Single mode fiber connector J NTT publication, research and practical application report, 28-6 (1979) p 9
99] is also effective.
尚、上記のロッドレンズAIOと光ファイバA21の接
続は、ロッドレンズAIOとセラミック部品A12の固
定以前に実施することも可能であり、この場合、セラミ
ック製パイプ18の内部に光ファイバA21を直接固定
し、ロッドレンズAIOと前記セラミック製パイプ18
を接着してもよい。Note that the connection between the rod lens AIO and the optical fiber A21 described above can also be performed before fixing the rod lens AIO and the ceramic component A12. In this case, the optical fiber A21 can be directly fixed inside the ceramic pipe 18. and the rod lens AIO and the ceramic pipe 18
may be glued.
以上の工程と同様にして、海底光ケーブル側のロッドレ
ンズB11.セラミック部品B13および光ファイバB
22の接続も可能である。以上の工程は中継器およびケ
ーブルの製造時に工場内で実施し、伝送路の建設、修理
工事に際しては、セラミック部品A12とセラミック部
品B13をガイド15を介して突き合わせる簡単な作業
で海底光ケーブルと中継器の光学的接続が可能となる。In the same manner as the above process, the rod lens B11 on the submarine optical cable side. Ceramic part B13 and optical fiber B
22 connections are also possible. The above process is carried out in the factory during the manufacture of repeaters and cables, and when constructing or repairing transmission lines, a simple operation of matching ceramic part A12 and ceramic part B13 via guide 15 is carried out to connect the submarine optical cable and relay. Optical connection of devices becomes possible.
尚、ロッドレンズAIOとロッドレンズBllの端面間
にロッドレンズAIO及びロッドレンズBllの屈折率
と同程度の屈折率を有する高分子等によるマツチング材
を介在させるか、もしくは第2図中左側からセラミック
部品B13にバネ等による押圧力を印加することにより
、前記ロッドレンズA10とロッドレンズBllの端面
間に空気の介在を無くし、反射光の低減を図ることがで
きる。In addition, between the end faces of the rod lens AIO and the rod lens Bll, a matching material made of polymer or the like having a refractive index similar to that of the rod lens AIO and the rod lens Bll is interposed, or a matching material made of a polymer or the like is interposed between the end faces of the rod lens AIO and the rod lens Bll, or a matching material made of a polymer or the like is interposed between the end surfaces of the rod lens AIO and the rod lens Bll. By applying a pressing force such as a spring to the component B13, it is possible to eliminate the presence of air between the end faces of the rod lens A10 and the rod lens Bll, thereby reducing reflected light.
以上の基本構造の効果としては、ロッドレンズ。The effect of the above basic structure is that it is a rod lens.
セラミック部品、端面板金属の熱膨張率が段階的に移行
するように前記各種材質を選定することにより、この部
分が光フィードスル外周に施すポリエチレン被覆構造の
モールド時の熱衝撃を受けても、ロッドレンズAIOと
セラミック部品A12間のガラス・セラミック接着用半
田16、およびセラミック部品AI2と端面板5間の半
田封止部23に加わる応力を、ロッドレンズAIOを端
面板5に直接装着する場合に比べ減少することができ、
所期の高信頼性水密、気密機能を確保できるという利点
がある。また、製造時の環境温度とその後の使用環境(
海中ニー2〜30℃)の差に起因する熱歪も少なく、長
期間の安全を確保することができる。By selecting the various materials mentioned above so that the coefficient of thermal expansion of the ceramic parts and end plate metal changes in stages, even if these parts are subjected to thermal shock during molding of the polyethylene coating structure applied to the outer periphery of the optical feedthrough, When the rod lens AIO is directly attached to the end plate 5, the stress applied to the glass-ceramic adhesive solder 16 between the rod lens AIO and the ceramic component A12 and the solder sealing portion 23 between the ceramic component AI2 and the end plate 5 is reduced. can be reduced compared to
It has the advantage of ensuring the desired highly reliable watertight and airtight functions. In addition, the environmental temperature during manufacturing and the subsequent usage environment (
There is little thermal strain caused by differences in seawater temperature (2 to 30°C), and long-term safety can be ensured.
第4図は、本発明の第二の基本構造を説明する図であっ
て、20が接着剤B139がメタルCリング、40がセ
ラミック部品押えである。FIG. 4 is a diagram illustrating the second basic structure of the present invention, in which reference numeral 20 represents an adhesive B 139 as a metal C ring, and 40 represents a ceramic component holder.
本基本構造は、セラミック部品A12の材料として熱膨
張率がロッドレンズAIOと極めて近い値を存するもの
を選定し、表面にメタルコート14を施したセラミック
部品AI2と端面板5間には、気密を保つ目的からメタ
ルCリング39を装着し、これを保護するOリング17
をその高圧側に設けることを特徴とする。In this basic structure, a material with a thermal expansion coefficient extremely close to that of the rod lens AIO is selected as the material for the ceramic component A12, and an airtight space is created between the ceramic component AI2 whose surface is coated with a metal coat 14 and the end plate 5. A metal C-ring 39 is attached for the purpose of maintaining the O-ring 17 to protect it.
is provided on its high pressure side.
本構造ではガラス・セラミック接着用半田16のバック
アップとして接着剤B20をセラミック製パイプ18と
セラミック部品A12間に充填している。In this structure, adhesive B20 is filled between the ceramic pipe 18 and the ceramic component A12 as a backup for the glass-ceramic bonding solder 16.
この充填方法としては、例えば接着剤充填用真空吸引孔
32を設けて吸引し、接着剤の充填空間を高真空に保ち
、接着剤の粘性によりセラミック製パイプ18とセラミ
ック部品A12間に気泡が介在することなく接着剤を充
填する方法が有効である。As for this filling method, for example, a vacuum suction hole 32 for filling the adhesive is provided to perform suction, and the adhesive filling space is kept at a high vacuum, so that air bubbles are formed between the ceramic pipe 18 and the ceramic part A12 due to the viscosity of the adhesive. An effective method is to fill the adhesive without removing the adhesive.
尚、上記充填方法は本願発明者の実験によれば、およそ
φ0.4關、長さ1011の穴の内部に外径0.125
mmの光ファイバを固着して2000 kg / cr
Aまで水もれ等の異常が発生しなかったという実績があ
る。According to the experiment of the inventor of the present application, the filling method described above is based on the fact that a hole with an outer diameter of 0.125 mm is placed inside a hole of approximately φ0.4 mm and a length of 1011 mm.
2000 kg/cr by fixing mm optical fiber
There is a track record that no abnormalities such as water leakage have occurred up to A.
本構造では、前記熱衝撃に対し、ロッドレンズAIOと
セラミック部品A12間のガラス・セラミック接着用半
田16に熱膨張率の差に起因する応力が加わることを防
ぐことができる。With this structure, stress due to the difference in thermal expansion coefficient can be prevented from being applied to the glass-ceramic bonding solder 16 between the rod lens AIO and the ceramic component A12 in response to the thermal shock.
また、メタルCリング39による気密はCリングを弾性
的に変形させて押し付ける構造であるから、セラミック
部品A12と端面板5間の熱膨張率の差が大きくても、
高い気密機能を維持することができる。このメタルCリ
ング39は小径のロッドレンズAIOの外周には直接装
着することが困難であるが、複数のロッドレンズAIO
を装着した比較的大寸法のセラミック部品A12に対し
ては装着可能である。In addition, since the metal C ring 39 provides airtightness by elastically deforming and pressing the C ring, even if the difference in thermal expansion coefficient between the ceramic component A12 and the end plate 5 is large,
High airtightness can be maintained. This metal C ring 39 is difficult to attach directly to the outer periphery of a small-diameter rod lens AIO;
It can be attached to a relatively large-sized ceramic component A12 that has been attached with.
以上により、所期の高信頼性水密、気密機能を確保し、
かつ、長期間の安全を確保することができるという利点
がある。Through the above, the desired highly reliable watertight and airtight functions are ensured,
Moreover, there is an advantage that long-term safety can be ensured.
尚、前記第一および第二の基本構造の効果として、中継
器筐体の小型化、接続部周辺の機械加工精度の緩和、接
続作業の簡略化が可能なことは勿論である。Note that, of course, the effects of the first and second basic structures are that the repeater casing can be made smaller, the machining accuracy around the connecting portion can be relaxed, and the connecting work can be simplified.
第5図は、本発明を適用して構成できる海底光フィード
スルの全体構造の一例である。FIG. 5 is an example of the overall structure of a submarine optical feedthrough that can be constructed by applying the present invention.
24が給電線兼用耐圧パイプ、25が半田接続部、26
が金属部品A、27が金属部品B、2日が接合ピン、2
9がポリエチレン、30がポリエチレン接合部、31が
金属部品C135がマツチングオイル、36が給電線、
37が酸化処理モールド、38が金めつき膜である。24 is a pressure-resistant pipe that also serves as a power supply line, 25 is a solder connection part, 26
is metal part A, 27 is metal part B, 2nd is the joining pin, 2
9 is polyethylene, 30 is a polyethylene joint, 31 is a metal part C135 is mating oil, 36 is a power supply line,
37 is an oxidized mold, and 38 is a gold-plated film.
ここで、海底光ケーブル側から、〔24→26−27−
36〕の経路で中継器回路に接続される給電路は周囲を
完全にポリエチレン29で被覆され、また、ポリエチレ
ン29と金属部品B27および金属部品C31の界面に
は酸化処理モールド37を施して水密を保っている。ま
た、金属部品B27はセラミック部品A12とセラミッ
ク部品B13を突き合わせる際のガイド機能も兼ねてい
る。Here, from the submarine optical cable side, [24→26-27-
The power supply path connected to the repeater circuit via route 36] is completely covered with polyethylene 29, and an oxidation mold 37 is applied to the interface between the polyethylene 29 and the metal parts B27 and C31 to make it watertight. I keep it. Further, the metal part B27 also serves as a guide when the ceramic part A12 and the ceramic part B13 are butted together.
また、本実施例では、セラミック部品A12とセラミッ
ク部品813間に屈折率整合剤としてマツチングオイル
35を充填し、中継器回路の発光素子へ悪影響を及ぼす
反射光の低減を図っている。Furthermore, in this embodiment, matching oil 35 is filled between the ceramic component A12 and the ceramic component 813 as a refractive index matching agent to reduce reflected light that has an adverse effect on the light emitting elements of the repeater circuit.
このように、本構造では熱衝撃に強い本発明のフィード
スル構造を用いているため、モールドで高温となる外周
のポリエチレン被覆とロッドレンズ部分との距離を短く
、即ち全体を小型に構成することができ、特に最高温と
なるポリエチレンのモールド突き合わせ部とロッドレン
ズ突き合わせ部とをほぼ同位置に設定することにより、
構造が簡単で作業性も良好となる利点がある。As described above, since this structure uses the feedthrough structure of the present invention that is resistant to thermal shock, the distance between the outer polyethylene coating, which becomes hot during molding, and the rod lens portion can be shortened, that is, the entire structure can be made compact. In particular, by setting the polyethylene mold abutting part and the rod lens abutting part, which are the hottest, at almost the same position,
It has the advantage of simple structure and good workability.
(5)発明の詳細
な説明したように、本発明は、海底光中継器筐体の光フ
アイバ導入部において、光ファイバの接続機能を有する
レンズコネクタ型フィードスルを構成するに際し、ロッ
ドレンズと端面板間にセラミック部品を介在し、ロッド
レンズとセラミック部品の間隙にガラス・セラミック接
着用半田を充填することにより、ポリエチレン接合部モ
ールド時の熱衝撃による水密、気密機構の機能の劣化を
防ぎ、高信頼の光フィードスルを実現することができる
という利点がある。(5) Detailed Description of the Invention As described above, the present invention provides a lens connector type feedthrough having an optical fiber connection function in an optical fiber introduction part of a submarine optical repeater housing. By interposing a ceramic part between the face plates and filling the gap between the rod lens and the ceramic part with solder for adhesion of glass and ceramic, the function of the watertight and airtight mechanisms is prevented from deteriorating due to thermal shock during molding of the polyethylene joint, and a high There is an advantage that a reliable optical feedthrough can be realized.
第1図は従来の海底光中継器筐体の構造例を示す縦断面
略図、第2図と第4図は本発明の基本構造例を示す縦断
面図、第3図は本発明に使用する各種材料の熱膨張率を
示す特性図、第5図は本発明を適用して構成できる海底
光フィードスルの全体の構造の一例を示す縦断面図であ
る。
1・・・海底光ケーブル、 2・・・T−T接続部、
3・・・光フィードスル、 4・・・中継器回路、5・
・・端面板、 6・・・耐圧筐体、 7・・・光ファイ
バ、 8・・・光フアイバ融着接続部、 9・・・
ケーブル引留装置、 IO・・・ロッドレンズA、
11・・・ロッドレンズB112・・・セラミック部品
A113・・・セラミック部品B、 14・・・メタル
コート、15・・・ガイド、 16・・・ガラス・セラ
ミック用半田、17・・・0リング、 18・・・セラ
ミック製パイプ、19・・・接着剤A、 20・・・接
着剤B、 21・・・光ファイバA、 22・・・光フ
ァイバB123・・・半田封止部、 24・・・給電線
兼用耐圧パイプ、 25・・・半田接続部、 26・・
・金属部品A、 27・・・金属部品B、28・・・接
合ビン、 29・・・ポリエチレン、 30・・・ポリ
エチレン接合部、 31・・・金属部品C132・・・
接着剤充填用真空吸引孔、 35・・・マツチグオイル
、 36・・・給電線、 37・・・酸化処理モールド
、 38・・・金めつき膜、 39・・・メタルCリン
グ、40・・・セラミック部品押え。Fig. 1 is a schematic longitudinal cross-sectional view showing an example of the structure of a conventional submarine optical repeater housing, Figs. 2 and 4 are longitudinal cross-sectional views showing an example of the basic structure of the present invention, and Fig. 3 is a schematic longitudinal cross-sectional view showing an example of the structure of a conventional submarine optical repeater housing. A characteristic diagram showing the coefficient of thermal expansion of various materials, and FIG. 5 is a longitudinal sectional view showing an example of the overall structure of a submarine optical feedthrough that can be constructed by applying the present invention. 1... Submarine optical cable, 2... T-T connection part,
3... Optical feedthrough, 4... Repeater circuit, 5...
... End plate, 6... Pressure-resistant housing, 7... Optical fiber, 8... Optical fiber fusion splicing part, 9...
Cable retention device, IO...rod lens A,
11... Rod lens B112... Ceramic part A113... Ceramic part B, 14... Metal coat, 15... Guide, 16... Solder for glass/ceramic, 17... 0 ring, 18...Ceramic pipe, 19...Adhesive A, 20...Adhesive B, 21...Optical fiber A, 22...Optical fiber B123...Solder sealing part, 24...・Pressure-resistant pipe that also serves as a power supply line, 25...Solder connection part, 26...
・Metal part A, 27...Metal part B, 28...Joint bottle, 29...Polyethylene, 30...Polyethylene joint part, 31...Metal part C132...
Vacuum suction hole for filling adhesive, 35... Matsushigu oil, 36... Power supply line, 37... Oxidation treatment mold, 38... Gold plating film, 39... Metal C ring, 40... Ceramic parts holder.
Claims (1)
一心以上の光ファイバAを各々接続した集束型ロッドレ
ンズAがセラミック部品を介して端面板に気密、水密を
保って装着され、該ロッドレンズAの端面に海底光ケー
ブル側の一心以上の光ファイバBを各々接続した集束型
ロッドレンズBの端面を突き合わせることにより海底光
ケーブル側と中継器回路側相互の光ファイバを接続する
ように構成されるとともに、前記セラミック部品は海底
光ケーブル側からある深さにわたり前記ロッドレンズA
の外径より太く更に深部においては前記中継器回路から
導出される光ファイバの外径より太くかつ前記ロッドレ
ンズAの外径より細い階段状に貫通する穴を有し、該階
段状の穴に海底光ケーブル側から前記ロッドレンズAを
装着して前記セラミック部品と前記ロッドレンズAの界
面をガラス・セラミック接着用半田により接合したこと
を特徴とするレンズコネクタ型フィードスル。In a submarine optical repeater housing, a converging rod lens A to which one or more optical fibers A derived from a repeater circuit are connected is attached to the end plate through ceramic parts in an airtight and watertight manner, and the rod It is configured to connect the optical fibers on the submarine optical cable side and the repeater circuit side by abutting the end surfaces of the focusing rod lenses B, each of which has one or more optical fibers B on the submarine optical cable side connected to the end surfaces of the lenses A. At the same time, the ceramic component extends over a certain depth from the submarine optical cable side to the rod lens A.
The rod lens A has a step-shaped hole that is thicker than the outer diameter of the rod lens A and deeper than the outer diameter of the optical fiber led out from the repeater circuit, and that penetrates through the hole in a step-like manner. A lens connector type feedthrough, characterized in that the rod lens A is attached from the submarine optical cable side, and the interface between the ceramic component and the rod lens A is bonded by glass-ceramic adhesive solder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8251586A JPH0797165B2 (en) | 1986-04-10 | 1986-04-10 | Lens connector type feedthrough |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8251586A JPH0797165B2 (en) | 1986-04-10 | 1986-04-10 | Lens connector type feedthrough |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62238505A true JPS62238505A (en) | 1987-10-19 |
JPH0797165B2 JPH0797165B2 (en) | 1995-10-18 |
Family
ID=13776663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8251586A Expired - Fee Related JPH0797165B2 (en) | 1986-04-10 | 1986-04-10 | Lens connector type feedthrough |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0797165B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008284505A (en) * | 2007-05-21 | 2008-11-27 | Nok Corp | Housing-mounted hollow fiber membrane module |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE29924759U1 (en) | 1998-02-26 | 2005-06-23 | Otis Elevator Co., Farmington | Elevator system having drive motor located between elevator car and hoistway side wall |
-
1986
- 1986-04-10 JP JP8251586A patent/JPH0797165B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008284505A (en) * | 2007-05-21 | 2008-11-27 | Nok Corp | Housing-mounted hollow fiber membrane module |
Also Published As
Publication number | Publication date |
---|---|
JPH0797165B2 (en) | 1995-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4469399A (en) | Method of making an undersea, high pressure bulkhead penetrator for use with fiber optic cables | |
US5588086A (en) | Fiber optic hermetic bulkhead penetrator feedthrough module and method of fabricating same | |
US4166668A (en) | Fiber optic arrangements | |
US7189007B2 (en) | Termination for optic fiber | |
US7103257B2 (en) | Hermetically sealed fiber tail assembly for polarization maintaining fiber | |
US4682846A (en) | Hermetic high pressure fiber optic bulkhead penetrator | |
WO1994023318A1 (en) | Optical fiber array | |
JPS59113408A (en) | Transmitting or receiving apparatus for electrooptic information transmitter | |
AU619652B2 (en) | Hermetic gland for optical fibres | |
CN112782808B (en) | Optical fiber device, method for manufacturing optical fiber device, and aircraft | |
JPS6219721B2 (en) | ||
US6643446B2 (en) | Hermetic fiber ferrule and feedthrough | |
JPS59176706A (en) | Optical fiber airtight fixation structure of feedthrough for optical submarine repeater | |
EP4206762A1 (en) | Optical fiber termination structure, optical connection component and hollow-core optical fiber | |
US6961496B2 (en) | Optical package with cascaded filtering | |
JP3097385B2 (en) | Optical fiber array | |
JPS62238505A (en) | Lens connector type feedthrough | |
JPH0735958A (en) | Parallel transmission module | |
US20030190135A1 (en) | Hermetic waveguide seals and method of making them | |
AU2001273311B2 (en) | Post assembly metallization of a device | |
JPS63267902A (en) | Submersible optical rotary connector | |
JPH0715530B2 (en) | Lens connector type feedthrough | |
JP2000066062A (en) | Parallel transmission module | |
CN110908048A (en) | Tail fiber assembly and electro-optical modulator comprising same | |
JP2001108873A (en) | Optical transmission module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |