JPS62237939A - Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed - Google Patents
Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bedInfo
- Publication number
- JPS62237939A JPS62237939A JP7923586A JP7923586A JPS62237939A JP S62237939 A JPS62237939 A JP S62237939A JP 7923586 A JP7923586 A JP 7923586A JP 7923586 A JP7923586 A JP 7923586A JP S62237939 A JPS62237939 A JP S62237939A
- Authority
- JP
- Japan
- Prior art keywords
- fluidized bed
- spouted
- stage
- peripheral wall
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1881—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving downwards while fluidised
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Of Gases By Adsorption (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
ヘフしヒcq%1m−分−」−
この発明は、竪形筒状の器内で上昇気流と粉粒体との流
動層及び噴流層を形成して粉粒体の乾燥、予熱、焙焼、
焼結反応、冷却等の処理をする多段噴流層装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION This invention forms a fluidized bed and a spouted bed of rising air and powder and granules in a vertical cylindrical vessel, drying, preheating, roasting,
This invention relates to a multi-stage spouted bed device that performs processes such as sintering reactions and cooling.
従−迷一の一辣」阻−叱L(−(モ遇り頌一点−流動層
や噴流層を用いる装置は、優れた伝熱特性を持つ反面、
完全混合型であるため熱効率や反応率が低く、そのこと
が構造的短所となっている。One point to note - Devices using fluidized beds and spouted beds have excellent heat transfer properties, but on the other hand,
Because it is a complete mixing type, its thermal efficiency and reaction rate are low, which is a structural disadvantage.
従ってこれを改善するために、上昇気流と粉粒体の流れ
を向流としかつ多段の層を形成し得ることがこの種の装
置の理想形と考えられている。Therefore, in order to improve this problem, it is considered that the ideal form of this type of device is to make the rising air current and the flow of the powder material countercurrent and to form multiple layers.
流動層又は噴流層を多段に形成する装置で、従来提案さ
れている代表的なものとしては第2図に示すものがある
。この装置は、矢印へのように」一段に供給されノコ粉
粒体は各段で漸次処理され、更に溢流管12.12”、
12”を介して下段に移動し、その後排出1コ13から
排出される。A typical example of a conventionally proposed device for forming a fluidized bed or a spouted bed in multiple stages is shown in FIG. This device is fed in one stage as shown by the arrow, and the saw powder is gradually processed in each stage, and furthermore, an overflow pipe 12.12",
12'' to the lower stage, and is then discharged from the discharge port 13.
一方、上昇気流は導入口14から供給されて各段の多孔
板15.15’、] 5”、15゛て分散供給され、そ
の後排出口16から排出される構造となっている。On the other hand, the rising air current is supplied from the inlet 14, distributed and supplied to the perforated plates 15, 15', 15', and 15' in each stage, and then discharged from the outlet 16.
そして一般に多段の流動層装置(噴流層装置を含む)に
おいては、粉粒体と上昇気流とを向流に接触させ、各段
で流動層を形成させなから粉粒体を一定量づつ下段に送
る機構に最大の難点がある。また上述の第2図に示すよ
うに各段の流動層底板として多孔板を用いる多段流動層
装置では、ある限定された操作領域でなければ安定な流
動層状態を示さないため実用化が困難であって、実際的
には向流をやめ横型多窒化への展開を余儀なくされてい
る。In general, in a multi-stage fluidized bed apparatus (including a spouted bed apparatus), the powder and granules are brought into contact with an ascending air flow in countercurrent flow, and a fixed amount of the powder is transferred to the lower stage without forming a fluidized bed at each stage. The biggest drawback lies in the sending mechanism. Furthermore, as shown in Figure 2 above, a multi-stage fluidized bed device that uses a perforated plate as the bottom plate of each stage is difficult to put into practical use because it does not exhibit a stable fluidized bed state except in a certain limited operating area. Therefore, in practice, we are forced to abandon countercurrent flow and develop horizontal multi-nitriding.
一方本発明者は、先に特公昭59−11334号、6゜
−22273号、60−22274号の各公報によって
空塔形式の多段噴流(流動)装置を提案して実用化した
。この装置は、」二連の多孔板を用いないで向流多段化
を進めたものであるが、これも2段以上とすることは難
かしく、それ故上昇気流の排出ガス温度はまだ高く、よ
り効率的な熱回収が求められていた。On the other hand, the present inventor previously proposed and put into practical use an empty tower type multistage jet (flow) device in Japanese Patent Publications No. 59-11334, No. 6-22273, and No. 60-22274. This device advances multi-stage countercurrent flow without using two perforated plates, but it is difficult to have more than two stages, so the temperature of the exhaust gas in the rising air is still high. There was a need for more efficient heat recovery.
そこで本発明者は種々研究の結果、上述の理態形の実現
のためには、上昇気流の量(以下ガス量という)を変え
ずに流動層(噴流層)における粉粒体の滞留量を容易に
増減制御することができ、かつ一定量づつ下段に送るこ
とが必要であることに着目し、先願(特願昭61−25
787号)で開示した「周壁噴流式流動層装置」(以下
先願という)を考案した。Therefore, as a result of various studies, the present inventor found that in order to realize the above-mentioned physical form, the amount of granular material retained in the fluidized bed (spouted bed) must be reduced without changing the amount of updraft (hereinafter referred to as gas amount). Focusing on the fact that it is possible to easily control the increase and decrease, and that it is necessary to send a fixed amount to the lower stage, the earlier application (Japanese Patent Application No. 61-25
787) (hereinafter referred to as the "prior application").
すなわち多段の流動層(噴流層)における粉粒体の滞留
量と下段へ落下する量を調節するには、主として吹上げ
る上昇気流の流速に関係するので、流速を変えるのにガ
ス量を増減しなければならないが、先願では面積可変構
造の開口部を周壁部に設けて周壁噴流式としたために、
ガス玉一定でも上昇気流の流速が変えられかつ滞留量と
落下量を容易に制御することができる。In other words, adjusting the amount of powder and granules that stays in a multi-stage fluidized bed (spouted bed) and the amount that falls to the lower stage is mainly related to the flow velocity of the updraft that blows up, so to change the flow velocity, increase or decrease the gas amount. However, in the previous application, an opening with a variable area structure was provided in the peripheral wall to create a peripheral wall jet type.
Even if the gas beads are constant, the flow velocity of the rising air current can be changed, and the amount of retention and amount of falling air can be easily controlled.
一般に流動層(噴流層)に滞留する粉粒体の里は式(1
)に示す関係で決まり、各段の落下量は式(2)により
粉粒体の滞留量に比例し、上昇気流の流速に逆比例する
関係にある。In general, the density of powder particles that stay in a fluidized bed (spouted bed) is expressed by the formula (1
), and the falling amount of each stage is proportional to the amount of granular material retained according to equation (2), and is inversely proportional to the flow velocity of the upward air current.
W−△p−AT・・・・・(1)。W-Δp-AT...(1).
W:滞留量(kg) △p:粉粒体の流動層における上昇 気流の圧力損失(kg/m2) AT・流動層装置筒状器の横断面積 (m2) FcAw/u’ ・−・+−(2)。W: Retention amount (kg) △p: Rise in the fluidized bed of powder and granules Airflow pressure loss (kg/m2) Cross-sectional area of AT/fluidized bed device cylindrical vessel (m2) FcAw/u' ・-・+-(2).
F:落下nk (kg/5ac)
W:滞留量(kg)
U、流速(m/5lc)
つまり上昇気流の圧力損失(△p)に相当する量が浮遊
流動するが、粉粒体の原料が継続的に供給されると上記
(1)式のバランスがくずれ供給量に比例した量が開口
部から自動的に押出されるように落下する。F: Fall nk (kg/5ac) W: Stagnant amount (kg) U, Flow velocity (m/5lc) In other words, an amount equivalent to the pressure loss (△p) of the rising air flows floatingly, but the raw material of the powder and granular material If it is continuously supplied, the balance of equation (1) above will be disrupted, and an amount proportional to the amount supplied will fall so as to be automatically pushed out from the opening.
従って上述の面積可変構造の開[」部落下方式によれば
、各段毎に落下量を強制的(カス量を“変化させる)に
落下させる必要がない。すなゎぢ一定ガス量の下で開口
部(落下部)の面積を変えることかできれば、吹−にげ
流速が変わり、それに応じて落下量が変るので一定の原
料供給速度のもとで新しい滞留量が形成される。つまり
開口部面積変化−・吹」二げ流速変化−△p変化−・滞
留用変化の関係が成立する。Therefore, according to the above-mentioned open area drop method with a variable area structure, there is no need to forcibly drop the falling amount (change the amount of debris) at each stage. If it is possible to change the area of the opening (falling part), the blow-off flow rate will change and the falling amount will change accordingly, so a new stagnation amount will be formed under a constant raw material supply rate. The following relationship holds true: change in area - change in flow velocity - change in Δp - change in retention.
モして先願の流動層装置は流動層底板を用いて、その底
板と筒状器の内周壁の間に開1」部を多段に設け、各々
の開1」部毎に噴流層、流動層を形成する方式としたも
のである。In contrast, the fluidized bed device of the earlier application uses a fluidized bed bottom plate, and has multiple openings of 1" between the bottom plate and the inner circumferential wall of the cylindrical vessel. This method forms layers.
しかしこの方式では流動層(噴流層)の形成は安定して
いるが、各層に滞留する粉粒体の量が密であってかつ流
動状態がはげしい撹拌状態とならない場合がある。However, in this method, although the formation of a fluidized bed (spouted bed) is stable, the amount of powder particles staying in each layer is dense and the fluidized state may not be in a vigorously agitated state.
このような場合に焼結性材料の焼成などの処理をすれば
、その材料の融着、クリンカーの生成がおこり運転不能
となることがある。In such a case, if the sinterable material is subjected to processing such as firing, the material may fuse together and clinker may be formed, which may make operation impossible.
そこで本発明者は1周壁噴流式流動層」と粉粒体がはげ
しい撹拌噴流状態となる「空筒噴流層」を上下に形成す
ることによりこの問題を解決することができた。Therefore, the present inventor was able to solve this problem by forming a "single-wall spouted fluidized bed" and a "cavity spouted bed" in which the powder and granules are in a vigorously agitated jet state above and below.
竪形筒状の器内で−に昇気流と粉粒体との流動層並びに
噴流層を形成して用いる装置において、該筒状器の内周
壁にそってその周壁と流動層底板との間に上昇気流を吹
上げるための面積可変構造の開口部を設け、該開口部よ
り下部に空筒状の噴流室を設置」、該空筒噴流室とその
直下に設けた気流導入口との接合部を介して粉粒体の排
出口1を設け、かつ上記開口部より上部に粉粒体の供給
口と気流排出口を設けたことを特徴とする周壁噴流式流
動層を用いる多段噴流層装置である。In a device used to form a fluidized bed and a spouted bed of an ascending air flow and powder and granules in a vertical cylindrical container, a gap between the peripheral wall and the bottom plate of the fluidized bed is formed along the inner peripheral wall of the cylindrical container. An opening with a variable area structure is provided to blow up the rising air, and a cylindrical jet chamber is installed below the opening, and the cylindrical jet chamber is connected to an air flow inlet provided directly below it. A multi-stage spouted bed device using a peripheral wall spout type fluidized bed, characterized in that a powder discharge port 1 is provided through the opening, and a powder supply port and an air flow discharge port are provided above the opening. It is.
以下この発明の構成と作用を実施例に基づいて説明する
。The structure and operation of the present invention will be explained below based on examples.
友jllJ
第1図は、この発明を実施する多段噴流層装置の側断面
図である。図において、Iは多段噴流層装置本体をなす
竪型の筒状器、2は原料粉粒体の供給口、3は粉粒体の
排出口、4.4′。Friend jllJ FIG. 1 is a side sectional view of a multi-stage spouted bed apparatus embodying the present invention. In the figure, I is a vertical cylindrical vessel forming the main body of the multi-stage spouted bed device, 2 is a supply port for raw material powder, 3 is a powder discharge port, and 4.4'.
4”は気流の導入口、5は気流排出口である。4'' is an airflow inlet, and 5 is an airflow outlet.
つぎに6.6°、6”は流動層底板、7,7゛は上昇気
流を吹−Lげるための開口部8,8゛の面積調節装置で
ある1、そして開口部8〜8”は流動層底板6〜6”と
筒状器1の内周壁の間の円周面にそって形成される。Next, 6.6°, 6" is the fluidized bed bottom plate, 7,7" is the area adjustment device of openings 8,8" for blowing up the upward airflow, and openings 8 to 8" is formed along the circumferential surface between the fluidized bed bottom plate 6~6'' and the inner circumferential wall of the cylindrical vessel 1.
そして9は開口部8の直下に設けた空筒状の噴流室であ
る。A cylindrical jet chamber 9 is provided directly below the opening 8.
矢印ハのように装置内に供給された粉粒体は、開口部8
〜8”において吹」二げる上昇気流によって流動層並び
に噴流層を形成する。The powder and granular material supplied into the device as shown by arrow C enters the opening 8.
A fluidized bed and a spouted bed are formed by the updraft blowing at ~8".
ここに流動層とは一般に比較的低速の上昇気流の中で粒
子が浮遊する層を形成する場合をいい、噴流層とはや\
高速の上昇気流により粒子が噴水状に浮遊する層を形成
する場合をいう。Here, a fluidized bed generally refers to a layer in which particles are suspended in a relatively low-velocity updraft, and a spouted bed is different from a spouted bed.
This refers to the formation of a fountain-like layer of suspended particles due to high-speed updrafts.
この発明において、開口部8〜8′”における上昇気流
の吹上げ流速は、従前の多孔板による開1]部(多孔部
)からの吹」二げに比べ噴流層を形成する条件となりや
すい。そのため一般に粒子の浮遊流動がはげしい撹拌状
態になりやすく、反応、焙焼などの前記の処理に効果的
である。In this invention, the upward flow velocity of the rising air in the openings 8 to 8''' is more likely to be a condition for forming a spouted layer than in the conventional blowing from the opening 1] (porous part) using a perforated plate. Therefore, in general, suspended fluidity of particles tends to be in a violently agitated state, which is effective for the above-mentioned treatments such as reactions and roasting.
そして開口部8〜8”からやや−に部に離れたところで
は流速がおそくなり流動層を形成するので、滞留する粉
粒体の量か密になる。Further, at a portion slightly away from the openings 8 to 8'', the flow rate is slow and a fluidized bed is formed, so the amount of powder particles staying there becomes dense.
つぎに、この実施例において流動層並びに噴流層におい
て粒子が滞留する晴の調節並びに開口部8〜8”を通っ
て落下する機構について説明する。Next, a description will be given of the mechanism by which particles stay in the fluidized bed and the spouted bed in this embodiment, and how they fall through the openings 8 to 8''.
第3図は第1図の流動層底板6、面積調節装置7、開口
部8の部分拡大図である。第4図は第3図のA−A’断
面図である。この実施例では、面積調節装置7は第4図
に示すように6つに分割された面積調節板7a〜7fを
有していて、これらの面積調節板の各々が筒状器1の器
壁につば】aによって挟まれて外部から操作できるよう
に摺動自由に取付けられている。なお、つば1aは全周
にわたりガスケットにより気密保持がされている。FIG. 3 is a partially enlarged view of the fluidized bed bottom plate 6, area adjustment device 7, and opening 8 shown in FIG. FIG. 4 is a sectional view taken along line AA' in FIG. In this embodiment, the area adjusting device 7 has six area adjusting plates 7a to 7f as shown in FIG. [Nitsuba] It is sandwiched between a and is slidably attached so that it can be operated from the outside. Note that the collar 1a is kept airtight around the entire circumference by a gasket.
そして多段噴流層装置の運転中でも面積調節装置7a〜
7fを筒状器1内に押し入れれば、開口部8の横断面積
がそれだけ狭められ、引き出せばそれだけ広くなる。Even during operation of the multi-stage spouted bed device, the area adjustment devices 7a~
If 7f is pushed into the cylindrical container 1, the cross-sectional area of the opening 8 will be narrowed by that amount, and if it is pulled out, it will be widened by that amount.
また第3図及び第4図の11は流動層底体6を固定して
支持する部材である。Further, reference numeral 11 in FIGS. 3 and 4 is a member that fixes and supports the fluidized bed bottom body 6.
それから第1図の最」−開[」部8”の開口面積は、同
図に示すように流動層底板6゛を逆円錐形状の筒状器の
部分に設けて、昇降機10で」−不可動とすれば自由に
調節される。The opening area of the most open part 8'' in FIG. If it is movable, it can be adjusted freely.
つぎに開口部8(第1図の8°、8”を含む)における
上昇気流によって支えられる粉粒体の滞留量は、前述の
式(1)で説明した関係にあり、滞留している粉粒体が
落下する量は式(2)で説明したような関係にある。Next, the amount of powder particles supported by the upward air flow in the opening 8 (including 8° and 8" in Figure 1) has the relationship explained in equation (1) above, and the amount of powder particles remaining The amount by which the particles fall has the relationship as explained in equation (2).
従って今、開口部8〜8゛の面積を一定にしてかつ気流
の流速を一定(ガス量一定)にすれば粉粒体の滞留量は
式(1)でバランスした量となり、継続して粉粒体を供
給すれば滞留量が多くなった分だけ継続して落下する(
式(2)でバランスする)。従って開口部8〜8”の面
積を一定とすれば、ガス量を増減しない限り滞留量を調
節することはできない。Therefore, if we keep the area of the opening 8~8゛ constant and the flow velocity of the air current constant (constant gas amount), the amount of powder particles retained will be the amount balanced by equation (1), and the powder will continue to flow. If granules are supplied, they will continue to fall as much as the amount of stagnation increases (
(balanced using equation (2)). Therefore, if the area of the openings 8 to 8'' is constant, the amount of retention cannot be adjusted unless the amount of gas is increased or decreased.
ところが本実施例によれば、ガス量を一定にしておいて
も面積調節装置7の面積調節板7a等あるいは昇降機1
0により開口部8〜8”の面積を調節することができ、
その調節分だけ開口部8〜8”における上昇気流の流速
を増減できる。式(])、(2)の関係からして流速が
増せば落下mが減って滞留量が増し、−・方流速が減少
すれば落下量が増して滞留量が減少する。However, according to this embodiment, even if the gas amount is kept constant, the area adjustment plate 7a of the area adjustment device 7 or the elevator 1
0 can adjust the area of the opening 8~8'',
The flow velocity of the updraft in the openings 8 to 8" can be increased or decreased by the amount of adjustment. From the relationship of equations (]) and (2), if the flow velocity increases, the drop m decreases and the retention amount increases, and -. If the amount decreases, the amount of falling will increase and the amount of retention will decrease.
そして何れにおいてしその流速に相当した滞留量と落下
量でバランスする。In either case, the amount of retention and amount of falling correspond to the flow velocity, which is balanced.
ごのようにこの実施例によれば、ガス量が一定であって
も或範囲で任意に滞留量を調節することができるので、
装置内の反応温度、時間、雰囲気の条件変更が容易であ
る。なおこの発明における開口部(8〜8”)の開口比
(開口部における筒状器の横断面積当りの開口面積)は
所望の滞留量のもとて良好な流動、噴流条件が得られる
ように選択されるが、これは粒子の大きさとガス量によ
って異なり、粒径が0.6〜1.7m/mの粉粒体原料
による実験によれば15〜30%の範囲が好ましい。As shown in this embodiment, even if the gas amount is constant, the amount of retention can be arbitrarily adjusted within a certain range.
It is easy to change the reaction temperature, time, and atmosphere conditions within the device. In addition, the opening ratio (opening area per cross-sectional area of the cylindrical vessel at the opening) of the opening (8 to 8") in this invention is set so that very good flow and jet conditions can be obtained with the desired retention amount. This varies depending on the size of the particles and the amount of gas, and according to experiments using powder raw materials with a particle size of 0.6 to 1.7 m/m, a range of 15 to 30% is preferable.
(I3)
そして従前のような多孔板の開口部による全断面におけ
る吹上げではなく、周壁開口部で粒子が吹上げられるの
で、噴流層がドーナツ状に形成され、かつ上層部では流
動層状態となって、全体として粒子が噴流降下の撹拌を
受けることになるが、開口部から離れた流動層や流動層
底板6の直」二付近では撹拌状態が不十分で滞留する粒
子の量が密になる。(I3) Since the particles are blown up at the peripheral wall openings, instead of being blown up over the entire cross section by the openings of the perforated plate as in the past, the spouted bed is formed in a donut shape, and the upper layer is in a fluidized bed state. As a result, the particles as a whole are agitated by the descending jet, but in the fluidized bed far from the opening and in the vicinity of the bottom plate 6 of the fluidized bed, the agitation state is insufficient and the amount of particles stagnant becomes dense. Become.
従って焼結性の粉粒体材料の焼成などを行う場合に、」
−述の開口部(8〜8″)によって形成される流動層(
噴流層)の何れかを最高温度帯としかつ当該粉粒体の焼
結温度(融着温度)に近い温度で加熱焼成する必要があ
る場合は、粒子相互の融着がおこり装着器壁(筒状器、
流動層底板)に大きな融着塊となってイ」着することが
ある。このような状態では、当該粉粒体の焼成処理は不
可能となる。Therefore, when firing sinterable powder or granular materials,
- a fluidized bed (
If it is necessary to heat and sinter at a temperature close to the sintering temperature (fusion temperature) of the powder or granular material, the particles may fuse with each other, causing the wall of the applicator (tube) to shaped vessel,
It may form a large fused mass and adhere to the bottom plate of the fluidized bed. In such a state, the granular material cannot be fired.
そこで本発明では最下段の開口部の下部に空筒状の噴流
室9を設けた。空部噴流室9では、」二連のような粉粒
体の融着現象を防ぐため激しくI4)
い撹拌状態となるような噴流層を形成する必要がある。Therefore, in the present invention, a cylindrical jet chamber 9 is provided below the opening at the lowest stage. In the empty jet chamber 9, it is necessary to form a spouted bed that is vigorously stirred in order to prevent the phenomenon of fusion of powder and granular materials such as "double series".
そのためには噴流室空部の横断面積を狭くシ、上昇気流
の流速が粒子終末速度の0.4〜1.0倍の範囲になる
ように、比較的高速気流にすることが好ましい。For this purpose, it is preferable to narrow the cross-sectional area of the jet chamber cavity and to create a relatively high-speed airflow so that the flow velocity of the rising airflow is in the range of 0.4 to 1.0 times the terminal velocity of the particles.
また、粉粒体の排出1」3の位置は空筒噴流室9とその
直下に設けた気流導入口4との接合部を介して設+Jる
ことが望ましい。そして」二連の空筒噴流層を最高温度
帯として焼結性材料の焼成を行う場合は、焼成された粉
粒体は融着を防止するために排出口付近に堆積させるこ
となく装置外に解放排出して冷却する必要がある。Further, it is desirable that the position of the discharge 1''3 of the powder and granular material be located through the joint between the hollow jet chamber 9 and the air flow inlet 4 provided directly below it. When sintering materials are fired using the double cylindrical spouted bed at the highest temperature, the fired powder is not deposited near the outlet to prevent fusion and is removed from the equipment. Need to be released, drained and cooled.
また、」二述の最高温度を維持するために排出口3から
の外気冷風の吸込みと内部の高温気流の吹出しを防ぐ必
要がある。そのためには」二連の接合部付近の装置内静
圧を大気圧近くに維持しなければならない。そしてこの
静圧維持と正常な焼成物排出並びに噴流層の形成をする
ためには、排出口3を上述の接合部にすることが操作−
]二必須の条件となる。Furthermore, in order to maintain the maximum temperature mentioned in Section 2, it is necessary to prevent the intake of cold outside air from the exhaust port 3 and the blowing out of the internal high-temperature air current. To do this, it is necessary to maintain the static pressure inside the device near the junction of the two series near atmospheric pressure. In order to maintain this static pressure, discharge the fired product normally, and form a spouted layer, it is necessary to make the discharge port 3 the above-mentioned joint.
] Two essential conditions.
そしてこの空筒噴流室9において噴流層を形成しながら
滞留する粉粒体は、開口部8から継続的に落下する粉粒
体によってその滞留量か増すことになるが、前述の式(
1)のバランスがくずれた分だi−1排出(]3から継
続的に排出するので常に一定歯でバランスする。The amount of powder and granules that stays in this hollow jet chamber 9 while forming a spouted layer increases due to the powder and granules that continuously fall from the opening 8.
Since the balance of 1) is disrupted, the amount is continuously discharged from i-1 discharge (]3, so the balance is always maintained at a constant level.
つぎにこの発明においては、第1図に示すように流動層
底板を6〜6″′の如く複数段設け、その数に相当する
開口部並びに開口部面積調節装置を設け、さらに空筒噴
流室9を直結しているので多段の流動層、噴流層の各段
における粉粒体の滞留量(時間)を異にすることもでき
る。Next, in this invention, as shown in FIG. 9 are directly connected to each other, it is possible to vary the retention amount (time) of the granular material in each stage of the multi-stage fluidized bed and spouted bed.
そしてこのような多段であれば各段において予熱(熱回
収)、・連焼、焼成、冷却などの別々の目的の処理を一
つの装置で行うことができるので熱効率や反応率が犬と
なる。With such a multi-stage system, different purposes such as preheating (heat recovery), continuous firing, firing, and cooling can be performed at each stage using a single device, which improves thermal efficiency and reaction rate.
また、第1図に示すように多段噴流層装置の筒状器1を
上下方向においてその横断面積が異なる形状とすれば、
各断面における気流の流速に変化をつけることができる
ので、例えば微粉粒子が排出口5から気流に乗って運ば
れる割合を減少させることができる。Moreover, if the cylindrical vessel 1 of the multi-stage spouted bed apparatus is shaped so that its cross-sectional area differs in the vertical direction as shown in FIG.
Since the flow velocity of the airflow in each cross section can be varied, it is possible to reduce the rate at which fine powder particles are carried along with the airflow from the discharge port 5, for example.
そして空筒噴流室の部分も直向に限定されるものではな
く逆錐形状でも差し支えない。The portion of the cylindrical jet chamber is not limited to being perpendicular, but may also have an inverted conical shape.
つぎにこの発明の多段噴流層装置において、粉粒体の供
給口は必要に応じて多段に設けることにより各段毎に粉
粒体原料、酸化剤、還元剤、固体燃料などの粉粒体を別
々に供給し種々の反応処理を行うこともできる。また同
様に、気流の導入口も第1図に示す気流導入口4〜4″
のほかに多段に設は各段において空気、気体燃料、酸化
還元ガス、バーナーなどを別々に導入することもできる
。なお当然のことなから粉粒体供給口は何れかの開口部
より上部に、また気流の導入口は何れかの開1コ部の下
部に設けることが必要な条件となる。またこの発明にお
ける多段噴流層装置の筒状器の形状は主として円筒形状
について説明したが、角筒状の形状のものでも用いるこ
とができる。そして流動層底板は上述の筒状器の形状に
合わせて円錐又は角錐状の形状とすれば前述のドーナツ
状の周壁噴流層の形成に合致させることができる。Next, in the multi-stage spouted bed apparatus of the present invention, the supply ports for powder and granules are provided in multiple stages as necessary, so that powder and granules such as powder raw materials, oxidizing agents, reducing agents, solid fuel, etc. are supplied to each stage. It is also possible to supply them separately and perform various reaction treatments. Similarly, the airflow inlet is also the airflow inlet 4 to 4'' shown in Figure 1.
In addition, in a multistage system, air, gaseous fuel, redox gas, burner, etc. can be introduced separately at each stage. Naturally, it is necessary that the powder supply port be provided above any opening, and that the air flow introduction port be provided below any one of the openings. Moreover, although the shape of the cylindrical vessel of the multistage spouted bed device in this invention has mainly been described as a cylindrical shape, a rectangular cylindrical shape can also be used. If the bottom plate of the fluidized bed is formed into a conical or pyramidal shape in accordance with the shape of the above-mentioned cylindrical vessel, it can be made to conform to the formation of the above-mentioned doughnut-shaped surrounding wall spouted bed.
憚明の丸」
上述のことからこの発明の効果として、つぎのことか得
られる。From the above, the following effects of this invention can be obtained.
(1)空筒噴流室を設けてそこ、を最高温度帯として操
作することができかつ焼成後直ちに装置外に解放排出す
るこ七ができるので、焼結性材料の焼成処理も容易とな
り、軽量細粒材の場合は発泡焼結も可能となる。(1) A cylindrical jet chamber is provided, which can be operated as the highest temperature zone, and can be immediately released and discharged outside the device after firing, making the firing process of sinterable materials easier and lighter. In the case of fine-grained materials, foam sintering is also possible.
(2)この発明に係る装置を粉粒体の焼成に用いる場合
は、段を重ねるに従い上昇気流から粉粒体への伝熱が行
われ所望の温度まで熱回収ができるので、熱効率が大巾
に改善される。(2) When the apparatus according to the present invention is used for firing powder and granules, heat is transferred from the rising air to the powder and granules as the stages are stacked, and heat can be recovered up to the desired temperature, so thermal efficiency is greatly improved. will be improved.
(3)反応器として使用する場合は、各段の滞留量を任
意に選択できるので、装置の運転操作中でも反応温度、
反応時間の制御が容易である。また必要に応じて還元剤
、酸化剤の使用でガス雰囲気も制御できる。さらに向流
多段化により反応率を高めることができるので装置の小
形化が図れる。(3) When used as a reactor, the amount of retention in each stage can be selected arbitrarily, so the reaction temperature can be adjusted even during operation of the device.
Easy to control reaction time. Furthermore, the gas atmosphere can be controlled by using a reducing agent or an oxidizing agent as necessary. Furthermore, since the reaction rate can be increased by multi-staged countercurrent flow, the size of the apparatus can be reduced.
(4)空筒噴流室を冷却器として使用する場合は(2)
の逆作用で粉粒体から気流への熱交換が効率的に行われ
る。(4) When using the hollow jet chamber as a cooler (2)
Due to the opposite effect, heat exchange from the powder to the air stream is performed efficiently.
(5)従前の流動層装置に比べ開口比が大きく、かつ周
壁部にまとまった開口部がとれるので、多孔板方式に見
られるような目詰りの恐れがない。また開口部の圧力損
失も小さくなる。(5) Compared to conventional fluidized bed devices, the aperture ratio is larger and the peripheral wall has a large number of openings, so there is no risk of clogging as seen in perforated plate systems. Moreover, the pressure loss at the opening is also reduced.
(6)運転中に外部から開口部面積が変えられるので、
供給粒子の粒径変更または反応による粒径減少があって
も、それに対応した適正な流動条件(ガス景、流速)を
作り得る。(6) Since the opening area can be changed from the outside during operation,
Even if the particle size of the supplied particles changes or the particle size decreases due to reaction, appropriate flow conditions (gas landscape, flow rate) can be created to correspond to the change in particle size.
(7)この発明の装置によれば、高さ方向で多段に分割
されることにより、常に良好な噴流状態が作れるので一
段で懸念されるようなスラッギング現象や気泡発生の問
題は大lJに改善される。(7) According to the device of this invention, by being divided into multiple stages in the height direction, a good jet flow condition can always be created, so the problems of slagging and bubble generation, which are concerns with one stage, are improved to a large lJ. be done.
(8)各段とも噴流層を形成することができるので激し
い流動がおこり、かつ各段の粒子はすべて落下時に高速
の上昇気流に接触するので伝熱速度や反応速度が更に大
きくなる。(8) Since a spouted bed can be formed at each stage, intense flow occurs, and all the particles at each stage come into contact with high-speed upward air currents when falling, so that the heat transfer rate and reaction rate are further increased.
(9)滞留量調節により処理能力の増減に対する適用範
囲が大きい。(9) Adjustment of retention amount has a wide range of applications for increasing and decreasing processing capacity.
(10)低温処理では流動層底板を金属材料で、高温焼
成では耐火物で作ることにより、広範囲の温度に適用で
きる。(10) By making the fluidized bed bottom plate of a metal material for low-temperature processing and of refractory material for high-temperature firing, it can be applied to a wide range of temperatures.
(11)任意の段にバーナーが取付けられるので各段の
温度制御が容易である。(11) Since a burner can be attached to any stage, temperature control at each stage is easy.
第1図はこの発明の一実施例である多段噴流層装置の側
断面図、第2図は従来の技術による流動層装置の代表的
な例を示す図、第3図は第1図の流動層底板6、開口部
8、面積調節装置7の部分拡大図、第4図は第3図のA
−A’断面図である。
l・・・筒状器 2・・・粉粒体供給口3・・・粉
粒体排出口 4・・・気流導入口6〜6″・・・流動
層底板 7・・・開口部面積調節8〜8″・・・開口部
手続補正書、帥、
昭和61年 6月30日FIG. 1 is a side sectional view of a multi-stage spouted bed device which is an embodiment of the present invention, FIG. 2 is a diagram showing a typical example of a fluidized bed device according to the prior art, and FIG. A partially enlarged view of the layer bottom plate 6, opening 8, and area adjustment device 7, FIG. 4 is A in FIG. 3.
-A' sectional view. l...Cylindrical vessel 2...Powder supply port 3...Powder discharge port 4...Air flow inlet 6~6''...Fluidized bed bottom plate 7...Opening area adjustment 8~8″...Aperture procedure amendment, Marshal, June 30, 1986
Claims (9)
びに噴流層を形成して用いる装 置において、該筒状器の内周壁にそってそ の周壁と流動層底板との間に上昇気流を吹 上げるための面積可変構造の開口部を設け、該開口部よ
り下部に空筒状の噴流室を設け、該空筒噴流室とその直
下に設けた気流導入 口との接合部を介して粉粒体の排出口を設 け、かつ上記開口部より上部に粉粒体の供 給口と気流排出口を設けたことを特徴とす る周壁噴流式流動層を用いる多段噴流層装 置。(1) In a device that forms a fluidized bed and a spouted bed of updraft and powder in a vertical cylindrical container, the peripheral wall and the bottom plate of the fluidized bed are connected along the inner peripheral wall of the cylindrical container. An opening with a variable area structure for blowing upward airflow is provided in between, a hollow cylindrical jet chamber is provided below the opening, and the hollow jet chamber is connected to an air flow inlet provided directly below it. A multi-stage spouted bed device using a peripheral wall spout type fluidized bed, characterized in that a powder discharge port is provided through the opening, and a powder supply port and an air flow discharge port are provided above the opening.
いて複数段設けたことを特徴と する特許請求の範囲第1項に記載の周壁噴 流式流動層を用いる多段噴流層装置。(2) A multi-stage spouted bed device using a peripheral wall spouted fluidized bed according to claim 1, characterized in that a plurality of openings with a variable area structure are provided in the vertical direction within the cylindrical vessel.
形状の筒状器を有することを特 徴とする特許請求の範囲第1項又は第2項 に記載の周壁噴流式流動層を用いる多段噴 流層装置。(3) A multi-stage jet flow using a peripheral wall jet type fluidized bed according to claim 1 or 2, characterized in that the cylindrical container has a shape whose cross-sectional area differs in the vertical direction of the cylindrical container. Layer device.
口部に、筒状器の外側から面積 調節用の部材を出し入れすることにより、 開口部の面積を変えるようにした面積可変 構造を有することを特徴とする特許請求の 範囲第1項又は第2項に記載の周壁噴流式 流動層を用いる多段噴流層装置。(4) An area in which the area of the opening can be changed by inserting and removing an area adjustment member from the outside of the cylindrical vessel into the opening formed between the bottom plate of the fluidized bed and the inner peripheral wall of the cylindrical vessel. A multi-stage spouted bed device using a peripheral spouted fluidized bed according to claim 1 or 2, characterized in that it has a variable structure.
成される開口部において該流動 層底板を上下移動することにより開口部の 面積を変えるようにした面積可変構造を有 することを特徴とする特許請求の範囲第1 項又は第2項に記載の周壁噴流式流動層を 用いる多段噴流層装置。(5) It has a variable area structure in which the area of the opening formed between the fluidized bed bottom plate and the inner circumferential wall of the inverted cone-shaped cylindrical vessel is changed by moving the fluidized bed bottom plate up and down. A multi-stage spouted bed device using a peripheral spouted fluidized bed according to claim 1 or 2, characterized in that:
段設けたことを特徴とする特許 請求の範囲第1項から第3項の1つに記載 の周壁噴流式流動層を用いる多段噴流層装 置。(6) Using the peripheral wall spouted fluidized bed according to one of claims 1 to 3, characterized in that a plurality of powder supply ports are provided in the vertical direction of the cylindrical container. Multistage spouted bed device.
けたことを特徴とする特許請求 の範囲第1項から第3項の1つに記載の周 壁噴流式流動層を用いる多段噴流層装置。(7) A multi-stage spouted bed using a peripheral spouted fluidized bed according to one of claims 1 to 3, characterized in that the air flow inlet is provided in multiple stages in the vertical direction of the cylindrical container. Device.
とする特許請求の範囲第1、2、3、6又は7項の1つ
に記載の周壁噴流式 流動層を用いる多段噴流層装置。(8) Multi-stage using a peripheral wall spout type fluidized bed according to one of claims 1, 2, 3, 6, or 7, characterized in that the shape of the cylindrical vessel is cylindrical or prismatic. Spouted bed device.
特許請求の範囲第1、4又は5 項の1つに記載の周壁噴流式流動層を用い る多段噴流層装置。(9) A multi-stage spouted bed device using a peripheral spouted fluidized bed according to claim 1, wherein the fluidized bed bottom plate has a conical shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7923586A JPS62237939A (en) | 1986-04-08 | 1986-04-08 | Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7923586A JPS62237939A (en) | 1986-04-08 | 1986-04-08 | Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62237939A true JPS62237939A (en) | 1987-10-17 |
JPH0378131B2 JPH0378131B2 (en) | 1991-12-12 |
Family
ID=13684204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7923586A Granted JPS62237939A (en) | 1986-04-08 | 1986-04-08 | Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62237939A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU671368B2 (en) * | 1993-06-11 | 1996-08-22 | A. Ahlstrom Corporation | Method and apparatus for treating hot gases |
AU688812B2 (en) * | 1993-11-16 | 1998-03-19 | Comalco Aluminium Limited | Countercurrent gas-solid contacting |
JP2002018266A (en) * | 2000-05-01 | 2002-01-22 | Freunt Ind Co Ltd | Apparatus and method for fluidized bed granulating and coating |
JP2009161732A (en) * | 2007-12-11 | 2009-07-23 | Sumitomo Chemical Co Ltd | Spouted bed apparatus and polyolefin production method using the same |
CN102728181A (en) * | 2012-07-23 | 2012-10-17 | 东南大学 | Fluidized bed jetting adsorbent smoke demercuration device and method thereof |
WO2018135473A1 (en) * | 2017-01-19 | 2018-07-26 | 株式会社トクヤマ | Internal member, fluidized-bed-type reactor and trichlorosilane production method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS448228Y1 (en) * | 1966-11-19 | 1969-03-29 | ||
JPS498933U (en) * | 1972-04-26 | 1974-01-25 | ||
JPS6022273A (en) * | 1983-07-15 | 1985-02-04 | Toshiba Corp | Transaction device |
-
1986
- 1986-04-08 JP JP7923586A patent/JPS62237939A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS448228Y1 (en) * | 1966-11-19 | 1969-03-29 | ||
JPS498933U (en) * | 1972-04-26 | 1974-01-25 | ||
JPS6022273A (en) * | 1983-07-15 | 1985-02-04 | Toshiba Corp | Transaction device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU671368B2 (en) * | 1993-06-11 | 1996-08-22 | A. Ahlstrom Corporation | Method and apparatus for treating hot gases |
AU688812B2 (en) * | 1993-11-16 | 1998-03-19 | Comalco Aluminium Limited | Countercurrent gas-solid contacting |
JP2002018266A (en) * | 2000-05-01 | 2002-01-22 | Freunt Ind Co Ltd | Apparatus and method for fluidized bed granulating and coating |
JP2009161732A (en) * | 2007-12-11 | 2009-07-23 | Sumitomo Chemical Co Ltd | Spouted bed apparatus and polyolefin production method using the same |
CN102728181A (en) * | 2012-07-23 | 2012-10-17 | 东南大学 | Fluidized bed jetting adsorbent smoke demercuration device and method thereof |
CN102728181B (en) * | 2012-07-23 | 2014-05-07 | 东南大学 | Fluidized bed jetting adsorbent smoke demercuration device and method thereof |
WO2018135473A1 (en) * | 2017-01-19 | 2018-07-26 | 株式会社トクヤマ | Internal member, fluidized-bed-type reactor and trichlorosilane production method |
CN109414670A (en) * | 2017-01-19 | 2019-03-01 | 株式会社德山 | The manufacturing method of internal component, fluidized bed type reaction unit and trichlorosilane |
JPWO2018135473A1 (en) * | 2017-01-19 | 2019-11-07 | 株式会社トクヤマ | Internal, fluidized bed reactor and method for producing trichlorosilane |
Also Published As
Publication number | Publication date |
---|---|
JPH0378131B2 (en) | 1991-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2621118A (en) | Process for fluid bed operation | |
CA2047362C (en) | Process of cooling hot process gases | |
JP5095082B2 (en) | Method and equipment for transporting fine solids | |
EP1575700A1 (en) | Method and apparatus for heat treatment in a fluidised bed | |
JPH05248769A (en) | Method and apparatus for treating gas and particulate solids in a fluidized bed | |
JPS6352933B2 (en) | ||
CA1285761C (en) | Plant for manufacturing cement clinker | |
US3551532A (en) | Method of directly converting molten metal to powder having low oxygen content | |
US3735498A (en) | Method of and apparatus for fluidizing solid particles | |
JPH02243545A (en) | Method and device for manufacture of cement clinker from raw material metal | |
JPS62237939A (en) | Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed | |
WO2004056941A1 (en) | Method and plant for producing low-temperature coke | |
CN210023786U (en) | Device for producing spherical metal powder for 3D printing | |
EP0059757B1 (en) | Apparatus for continuously burning particles in air stream in a vertical furnace | |
JPH044013B2 (en) | ||
US3251650A (en) | Method and apparatus for the preparation of magnesium oxide by a spouting bed technique | |
JP2023131914A (en) | Combustion gas extraction probe and method for operating the same | |
JPH02283605A (en) | Continuous production method and apparatus for aluminum nitride powder | |
JPS6156177B2 (en) | ||
JPH0159519B2 (en) | ||
JPS6022273B2 (en) | Continuous air flow firing furnace for powder and granular materials | |
JP2577697Y2 (en) | Spouted bed granulator | |
JPH01159039A (en) | Air flow powder mixing method | |
JPH031256B2 (en) | ||
JPS6022274B2 (en) | Continuous air flow firing furnace for powder and granular materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |