[go: up one dir, main page]

JPS6223773B2 - - Google Patents

Info

Publication number
JPS6223773B2
JPS6223773B2 JP54009085A JP908579A JPS6223773B2 JP S6223773 B2 JPS6223773 B2 JP S6223773B2 JP 54009085 A JP54009085 A JP 54009085A JP 908579 A JP908579 A JP 908579A JP S6223773 B2 JPS6223773 B2 JP S6223773B2
Authority
JP
Japan
Prior art keywords
cation exchange
membrane
layer
group
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54009085A
Other languages
Japanese (ja)
Other versions
JPS55102629A (en
Inventor
Toshikatsu Sada
Akihiko Nakahara
Masaki Shiromizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP908579A priority Critical patent/JPS55102629A/en
Publication of JPS55102629A publication Critical patent/JPS55102629A/en
Publication of JPS6223773B2 publication Critical patent/JPS6223773B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酸化雰囲気で使用するに適した新規な
機械的に優れた含弗素系陽イオン交換膜に関す
る。詳しくは、架橋構造の存在しない陽イオン交
換樹脂層の片面に架橋構造の陽イオン交換基を有
する樹脂層が、他面に該架橋構造の陽イオン交換
基を有する層よりも弱酸性の陽イオン交換基を有
する樹脂層がそれぞれ存在する含弗素系陽イオン
交換樹脂膜に関する。 イオン交換膜は今日各方面に利用され、その適
用範囲も広い。一般に炭化水素系のイオン交換樹
脂膜は還元雰囲気には極めて安定であるが、酸化
雰囲気では短時間で劣化してしまう。特に近年酸
化性雰囲気においてイオン交換膜を用いる場合が
増えている。例えばアルカリ金属塩水溶液の電気
分解、有機電解反応の隔膜、廃水の電解処理、金
属イオンの酸化処理、還元処理更には燃料電池の
隔膜等への利用が多い。また通常の透析、電気透
析等においても膜面、膜内に巨大有機イオンが付
着したときには膜をイオンが透過するときのイオ
ンの抵抗が増大し且つ透過量も減少してくる。こ
のような場合に膜の性能を回復するために酸化剤
による処理、加熱処理をして膜に有害な有機質を
除去することが有効でありイオン交換膜自体に耐
酸化性、耐熱性があることが望ましい。 他方、アルカリ金属塩水溶液の電気分解によつ
てアルカリ金属水酸化物、ハロゲンガス、酸素ガ
ス、水素等を製造する所謂アルカリ金属塩のイオ
ン交換膜電解が工業的に技術を確立しつつある。
これらの中心となるのはイオン交換膜であり、イ
オン交換膜の性能の優劣によつてプロセスの優劣
が決まるともいえる。それには出来るだけ膜の電
気抵抗が低く、水酸イオンの膜透過漏洩を阻止す
る能力の大きい膜が要求されてきた。そのために
数多くの研究、試みがされてきている。水酸イオ
ンの膜を通しての透過漏洩を少なくするには、膜
の固定イオン濃度を高めることが必要であるが、
膜の固定イオン濃度を高くすると必然的に膜の電
気抵抗も高騰する。また膜の厚みもほぼ比例的に
電気抵抗に関与する。そのために固定イオン濃度
の高い層を膜表面に薄層状に存在させることが今
日行われている。しかし、一般に固定イオン濃度
を高くするために弱酸性の陽イオン交換基を膜表
面に存在させることによつて、水酸イオンの漏洩
を阻止することは出来るが、同時に陽イオン特に
多価陽イオンの該層内における移動が極めて困難
となり、必然的に該層内にカルシウム、マグネシ
ウム、ストロンチウム等々の多価イオンが蓄積
し、さらに膜と接触するアルカリ金属水酸化物の
水酸イオンと反応して水酸化物の沈澱を膜内に形
成してしまい、ひいては膜の高い性能を長期に亘
つて持続することが困難となる。したがつて、上
記膜を用いて長期に高い性能を維持するために
は、高度に精製したアルカリ金属塩水溶液を用い
なければならない。更にこれらの膜は一般に共有
結合性の架橋構造が存在しないために、機械的強
度において問題を生じ、また膜の外液濃度、温度
等による伸縮が大きいこと、そのために大面積の
電解槽で膜を用いるときしわが発生し、ひいては
電解電圧が上昇する結果となる。更に電解中及び
取扱い中において膜にピンホールが発生し易いこ
と等の膜としては致命的な欠陥を示すことがあ
る。 本発明者等は既に膜全体に架橋構造を有する陽
イオン交換膜の製造方法(特願昭52−55510号)
を提案しているが、この方法で得られる陽イオン
交換膜は膜全体に架橋構造を有するために膜の電
気抵抗が若干高かつた。また特開昭53−92394号
において三層以上の異なるイオン交換樹脂層を有
する膜、即ち表面に平行な三つ以上の層から成つ
ていて一方の端の層にスルホン酸基が存在し他の
層のうち少くとも一つの層にカルボン酸基が存在
する架橋構造を有しない陽イオン交換膜が提案さ
れている。この膜はカルシウムイオンを1ppm以
上含むアルカリ金属塩水溶液を陽極液に用いて電
解を行つた場合、カルシウム分の膜内沈析のため
数週間乃至数ケ月間程度の連続電解により槽電圧
の急激な増加及び電流効率の著じるしい低下を来
たす。 また工業的アルカリ金属塩電解プロセスにおい
て要求されるいま一つの要件は、イオン交換膜法
電解によつて塩の分解率を大きくし更に高濃度の
苛性アルカリを高能率に取得することである。と
ころが、従来開発されている種々の陽イオン交換
膜にあつては、その多くが非架橋性であるため膜
の膨潤や収縮を生じて電流効率の低下を来たすほ
か、一方の面で膨潤し伸びる傾向を示し、他方の
面ではむしろ縮む傾向を生ずるなど使用環境と膜
の設計がマツチしていない場合があり、このため
膜内にストレスを生じ、しわを発生させる結果と
なつていた。 上記の如き種々の問題を解決すべく、本発明者
らは鋭意研究を重ねた結果、カルシウム等の塩基
性雰囲気下に沈澱を生ずるイオンに対して耐久性
を有し、またアルカリ金属塩の分解率を大きくし
且つ高濃度の苛性アルカリを取得するとき高い電
流効率で、しかもしわ等の変形を生じ難い陽イオ
ン交換膜を開発したものである。即ち、本発明の
陽イオン交換膜はアルカリ金属塩水溶液と接触す
る膜面に架橋構造を有する含弗素系の陽イオン交
換樹脂薄層()を存在させ、またアルカリ金属
水酸化物と接触する膜面には弱酸性の陽イオン交
換基を有する樹脂層()が存在し、両者の中間
部に非架橋性のイオン交換樹脂を存在させること
によつて、両面におけるそれぞれ環境の相違によ
り生ずる膜内ストレスの緩衝を図る。かくしてア
ルカリ金属塩水溶液を高度に分解(脱塩ともい
う)し、低濃度域の該水溶液と接することによる
膜の膨潤を一部抑制し、また高濃度アルカリ金属
水酸化物と接する面での膜の収縮を一部抑制し、
比較的均質の固定イオン濃度に保つことにより、
電解時の電流効率の低下を防ぎ、しかも予定され
た膜抵抗値を常に保てるのである。更に本発明は
アルカリ金属塩水溶液の濃度の如何にかかわら
ず、緻密な膜表面を有するためカルシウム等の多
価イオンの侵入を阻止する性質を有し、これらの
イオンによる膜の抵抗の上昇など劣化に対する耐
久性が極めて大きいという特徴を有する。 以下、本発明の形態を更に具体的に説明する。 本発明の含弗素系陽イオン交換膜は膜の片面よ
り共有結合性の架橋構造を有する陽イオン交換層
()、共有結合性の架橋構造を有さない陽イオン
交換層()及び層()の陽イオン交換基より
も弱酸性の陽イオン交換基を有する層()の順
序で層状に存在するものである。各層の構成要件
として、層()は共有結合性の架橋構造を有
し、その架橋度は層()を構成する高分子共重
合体中に含まれる含弗素ポリビニル単量の全単量
体混合物に対する重量%で2〜50%が好ましい。
この数値より小さい場合には本発明の膜の効果が
失われまた高い場合には膜の電気抵抗が大巾に増
加する。また層()の厚みは実質上膜の電気抵
抗が増大しない範囲で望ましく、本発明の陽イオ
ン交換膜の全厚みに対して1/3以下3000Å以上の
範囲であればよく、3000Å以下では架橋構造の作
用効果が弱く、また全厚みに対して1/3以上では
膜の電気抵抗の高騰を招く。さらにまた層()
中に存在する陽イオン交換基は溶液のPHに膜性質
の依存性が出来るだけ小さいものが好ましく、一
般にスルホン酸基、リン酸基、カルボン酸基等の
比較的解離度の大きい陽イオン交換基であり、特
にスルホン酸基でパーフルオロスルホン酸基(−
CF2SO2 -または
The present invention relates to a novel mechanically superior fluorine-containing cation exchange membrane suitable for use in an oxidizing atmosphere. Specifically, a resin layer having a crosslinked cation exchange group on one side of a cation exchange resin layer without a crosslinked structure has weakly acidic cations than a layer having a crosslinked cation exchange group on the other side. The present invention relates to a fluorine-containing cation exchange resin membrane in which each resin layer has an exchange group. Ion exchange membranes are used in various fields today and have a wide range of applications. Generally, hydrocarbon-based ion exchange resin membranes are extremely stable in a reducing atmosphere, but deteriorate in a short period of time in an oxidizing atmosphere. Particularly in recent years, ion exchange membranes have been increasingly used in oxidizing atmospheres. For example, it is often used for electrolysis of aqueous alkali metal salt solutions, diaphragms for organic electrolytic reactions, electrolytic treatment of waste water, oxidation treatment and reduction treatment of metal ions, and diaphragms for fuel cells. Furthermore, in ordinary dialysis, electrodialysis, etc., when giant organic ions adhere to the membrane surface or inside the membrane, the resistance of the ions when they permeate through the membrane increases and the amount of permeation decreases. In such cases, in order to restore the performance of the membrane, it is effective to remove organic substances that are harmful to the membrane by treatment with an oxidizing agent or heat treatment, and the ion exchange membrane itself must have oxidation resistance and heat resistance. is desirable. On the other hand, so-called ion exchange membrane electrolysis of alkali metal salts, which produces alkali metal hydroxides, halogen gas, oxygen gas, hydrogen, etc. by electrolysis of aqueous solutions of alkali metal salts, is becoming an industrially established technology.
The ion exchange membrane plays a central role in these processes, and it can be said that the quality of the process is determined by the performance of the ion exchange membrane. This has required a membrane with as low electrical resistance as possible and with a high ability to prevent hydroxide ions from leaking through the membrane. To this end, numerous studies and attempts have been made. In order to reduce the permeation leakage of hydroxide ions through the membrane, it is necessary to increase the fixed ion concentration in the membrane.
Increasing the fixed ion concentration in the membrane inevitably increases the electrical resistance of the membrane. Furthermore, the thickness of the film also affects the electrical resistance almost proportionally. To this end, it is currently practiced to provide a thin layer with a high concentration of fixed ions on the membrane surface. However, in general, it is possible to prevent the leakage of hydroxide ions by providing a weakly acidic cation exchange group on the membrane surface to increase the fixed ion concentration, but at the same time, cations, especially polyvalent cations, can be prevented from leaking. Movement within the layer becomes extremely difficult, and multivalent ions such as calcium, magnesium, and strontium inevitably accumulate within the layer, and further react with hydroxide ions of alkali metal hydroxides that come into contact with the membrane. Hydroxide precipitates are formed within the membrane, making it difficult to maintain high performance of the membrane over a long period of time. Therefore, in order to maintain high performance over a long period of time using the above membrane, a highly purified aqueous alkali metal salt solution must be used. Furthermore, these membranes generally do not have a covalent cross-linked structure, which causes problems in mechanical strength, and the membrane expands and contracts significantly due to external liquid concentration, temperature, etc. When using this method, wrinkles occur, which in turn results in an increase in the electrolytic voltage. Furthermore, during electrolysis and handling, the membrane may exhibit fatal defects such as the tendency to generate pinholes in the membrane. The present inventors have already developed a method for manufacturing a cation exchange membrane having a cross-linked structure throughout the membrane (Japanese Patent Application No. 55510/1982).
However, since the cation exchange membrane obtained by this method has a crosslinked structure throughout the membrane, the electrical resistance of the membrane is slightly high. Furthermore, JP-A No. 53-92394 discloses a membrane having three or more different ion exchange resin layers, that is, a membrane consisting of three or more layers parallel to the surface, with sulfonic acid groups present in one end layer and the other. A cation exchange membrane without a crosslinked structure in which a carboxylic acid group is present in at least one of the layers has been proposed. When electrolysis is performed using an aqueous alkali metal salt solution containing 1 ppm or more of calcium ions as the anolyte, this membrane undergoes a rapid increase in cell voltage due to precipitation of calcium within the membrane due to continuous electrolysis for several weeks to several months. This results in an increase in current efficiency and a significant decrease in current efficiency. Another requirement in the industrial alkali metal salt electrolysis process is to increase the salt decomposition rate by ion exchange membrane electrolysis and to obtain highly concentrated caustic alkali with high efficiency. However, many of the various cation exchange membranes that have been developed so far are non-crosslinked, which causes the membrane to swell and contract, resulting in a decrease in current efficiency. In some cases, the design of the membrane does not match the environment in which it is used, such as showing a tendency to shrink on the one hand, and a tendency on the other hand to shrink, resulting in stress within the film and the formation of wrinkles. In order to solve the various problems mentioned above, the present inventors have conducted extensive research and found that the present invention has durability against ions such as calcium that precipitate in a basic atmosphere, and also has resistance to the decomposition of alkali metal salts. We have developed a cation exchange membrane that has a high current efficiency when obtaining high concentration caustic alkali, and is less likely to cause deformation such as wrinkling. That is, the cation exchange membrane of the present invention has a thin layer of a fluorine-containing cation exchange resin having a crosslinked structure on the surface of the membrane that comes into contact with an aqueous alkali metal salt solution, and also has a thin layer of a fluorine-containing cation exchange resin that comes into contact with an alkali metal hydroxide. A resin layer () having a weakly acidic cation exchange group is present on the surface, and a non-crosslinking ion exchange resin is present in the middle between the two, thereby reducing the internal membrane resistance caused by differences in the environments on both surfaces. Try to buffer stress. In this way, the alkali metal salt aqueous solution is highly decomposed (also called desalination), and the swelling of the membrane due to contact with the aqueous solution in the low concentration range is partially suppressed, and the membrane on the surface in contact with the high concentration alkali metal hydroxide is Partially suppresses the contraction of
By maintaining a relatively homogeneous fixed ion concentration,
This prevents a decrease in current efficiency during electrolysis, and can always maintain a predetermined membrane resistance value. Furthermore, regardless of the concentration of the alkali metal salt aqueous solution, the present invention has a dense membrane surface that prevents the entry of multivalent ions such as calcium, and these ions can cause deterioration such as an increase in membrane resistance. It is characterized by extremely high durability. Hereinafter, the embodiments of the present invention will be explained in more detail. The fluorine-containing cation exchange membrane of the present invention includes a cation exchange layer () having a covalent crosslinked structure from one side of the membrane, a cation exchange layer () having no covalent crosslinked structure, and a cation exchange layer () having no covalent crosslinked structure. The cation exchange group is present in a layered manner in the order of layers () having a cation exchange group that is more weakly acidic than the cation exchange group. As a constituent requirement of each layer, the layer () has a covalent crosslinked structure, and the degree of crosslinking is determined by the total monomer mixture of fluorine-containing polyvinyl monomers contained in the polymer copolymer constituting the layer (). It is preferably 2 to 50% by weight.
If the value is smaller than this value, the effect of the film of the present invention is lost, and if it is higher than this value, the electrical resistance of the film increases significantly. The thickness of the layer () is desirably within a range that does not substantially increase the electrical resistance of the membrane, and may be within the range of 1/3 or more of 3000 Å or more with respect to the total thickness of the cation exchange membrane of the present invention, and if it is less than 3000 Å, the cross-linking The effect of the structure is weak, and if the thickness exceeds 1/3 of the total thickness, the electrical resistance of the film increases. Yet another layer ()
The cation exchange group present in the cation exchange group is preferably one whose membrane properties have as little dependence as possible on the pH of the solution, and is generally a cation exchange group with a relatively high degree of dissociation such as a sulfonic acid group, a phosphoric acid group, or a carboxylic acid group. In particular, the sulfonic acid group is a perfluorosulfonic acid group (−
CF2SO2 - or

【式】)が望ましい。 次に層()は両側に存在する層()及び
()を支持することが主な役割であり、その外
に層()への多価イオンの侵入を防止する若干
の効果を有する。このため層()の厚みは層
()及び()の厚みにも依存するが、本発明
の陽イオン交換膜の全厚みの1/10以上1未満の範
囲で、本発明の陽イオン交換膜の電気抵抗が余り
増加せず且つ層()及び()を薄くした場合
においても本発明の陽イオン交換膜の機械的強度
が充分保たれるような厚みにすればよい。また層
()のイオン交換基としては層()のイオン
交換基よりも比較的強酸性のものであればよく、
一般にスルホン酸基、パーフルオロスルホン酸
基、カルボン酸基が好ましい。さらにまた層
()の交換容量は膜の電気抵抗をさげるために
高い方が好ましく、一般に0.5〜5.0ミリ当量/グ
ラム乾燥膜の範囲である。 次に層()は層()に存在する陽イオン交
換基より弱酸性の陽イオン交換基であれば特に制
限はない。例えば層()に存在する陽イオン交
換基がスルホン酸の場合には、層()に存在す
る陽イオン交換基をカルボン酸、解離しうる水素
原子を有する酸アミド基、フエノール性水酸基、
リン酸基、亜リン酸基、
[Formula]) is desirable. Next, the main role of layer () is to support layers () and () present on both sides, and in addition, it has a certain effect of preventing multivalent ions from entering layer (). Therefore, although the thickness of layer () depends on the thickness of layers () and (), it is within the range of 1/10 or more and less than 1/1 of the total thickness of the cation exchange membrane of the present invention. The thickness may be such that the electrical resistance of the cation exchange membrane of the present invention does not increase significantly and the mechanical strength of the cation exchange membrane of the present invention is sufficiently maintained even when the layers () and () are made thin. In addition, the ion exchange group in the layer () may be one that is relatively more acidic than the ion exchange group in the layer ().
Generally, sulfonic acid groups, perfluorosulfonic acid groups, and carboxylic acid groups are preferred. Furthermore, the exchange capacity of the layer () is preferably high in order to reduce the electrical resistance of the membrane, and is generally in the range of 0.5 to 5.0 milliequivalents/gram dry membrane. Next, layer () is not particularly limited as long as it has a cation exchange group that is weaker acidic than the cation exchange group present in layer (). For example, when the cation exchange group present in the layer () is a sulfonic acid, the cation exchange group present in the layer () is a carboxylic acid, an acid amide group having a dissociable hydrogen atom, a phenolic hydroxyl group,
phosphoric acid group, phosphorous acid group,

【式】等にし、ま た層()に−CF2COOHが存在するときには層
()に存在する陽イオン交換基を−
CH2COOH、
[Formula] etc., and when −CF 2 COOH is present in the layer (), the cation exchange group present in the layer () is −
CH2COOH ,

【式】【formula】

【式】などにする必要があ る。一般に酸強度は重合体に結合したイオン交換
基であるため具体的にPKaを規定して順序をつけ
るここは出来ないが、そのイオン交換性の基を結
合した類似構造の単量体化合物のPKaを大有機化
学、インターナシヨナルクリテイカルテーブル、
化学便覧等によつて比較して決めることが出来
る。なお層()の厚みは本発明の膜の全厚みに
対して1/3以下200Å以上の範囲内で出来るだけ電
気抵抗の上昇を招かず、固定イオン濃度の高いも
のであることが必要である。この層()の実質
上の交換容量は層()と同一であつてもいいが
一般に0.3〜2.5ミリ当量/グラム乾燥膜の間にあ
ることが望ましい。さらに層()は共有結合性
の架橋構造が存在しないことが望ましく、架橋構
造があつても出来るだけ低い方が望ましい。 本発明の膜では樹脂成分のみから出来た膜を用
いてもよいが、工業的に大面積の膜を用いるとき
には補強材を用いることが望ましい。補強材とし
ては多孔性基材が用いられるが、耐酸化性、耐熱
性を有する陽イオン交換膜という観点からする
と、同様に耐酸化性、耐熱性を有する多孔性基材
が必要であり、例えばポリテトラフルオロエチレ
ンの繊維のようにエマルジヨン紡糸されるもの、
ポリテトラフルオロエチレンとエチレンの共重合
物のように熔融成型可能な高分子物で出来た繊
維、或は含ふつ素系ポリマーで出来た限外濾過膜
のような微多孔膜、フイブリル化した含ふつ素系
ポリマー、炭素繊維で出来た布等、平織布、メリ
ヤス織等の編物等で目的に応じて各種目の荒さの
違つたものが用いれらる。好ましくはポリテトラ
フルオロエチレン製の長繊維による平織布で糸の
大きさとしては40デニール〜400デニールのもの
で織つたもので膜の電気抵抗の増大に影響が出来
るだけ少ないものが望ましい。この多孔性基材は
陽イオン交換膜の一方の部分に偏在していてもよ
く、或はその中間にあつてもよい。勿論、多孔性
基材とイオン交換樹脂成分との接着性を向上する
ために多孔性基材にエツチング、部分重合物と親
和性の良い化合物をグラフト重合処理等した場合
に特に好結果がもたらされるものである。また膜
の厚みは0.05mmから2mmが好ましい。 本発明の陽イオン交換膜の製造方法としては、 (A) 層()、層()、層()の構成要件を満
足する三枚の高分子膜状物を加熱、加圧下に融
着する方法。 (B) 層()、層()又は層()、層()の
構成要件を満足する一枚の二重構造を有する高
分子膜状物の片面に層()又は層()を(A)
の方法以外の例えば公知の化学反応を用いて層
()のイオン交換基及び/又はイオン交換容
量を層()の構成要件に適合するように変化
する方法、又層()の片面に層()の構成
要件に適合するような含弗素ビニル単量体、含
弗素ポリビニル単量体を1種以上及び/又はこ
れ等の部分の重合物を存在させ加熱、電離性放
射線、紫外線等のエネルギーを用いて重合又は
グラフト重合することによりなる方法。 (C) 層()及び層()の構成要件を満足する
2枚の高分子膜状物の間に層()の構成要件
に適合するような含弗素ビニル単量体、含弗素
ポリビニル単量体を1種以上及び/又はこれ等
の部分重合物を存在させ重合又はグラフト重合
することにより層()を生成することよりな
る方法。 (D) 層()の構成要件を満足する一枚の高分子
膜状物の両面にそれぞれ層()、()の構成
要件を満足する層を公知の化学反応を用いて、
イオン交換基及び/又はイオン交換容量を変化
させること又は含弗素ビニル単量体、含弗素ポ
リビニル単量体(後述)を1種以上及び/又は
これ等の部分重合物を存在させ、重合又はグラ
フト重合することよりなる方法。 等があるが、これ等の方法のうち(A)の方法は三
枚の高分子膜状物をラミネートするため、場合に
よつては融着が充分進行しないことがある。この
ため本発明を実施する場合好ましい方法としては
(B),(C),(D)である。 本発明の陽イオン交換膜を製造する際に含弗素
ビニル単量体及び含弗素ポリビニル単量体又高分
子膜状物の原料である含弗素ビニル単量体は下記
のものが好ましい。 (1)一般式でCFX=CYZ〔ここでX,Yは−
H,−F,−Cl,−CnF8o+1(n=1〜5)、Zは−
H,−F,−Cl,−O−CnF2o+1(n=1〜5)〕で
表わされる一群の含弗素ビニル単量体、(2)該含弗
素ビニル単量体(1)と共重合可能であり且つ陽イオ
ン交換基、陽イオン交換基を容易に導入、或は陽
イオン交換基に容易に変換できる官能基を有する
含弗素ビニル単量体として、陽イオン交換基或は
該官能基に対してα位の炭素にふつ素原子が少な
くとも結合した含弗素ビニル単量体、好ましくは
パーフルオロ系のビニル単量体である。 即ち、上記(2)のビニル単量体としては
It is necessary to use [expression] etc. Generally, the acid strength is determined by the ion exchange group bonded to the polymer, so it is not possible to specifically define and order the PKa, but the PKa of monomer compounds with similar structures bonded to the ion exchange group is not possible. Large Organic Chemistry, International Critical Table,
It can be determined by comparing with chemical handbooks, etc. The thickness of the layer () must be within the range of 1/3 or more or more than 200 Å of the total thickness of the film of the present invention, so as not to cause an increase in electrical resistance as much as possible and to have a high fixed ion concentration. . The effective exchange capacity of this layer () may be the same as layer (), but it is generally desirable to be between 0.3 and 2.5 meq/g dry membrane. Further, it is desirable that the layer () has no covalent crosslinked structure, and even if there is a crosslinked structure, it is desirable that the amount of crosslinked structure is as low as possible. In the membrane of the present invention, a membrane made only of resin components may be used, but when a membrane with a large area is used industrially, it is desirable to use a reinforcing material. A porous base material is used as a reinforcing material, but from the viewpoint of a cation exchange membrane that has oxidation resistance and heat resistance, a porous base material that also has oxidation resistance and heat resistance is necessary. Emulsion-spun products such as polytetrafluoroethylene fibers,
Fibers made of melt-moldable polymers such as copolymers of polytetrafluoroethylene and ethylene, microporous membranes such as ultrafiltration membranes made of fluorine-containing polymers, and fibrillated fibers. Cloths made of fluorine-based polymers, carbon fibers, and knitted fabrics such as plain woven fabrics and stockinette woven fabrics are used depending on the purpose. Preferably, it is a plain woven fabric made of long fibers made of polytetrafluoroethylene, with a yarn size of 40 to 400 deniers, which has as little effect on the increase in electrical resistance of the membrane as possible. This porous base material may be unevenly distributed in one part of the cation exchange membrane, or may be located somewhere in between. Of course, particularly good results are obtained when the porous base material is subjected to etching or graft polymerization treatment with a compound that has good affinity with the partially polymerized product in order to improve the adhesion between the porous base material and the ion exchange resin component. It is something. Further, the thickness of the film is preferably 0.05 mm to 2 mm. The method for manufacturing the cation exchange membrane of the present invention includes: (A) fusing three polymer membranes that satisfy the structural requirements of layer (), layer (), and layer () under heating and pressure; Method. (B) Layer () or layer () (A )
Methods other than methods of changing the ion exchange groups and/or ion exchange capacity of the layer (), for example using known chemical reactions, to suit the constituent requirements of the layer (); ) In the presence of one or more types of fluorine-containing vinyl monomers, fluorine-containing polyvinyl monomers, and/or polymers of these parts, energy such as heating, ionizing radiation, and ultraviolet rays is applied. A method of polymerization or graft polymerization using (C) Layer () and a fluorine-containing vinyl monomer or fluorine-containing polyvinyl monomer that satisfies the constituent requirements of layer () between two polymer membranes that meet the constituent requirements of layer (). A method comprising producing the layer by polymerization or graft polymerization in the presence of one or more types of polymers and/or partial polymers thereof. (D) Layer (), which satisfies the constituent requirements of layer (), is formed on both sides of a single polymeric film-like material that satisfies the constituent requirements of layer (), using a known chemical reaction.
Polymerization or grafting by changing the ion exchange group and/or ion exchange capacity, or by adding one or more types of fluorine-containing vinyl monomers, fluorine-containing polyvinyl monomers (described below), and/or partial polymers thereof. A method consisting of polymerization. However, among these methods, method (A) involves laminating three polymer membranes, so in some cases, the fusion may not proceed sufficiently. For this reason, the preferred method for carrying out the present invention is
(B), (C), and (D). When producing the cation exchange membrane of the present invention, the following fluorine-containing vinyl monomers, fluorine-containing polyvinyl monomers, and fluorine-containing vinyl monomers that are raw materials for polymer membranes are preferred. (1) In the general formula, CFX=CYZ [where X and Y are -
H, −F, −Cl, −CnF 8o+1 (n=1 to 5), Z is −
A group of fluorine-containing vinyl monomers represented by H, -F, -Cl, -O-CnF 2o+1 (n = 1 to 5)], (2) in combination with the fluorine-containing vinyl monomer (1); As a fluorine-containing vinyl monomer that is polymerizable and has a cation exchange group, a functional group that can be easily introduced with a cation exchange group, or that can be easily converted into a cation exchange group, A fluorine-containing vinyl monomer in which at least a fluorine atom is bonded to the carbon at the α-position relative to the group, preferably a perfluoro vinyl monomer. That is, as the vinyl monomer in (2) above,

【式】O=N−A−B、[Formula] O=N-A-B,

【式】な どがある。ここでDは−CF3,−C2F5などのうち
のいずれか一種を示す。Aは一般的に −X−Y−Z−,−X−Z−Y−,−Z−X−Y
−,−Z−Y−X−,−Y−X−Z−,−Y−Z−
X− で表わされる。この式中 Xは(−OCFX)−l,(−CFX)−l, 〔−O(−CFX)−l〕−n, Yは(−CFX)−o,(−O)−p,(−S)−p, Zは
[Formula] etc. Here, D represents one of -CF3 , -C2F5 , etc. A generally represents -X-Y-Z-, -X-Z-Y-, -Z-X-Y
-, -Z-Y-X-, -Y-X-Z-, -Y-Z-
Represented by X-. In this formula, X is (-OCFX) -l , (-CFX) -l , [-O(-CFX) -l ] -n , Y is (-CFX) -o , (-O) -p , (- S) − p , Z is

【式】【formula】

【式】(パラ位以 外でもよい。)であり、l,m,nは0または1
〜10の正の整数、pは0または1、XはF,
Cl,H,−CF3,−C2F5などのうちのいずれか一種
以上、X′はF,−CF3,C2F5のうちのいずれか一
種以上を示す。Bは
[Formula] (may be in positions other than para), where l, m, and n are 0 or 1
~10 positive integer, p is 0 or 1, X is F,
One or more of Cl, H, -CF3 , -C2F5 , etc., and X' represents one or more of F, -CF3 , C2F5 . B is

【式】−PE2,− E,−COE,−CN,[Formula] −PE 2 , − E, −COE, −CN,

【式】【formula】

【式】EはOM,OR1,ハロゲン,OH, NR1R2(Mは金属イオン、有機陽イオンのうちの
いずれか一種以上;R1,R2は水素、金属イオ
ン、有機陽イオン、炭素数1から20までの飽和、
不飽和のアルキル基、脂環基、芳香族基、複素環
基)を示す。 更にこれを具体的に若干例示すると下記の通り
である。
[Formula] E is OM, OR 1 , halogen, OH, NR 1 R 2 (M is one or more of metal ions and organic cations; R 1 and R 2 are hydrogen, metal ions, organic cations, Saturation with carbon numbers 1 to 20,
(unsaturated alkyl group, alicyclic group, aromatic group, heterocyclic group). Further specific examples of this are as follows.

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】 【式】【formula】

【式】 O=N(−CF2)−oCOE,O=C(−CF2)−oCOE, O=N(−CF2)−oSO2E,O=C(−CF2)−o
SO2E,
[Formula] O=N(-CF 2 )- o COE, O=C(-CF 2 )- o COE, O=N(-CF 2 )- o SO 2 E, O=C(-CF 2 )- o
SO 2 E,

【式】【formula】 【式】【formula】

【式】【formula】

【式】【formula】 【式】【formula】

【式】【formula】

【式】【formula】 【式】【formula】

【式】【formula】

【式】【formula】 【式】【formula】

【式】 (ベンゼン環の置換基の位置はパラ位に限定さ
れない。)
[Formula] (The position of the substituent on the benzene ring is not limited to the para position.)

【式】【formula】 【式】【formula】

【式】【formula】

【式】 又層()において架橋構造を形成するために
含弗素ポリビニル化合物(3)例えばCFX=CX′−O
−A−O−CX′=CFXが用いられる。具体的な例
としてはCF2=CFO(−CF2)−oOCF=CF2(nは
2〜24の正の整数)が用いられるのが一般的であ
るが、その他CFX=CX′−A−X′C=CFXなる一
般式を有するもの、具体的にはCF2=CF(−CF2
)−oCF=CF2などの含弗素化合物望ましくはパー
フルオロ化合物が用いられる。ここでX,X′,
Aは前に記載した通りである。 本発明の陽イオン交換膜の製造方法の代表的な
若干の具体例について説明する。テトラフルオロ
エチレンとパーフルオロ(3,6−ジオキサ−4
−メチル−7−オクテンスルホニルフルオライ
ド)との共重合体でスルホニルフルオライド基を
加水分解した時の交換容量が0.91ミリ当量/グラ
ム乾燥膜(H+型)を有する0.8mmのフイルム、及
びこれと同じ成分からなる共重合体で加水分解し
た時の交換容量が0.87ミリ当量/グラム乾燥膜
(H+型)に相当するスルホニルフルオライド基を
有する0.4mmのフイルムをさらにエチレンジアミ
ンと反応させてスルホニルフルオライド基をスル
ホン酸アミド基に変換したもの、これ等二枚のフ
イルムの間にポリテトラフルオロエチレン製のタ
テ・ヨコの打込み本数60本(100デニールの糸)
の平織布をはさみ加熱融着して二層構造即ち一方
の層にスルホニルフルオライド基及び他方の層に
スルホン酸より弱酸性であるスルホン酸アミド基
が存在する陽イオン交換膜前駆体を得た。次いで
パーフルオロ{ペンタメチレン−ジ−(ビニルエ
ーテル)}とパーフルオロ(3,6−ジオキサ−
4−メチル−7−オクテンスルホニルフルオライ
ド)及びパーフルオロ(ピロピルビニルエーテ
ル)のそれぞれ25、47、28%(重量)の混合物を
部分的に重合した粘稠な部分重合物を前記した二
層構造を有する陽イオン交換膜のスルホニルフル
オライド基が存在する側に均一に塗布した。さら
に塗布面に紫外線を照射して重合を完結させた。
なお別途に同じ部分重合物を紫外線により重合さ
せたものを加水分解し、交換容量を測定したとこ
ろ1.06ミリ当量/グラム乾燥膜(H+型)であつ
た。また塗布前後の厚さの差から塗布層の厚みを
求めたところ約0.4mmであつた。このようにして
得られた三層構造を有する陽イオン交換膜前駆体
を加水分解して本発明の膜を得た。 他の方法として、テトラフルオロエチレンとパ
ーフルオロ(3,6−ジオキサ−4−メチル−7
−オクテンスルホニルフルオライド)との共重合
体よりなり、加水分解したときの交換容量が0.83
ミリ当量/グラム乾燥膜(H+型)である0.1mmと
0.05mmのフイルム間に前記したポリテトラフルオ
ロエチレン製の平織布をはさみ加熱融着して一体
化した後、加水分解して一層構造を有する陽イオ
ン交換膜とした。次いで得られた膜の片面を五塩
化リンと反応させ、片面より10ミクロンの層内に
存在するスルホン酸基をスルホニルクロライド基
に変換した。さらにn−ブタノール中で加温下に
スルホニルクロライド基を空気酸化することによ
り、スルホニルクロライド基をカルボン酸基に変
換した。このようにして得られた二層構造を有す
る陽イオン交換膜のスルホン酸基が存在する側に
前記した部分重合物を塗布し紫外線を照射するこ
とにより重合を完結させ、三層構造を有する陽イ
オン交換膜前駆体とした。さらに加水分解するこ
とにより本発明の三層構造を有する陽イオン交換
膜を得た。 本発明の陽イオン交換膜は薄層状であるが共有
結合性の架橋構造が膜内に導入されたために、膜
の機械的強度が著しく改善される。一般に特に膜
の電気抵抗を低く保つために膜の交換容量を増せ
ば、膜の機械的強度は弱くなつてくる。特に共有
結合性の架橋構造のない膜においてこの傾向は大
きいが、本発明の陽イオン交換膜においてはこれ
は極めて顕著に防止することが出来る。また本発
明の膜においては共有結合性の架橋構造を形成さ
れているために、寸法安定性が良好となる。同時
に弱酸性の陽イオン交換基層があるために、アル
カリ金属塩の電気分解の際の隔膜等に用いたとき
水酸イオンの膜漏洩を阻止する能力が大きく濃厚
なアルカリ金属水酸化物を取得して、高い電流効
率となる。前記したように通常のイオン交換膜含
塩電解等にあつては、塩水中の多価陽イオン、特
にカルシウムイオンが膜性能の低下に対して著し
い影響を及ぼすため、高度に塩水を精製しなけれ
ばならない。更に特開昭53−137888などに開示さ
れている弱酸性の陽イオン交換基を膜の陰極側に
有する膜では、この弱酸性陽イオン交換基層内で
のカルシウムイオンの移動速度が遅いことと、水
酸イオンの層内への吸着ののために水酸化カルシ
ウム等の沈澱が弱酸性の陽イオン交換基層内に形
成され、膜性能の低下をきたすという問題があ
る。これに対して本発明の陽イオン交換膜におい
ては共有結合性の架橋構造が存在するためにカル
シウムイオンが膜内に入るのが阻止され、更に該
層内でのカルシウムイオンの移動速度が遅いた
め、弱酸性の陽イオン交換基を有する層には充分
に達せず、また到達しても微量ながらアルカリ雰
囲気においてもカルシウムイオンは膜透過するた
め、水酸イオン漏洩阻止層である弱酸性の陽イオ
ン交換基を有する層内へのカルシウムイオンの蓄
積はおこらず、高い性能を長時間維持することが
出来る。またアルカリ金属塩水溶液の脱塩率を大
きくすることができ、例えば食塩の電解にあつて
は、2〜3.5規定程度にまでその濃度を低下せし
めることができる。 本発明の陽イオン交換膜は特にイオン交換膜ア
ルカリ金属塩の電解の際の隔膜として有効に用い
るが、そのとき特に有効な作用を発揮するのは共
有結合性の架橋構造の層を陽極に向けて使用する
場合である。そのために膜の陽極に面する側はパ
ーフルオロ系層であることが望ましい。 本発明の陽イオン交換膜が特に優れた特性を示
す理由についてはなお不明な点が多いが機械的に
優れ寸法安定性に優れている点は薄層状に膜表面
に形成された架橋構造の高分子薄膜層に基づくた
めと思われる。また、比較的高濃度のカルシウム
等の本質的にアルカリ金属塩電解系において有害
なイオン種が塩水中に含まれている場合にも高い
性能を長時間に亘つて維持する理由は、膜の表層
部の三次元架橋構造層内でナトリウムイオンに比
較してカルシウムイオンの移動やおそく膜の陽極
側表層部に一種トラツプされるため、膜内部さら
には水酸イオンの漏洩防止層である膜の他面に存
する弱酸性の陽イオン交換基層に到達せず、仮り
に到達しても弱酸性の陽イオン交換基層は実質上
架橋が存在しないため膜透過し、水酸イオン漏洩
防止層へのカルシウムイオンの蓄積がおこらない
ためと思われる。 本発明で得られた陽イオン交換膜は上記したほ
か従来公知の膜を用いる系に何ら制限なく用いら
れ、殊に耐酸化性が要求される系において極めて
有用である。例えば電極反応の隔膜、酸、塩基の
電気分解、アルカリ金属塩の電気分解、メツキ廃
液、その他重金属イオンを含んだ酸性溶液の電気
分解の際の隔膜、燃料電池その他の高温或は常温
の電池の隔膜、電気透析の際のイオン交換膜、そ
の他荷電を有する膜を高温で酸化雰囲気において
用いるときには殆んど半永久的に使用することが
出来るものである。 次に、本発明の膜を用いるときの装置は従来公
知のものが何ら制限なく用いられ、多室電気透析
の場合の締付型電槽、水槽型電槽、電解反応にお
いては締付型電解槽、フインガー型電解槽、複極
型電解槽、単極型電解槽、水平型電解槽、その他
限外濾過、燃料電池等従来公知のものが何ら制限
なく用いられる。 以下の実施例において本発明の内容を具体的に
説明するが、本発明は以下の実施例によつて何ら
拘束されるものではない。 以下の実施例中、膜の電気抵抗は80℃で1000サ
イクル交流によつて測定し、溶液は特に断わらな
い限り3.5N−NaClと6.0N−NaOHの間で測定し
た。交換容量は0.2N−NaOHの所定量の中にH型
の膜を3時間浸漬してイオン交換反応によつて失
われたOHの量を0.1N−HClによつて逆適定して
求めてH型の膜1gについての交換容量を求め
た。膜の厚みはマイクロメーターによつて求め
た。電解実験は有効通電面積が1dm2の二室型の
電解槽を用いて陽極にはチタンの金網の上に二酸
化ルテニウムと二酸化チタンをコーテイングした
不溶性陽極を用い、陰極には軟鉄の金網を用いて
通常30A/dm2で電解し、陽極液には特に断わら
ない限り飽和食塩水を供給し、分解率は大略3.0
%で電解し、電解槽内の温度は80〜90℃に保つ
た。 実施例 1 パーフルオロ(3,6−ジオキサ−4−メチル
−7−オクテンスルホニルフルオライド)とテト
ラフルオロエチレンの共重合物で加水分解したと
きの交換容量が0.91ミリ当量/グラム乾燥膜(H
型)に相当する0.05mmの厚みのシートの上に更に
同じ0.05mmのシートを重ね、その間に400デニー
ルのテトラフルオロエチレン製の糸をタテ、ヨコ
ともインチあたり50本づつ織つた平織布をはさん
で融着して一枚としたものを層()として用い
た。 この膜状高分子物を水600部、ジメチルスルホ
キシド400部、苛性カリウム120部からなる加水分
解浴に60℃で4時間浸漬してスルホン酸カリウム
塩としたのち、3規定の硝酸の中に6時間浸漬し
て酸型とした。これを減圧乾燥後、膜の片面に五
塩リンの蒸気を150℃で30分間接触させて、スル
ホン酸基をスルホニルクロライド基に変換した。
次いでこれをn−ブチルアルコール中に浸漬して
充分に膨潤させたあと、空気を吹き込んで110℃
に8時間加熱し、次いで再び加水分解浴に浸漬し
て陽イオン交換膜とした。この膜の五塩化リンに
接触した側には赤外スペクトルを測定したところ
カルボン酸基が認められた。この膜の一部をクリ
スタルバイオレツトを1%含む1規定の塩酸及び
メタノール(1:1容量比)溶液中で室温下に20
時間染色し、膜の断面を光学顕微鏡で観察したと
ころ、スルホン酸基が存在する層が膜の片面より
約0.08mmの濃緑色に染まり、残りの約0.02mmが全
く染色されず、この層にカルボン酸基が存在する
ことが判つた。この膜を再び減圧にして80℃で加
熱乾燥したのち、カルボン酸基が存在する膜の裏
側の表層部(スルホン酸基がある)をサンドペー
パーで擦つて表面を疎にしたあと次の処理をし
た。 即ち、パーフルオロ(3,6−ジオキサ−4−
メチル−7−オクテンスルホニルフルオライド)
を主成分とするパーフルオロアルキルビニルエー
テルスルホニルフルオライド60部とパーフルオロ
(メチルビニルエーテル)20部、パーフルオロ
{ペンタメチレン−ビス(ビニルエーテル)}20部
を100部のパーフルオロジメチルシクロブタン中
に溶解したものをステンレス製のオートクレーブ
中に入れて、−80℃に冷却して、充分に窒素置
換、脱気したのちに、−40℃まで温度を上げて全
単量体に対して3モル%のN2F2開始剤を導入
し、75℃に2時間保つたところ粘稠なポリマーの
部分重合体の溶液が得られた。これを赤外線分析
したところ1840cm-1のところにエーテル結合につ
いたパーフルオロ二重結合が見られた。これの粘
度を測定したところ2.4ポイズであつた。 この粘稠なモノマー及び部分重合物溶液を上記
表面を疎にした高分子膜状物の片方の表層部に均
一に薄く塗布したのちに塗布面に水銀蒸気紫外ラ
ンプ(東芝製SHL−100UV)を均一に照射し
た。約150時間照射したところ粘性のあつた部分
重合物は完全に重合し一方の膜表面にのみ三次元
架橋構造を有する高分子膜状物を得た。さらに一
部を切り取り前記したクリスタルバイオレツト溶
液中に室温下に20時間染色し、膜の断面を光学顕
微鏡で観察したところ、膜の断面中央部が約0.08
mmの厚みで濃緑色に染つていたが、その両側に約
0.02mm、0.001mmの厚みで全く染色されていない
層が観察された。前者はカルボン酸基が存在する
層、後者はスルホニルフルオライド基が存在する
層であり、三層構造を有していることが判つた。
次いでこれを前記した水−ジメチルスルホキシド
−苛性カリウムの加水分解浴に浸漬して本発明の
陽イオン交換膜とした。なお、三次元架橋構造へ
上記高分子膜状物に形成したことによる重量増加
は約1%であつた。 この膜を用いて飽和食塩水の電気分解を実施し
た。飽和食塩水中のカルシウム濃度は2.1ppmで
あつた。三次元架橋構造を有する面を陽極に向
け、陰極には弱酸性の陽イオン交換基がある層を
向けて、陰極室から12規定の苛性ソーダを取得し
た。苛性ソーダ取得の電流効果は95%であり、6
ケ月間同一条件下で電解を続けたが変化はなかつ
た。また電槽電圧は当初3日間で3.75Vから
3.82Vまで上昇したがその後一定であつた。 他方、比較のためパーフルオロ(3,6−ジオ
キサ−4−メチル−7−オクテンスルホニルフル
オライド)を主成分とするパーフルオロ(アルキ
ルビニルエーテルスルホニルフルオライド)60部
とパーフルオロ(メチルビニルエーテル)40部か
らなる混合物から前記した方法により部分重合物
を得た。この部分重合物を用いて前述した方法に
より三層構造を有する陽イオン交換膜とした。こ
の膜を用いて同様に飽和食塩水の電気分解を実施
したところ、12規定の苛性ソーダを取得して、電
気効率93%で電槽電圧は3.70Vであつたが、3ケ
月後には電槽電圧は4.1Vとなり、電流効率は83
%となつた。 更に本発明の膜と比較に用いた膜について膜の
機械的強度を比較するために、3ケ月電解した膜
を電解槽からとり出して、風乾後、90℃以上折り
曲げテストをくり返し若干白濁を生じている通電
部分にピンホールの生成の可能性を調べた。その
結果、比較のために用いた膜は15回の折り曲げに
よつてピンホールの生成が認められたが、本発明
の膜は50回以上くり返してもピンホールの生成は
一切認められなかつた。また1N苛性ソーダに浸
漬した膜を6.0N苛性ソーダに浸漬したところ、
比較のための膜は6%縮んだのに対して本発明の
膜は3%縮んだに過ぎなかつた。 実施例 2 とテトラフルオロエチレンからなる共重合物で厚
みが0.15mmのフイルムを層()の原物質として
用いた。これを加水分解したときの交換容量は
1.52ミリ当量/グラム乾燥膜(H型)であつた。
他方、CF2=CFO(−CF2)−5OCF=CF2 20部と
[Formula] Also, in order to form a crosslinked structure in the layer (), a fluorine-containing polyvinyl compound (3) such as CFX=CX'-O
-A-O-CX'=CFX is used. As a specific example, CF 2 = CFO (-CF 2 ) - o OCF = CF 2 (n is a positive integer from 2 to 24) is generally used, but in addition, CFX = CX' - A -X'C=CFX, specifically CF 2 = CF (-CF 2
) -o A fluorine-containing compound such as CF= CF2 , preferably a perfluoro compound, is used. Here X, X′,
A is as described above. Some typical examples of the method for producing a cation exchange membrane of the present invention will be described. Tetrafluoroethylene and perfluoro(3,6-dioxa-4
- a 0.8 mm film having an exchange capacity of 0.91 meq/g dry film (H + form) when the sulfonyl fluoride group is hydrolyzed with a copolymer with methyl-7-octensulfonyl fluoride), and A 0.4 mm film containing sulfonyl fluoride groups, whose exchange capacity when hydrolyzed with a copolymer consisting of the same components as 0.87 meq/g dry film (H + type), is further reacted with ethylenediamine to form a sulfonyl fluoride group. Fluoride groups have been converted to sulfonic acid amide groups. Between these two films, 60 polytetrafluoroethylene threads are inserted vertically and horizontally (100 denier thread).
A cation exchange membrane precursor having a two-layer structure, that is, one layer has a sulfonyl fluoride group and the other layer has a sulfonic acid amide group, which is weaker acid than sulfonic acid, was obtained by sandwiching and heat-sealing the plain woven fabric of Ta. Next, perfluoro{pentamethylene di-(vinyl ether)} and perfluoro(3,6-dioxa-
The two-layer structure described above is a viscous partial polymer obtained by partially polymerizing a mixture of 25, 47, and 28% (by weight) of 4-methyl-7-octensulfonyl fluoride) and perfluoro(pyropyru vinyl ether), respectively. was applied uniformly to the side of the cation exchange membrane containing the sulfonyl fluoride groups. Furthermore, the coated surface was irradiated with ultraviolet rays to complete polymerization.
Separately, the same partial polymer was polymerized with ultraviolet rays and hydrolyzed, and the exchange capacity was measured, and it was found to be 1.06 meq/g dry film (H + type). The thickness of the coating layer was determined from the difference in thickness before and after coating and was approximately 0.4 mm. The thus obtained cation exchange membrane precursor having a three-layer structure was hydrolyzed to obtain the membrane of the present invention. Another method is to use tetrafluoroethylene and perfluoro(3,6-dioxa-4-methyl-7
-octensulfonyl fluoride) and has an exchange capacity of 0.83 when hydrolyzed.
Milliequivalent/gram dry film (H + type) is 0.1mm
The above-mentioned polytetrafluoroethylene plain woven fabric was sandwiched between 0.05 mm films, heat-fused and integrated, and then hydrolyzed to obtain a cation exchange membrane having a single layer structure. Next, one side of the obtained membrane was reacted with phosphorus pentachloride to convert the sulfonic acid groups present in a layer of 10 microns from one side to sulfonyl chloride groups. Furthermore, the sulfonyl chloride group was converted into a carboxylic acid group by air oxidation of the sulfonyl chloride group while heating in n-butanol. The above-mentioned partial polymer was applied to the sulfonic acid group side of the cation exchange membrane with a two-layer structure obtained in this way, and the polymerization was completed by irradiating it with ultraviolet rays. It was used as an ion exchange membrane precursor. Further hydrolysis yielded a cation exchange membrane having a three-layer structure according to the present invention. Although the cation exchange membrane of the present invention is thin, the mechanical strength of the membrane is significantly improved because a covalent crosslinked structure is introduced into the membrane. In general, if the exchange capacity of a membrane is increased in order to keep the electrical resistance of the membrane low, the mechanical strength of the membrane becomes weaker. This tendency is particularly strong in membranes without a covalent crosslinked structure, but this can be extremely significantly prevented in the cation exchange membrane of the present invention. Furthermore, since the membrane of the present invention has a covalent crosslinked structure, it has good dimensional stability. At the same time, since there is a weakly acidic cation exchange base layer, when used as a diaphragm in the electrolysis of alkali metal salts, it is possible to obtain a concentrated alkali metal hydroxide with a large ability to prevent membrane leakage of hydroxide ions. This results in high current efficiency. As mentioned above, in the case of ordinary ion-exchange membrane salt electrolysis, etc., the polyvalent cations in the salt water, especially calcium ions, have a significant effect on the deterioration of membrane performance, so the salt water must be purified to a high degree. Must be. Furthermore, in a membrane having a weakly acidic cation exchange group on the cathode side of the membrane, as disclosed in JP-A-53-137888, etc., the movement speed of calcium ions within this weakly acidic cation exchange base layer is slow; There is a problem in that precipitates such as calcium hydroxide are formed in the weakly acidic cation exchange base layer due to adsorption of hydroxide ions into the layer, resulting in a decrease in membrane performance. In contrast, in the cation exchange membrane of the present invention, calcium ions are prevented from entering the membrane due to the presence of a covalent crosslinked structure, and furthermore, the movement speed of calcium ions within the layer is slow. , calcium ions do not fully reach the layer with weakly acidic cation exchange groups, and even if they do reach the membrane, the weakly acidic cations that act as a hydroxide ion leakage prevention layer pass through the membrane even in an alkaline atmosphere. Calcium ions do not accumulate in the layer containing exchange groups, and high performance can be maintained for a long time. Furthermore, the desalination rate of the aqueous alkali metal salt solution can be increased, and for example, in the case of electrolysis of common salt, the concentration can be reduced to about 2 to 3.5 normal. The cation exchange membrane of the present invention is particularly effectively used as a diaphragm in the electrolysis of alkali metal salts, and in this case, it exhibits a particularly effective effect by directing the layer of covalent crosslinked structure toward the anode. This is the case when using it. For this reason, it is desirable that the side of the membrane facing the anode is a perfluorinated layer. There are still many points that are unclear as to why the cation exchange membrane of the present invention exhibits particularly excellent properties, but the reason why it is mechanically superior and has excellent dimensional stability is that the cross-linked structure formed in a thin layer on the membrane surface is highly This seems to be because it is based on a molecular thin film layer. In addition, the reason why high performance is maintained for a long time even when ion species that are inherently harmful to alkali metal salt electrolytic systems, such as relatively high concentrations of calcium, are contained in the salt water is that the surface layer of the membrane Calcium ions move slower than sodium ions within the three-dimensional crosslinked structure layer of the membrane, and are trapped in the anode side surface layer of the membrane. Calcium ions do not reach the weakly acidic cation exchange base layer existing on the surface, and even if they do reach the weakly acidic cation exchange base layer, since there is virtually no crosslinking, the calcium ions pass through the membrane and enter the hydroxide ion leakage prevention layer. This seems to be because no accumulation occurs. The cation exchange membrane obtained in the present invention can be used without any limitation in systems using conventionally known membranes in addition to those described above, and is particularly useful in systems requiring oxidation resistance. For example, diaphragms for electrode reactions, electrolysis of acids and bases, electrolysis of alkali metal salts, diaphragms for electrolysis of plating waste liquid, and other acidic solutions containing heavy metal ions, and diaphragms for fuel cells and other high-temperature or room-temperature batteries. When diaphragms, ion exchange membranes used in electrodialysis, and other charged membranes are used in an oxidizing atmosphere at high temperatures, they can be used almost semi-permanently. Next, when using the membrane of the present invention, conventionally known devices can be used without any restrictions, such as a clamp type battery cell for multi-chamber electrodialysis, a water bath type battery tank, and a clamp type electrolyzer for electrolytic reaction. Conventionally known electrolytic cells such as electrolytic cells, finger electrolytic cells, bipolar electrolytic cells, single-polar electrolytic cells, horizontal electrolytic cells, ultrafiltration, fuel cells, etc. can be used without any restriction. The content of the present invention will be specifically explained in the following Examples, but the present invention is not limited to the Examples below. In the following examples, the electrical resistance of the membranes was measured by alternating current for 1000 cycles at 80°C, and the solutions were measured between 3.5N NaCl and 6.0N NaOH unless otherwise specified. The exchange capacity was determined by immersing the H-type membrane in a predetermined amount of 0.2N-NaOH for 3 hours and back-optimizing the amount of OH lost by the ion exchange reaction using 0.1N-HCl. The exchange capacity for 1 g of H-type membrane was determined. The thickness of the film was determined using a micrometer. The electrolysis experiments were carried out using a two-chamber electrolytic cell with an effective current-carrying area of 1 dm 2. An insoluble anode made of a titanium wire mesh coated with ruthenium dioxide and titanium dioxide was used as the anode, and a soft iron wire mesh was used as the cathode. Normally electrolysis is carried out at 30A/ dm2 , saturated saline is supplied as the anolyte unless otherwise specified, and the decomposition rate is approximately 3.0.
%, and the temperature inside the electrolytic cell was kept at 80-90℃. Example 1 An exchange capacity of 0.91 meq/g dry membrane (H
A sheet of 0.05 mm thick corresponding to the mold) is layered with another sheet of the same 0.05 mm thickness, and between them is a plain woven fabric made by weaving 400 denier tetrafluoroethylene threads at a rate of 50 threads per inch both vertically and horizontally. A single piece made by sandwiching and fusing together was used as a layer (). This film-like polymer was immersed in a hydrolysis bath consisting of 600 parts of water, 400 parts of dimethyl sulfoxide, and 120 parts of caustic potassium at 60°C for 4 hours to form a potassium sulfonate salt, and then immersed in 3N nitric acid for 6 hours. It was soaked for a period of time to form an acid form. After drying this under reduced pressure, one side of the membrane was brought into contact with phosphorus pentachloride vapor at 150°C for 30 minutes to convert the sulfonic acid groups to sulfonyl chloride groups.
Next, this was immersed in n-butyl alcohol to sufficiently swell it, and then heated to 110°C by blowing air into it.
The membrane was heated for 8 hours, and then immersed in a hydrolysis bath again to obtain a cation exchange membrane. An infrared spectrum measurement revealed that carboxylic acid groups were present on the side of this membrane that came into contact with phosphorus pentachloride. A portion of this membrane was placed in a solution of 1N hydrochloric acid and methanol (1:1 volume ratio) containing 1% crystal violet for 20 minutes at room temperature.
When the cross-section of the membrane was time-stained and observed under an optical microscope, the layer containing sulfonic acid groups was stained dark green at a depth of about 0.08 mm from one side of the membrane, and the remaining approximately 0.02 mm was not stained at all. It was found that carboxylic acid groups were present. After this film was heated and dried at 80°C under reduced pressure again, the surface layer on the back side of the film where carboxylic acid groups exist (where sulfonic acid groups are present) was rubbed with sandpaper to make the surface loose, and then the next treatment was performed. did. That is, perfluoro(3,6-dioxa-4-
Methyl-7-octensulfonyl fluoride)
A solution of 60 parts of perfluoroalkyl vinyl ether sulfonyl fluoride, 20 parts of perfluoro(methyl vinyl ether), and 20 parts of perfluoro{pentamethylene-bis(vinyl ether)} in 100 parts of perfluorodimethylcyclobutane. was placed in a stainless steel autoclave, cooled to -80°C, thoroughly purged with nitrogen and degassed, then raised to -40°C and injected with 3 mol% N 2 based on the total monomers. After introducing F 2 initiator and keeping at 75° C. for 2 hours, a viscous solution of the polymer subpolymer was obtained. When this was analyzed by infrared rays, a perfluorinated double bond attached to an ether bond was observed at 1840 cm -1 . When the viscosity of this was measured, it was 2.4 poise. After uniformly and thinly applying this viscous monomer and partial polymer solution to the surface layer of one side of the polymer membrane with a sparse surface, a mercury vapor ultraviolet lamp (SHL-100UV manufactured by Toshiba) was applied to the coated surface. Irradiated uniformly. After about 150 hours of irradiation, the viscous partially polymerized product was completely polymerized, yielding a polymer membrane having a three-dimensional crosslinked structure only on one membrane surface. Further, a portion was cut out and stained in the crystal violet solution described above at room temperature for 20 hours, and the cross section of the membrane was observed using an optical microscope.
It was dyed dark green with a thickness of mm, and on both sides about
Completely undyed layers were observed at thicknesses of 0.02 mm and 0.001 mm. It was found that the former was a layer containing carboxylic acid groups, and the latter was a layer containing sulfonyl fluoride groups, and had a three-layer structure.
This was then immersed in the water-dimethylsulfoxide-caustic potassium hydrolysis bath described above to obtain the cation exchange membrane of the present invention. Incidentally, the weight increase due to the formation of a three-dimensional crosslinked structure in the polymer membrane was about 1%. Electrolysis of saturated saline water was carried out using this membrane. The calcium concentration in the saturated saline solution was 2.1 ppm. 12N caustic soda was obtained from the cathode chamber with the surface having a three-dimensional crosslinked structure facing the anode and the layer having a weakly acidic cation exchange group facing the cathode. The current effect of caustic soda acquisition is 95%, 6
Electrolysis was continued under the same conditions for several months, but there was no change. Also, the battery voltage started from 3.75V for 3 days.
It rose to 3.82V, but remained constant thereafter. On the other hand, for comparison, 60 parts of perfluoro(alkyl vinyl ether sulfonyl fluoride) containing perfluoro(3,6-dioxa-4-methyl-7-octensulfonyl fluoride) as a main component and 40 parts of perfluoro(methyl vinyl ether) were used. A partially polymerized product was obtained from a mixture consisting of the following by the method described above. Using this partial polymer, a cation exchange membrane having a three-layer structure was prepared by the method described above. When electrolysis of saturated salt water was carried out in the same manner using this membrane, 12N caustic soda was obtained, the electrical efficiency was 93%, and the cell voltage was 3.70V, but after 3 months, the cell voltage is 4.1V, and the current efficiency is 83
%. Furthermore, in order to compare the mechanical strength of the membrane of the present invention and the membrane used for comparison, the membrane that had been electrolyzed for 3 months was taken out from the electrolytic bath, and after being air-dried, a bending test was repeated over 90 degrees Celsius, resulting in a slight cloudiness. We investigated the possibility of pinholes forming in energized parts. As a result, the film used for comparison was found to have pinholes after being folded 15 times, but the film of the present invention did not show any pinholes even after being folded 50 times or more. Also, when the membrane immersed in 1N caustic soda was immersed in 6.0N caustic soda,
The comparative membrane shrank 6%, while the inventive membrane shrank only 3%. Example 2 A 0.15 mm thick film made of copolymer and tetrafluoroethylene was used as the raw material for the layer (). The exchange capacity when this is hydrolyzed is
It was 1.52 meq/g dry film (H type).
On the other hand, CF 2 = CFO (−CF 2 ) − 5 OCF = 20 parts of CF 2 and

【式】 を混合してステンレス製オートクレーブ中に入れ
て、凍結、減圧脱気を数回くり返して後、50℃に
保つてCo60の放射線源から5000rad/hrの線量率
で40Mrad γ線を照射したあと、オートクレー
ブを解放して見ると極めて粘稠な部分重合物が生
成していた。このときこれの粘度を測定してみる
と55ポイズであつた。そこでこれに次の化合物を
加えて ホモゲナイザーで撹拌し粘度を5ポイズにして部
分重合物の単量体懸濁物を得た。これを前記した
フイルムの片面に塗布して後放置して或る程度膜
状物に浸透させたのちに石英板でおおい、水銀紫
外ランプから紫外線を照射して重合させた。 他方、
[Formula] was mixed and put into a stainless steel autoclave, and after repeating freezing and vacuum degassing several times, it was kept at 50℃ and irradiated with 40 Mrad gamma rays at a dose rate of 5000 rad/hr from a Co 60 radiation source. After that, when the autoclave was opened, an extremely viscous partial polymer had been formed. At this time, the viscosity of this was measured and was 55 poise. So, add the following compound to this The mixture was stirred with a homogenizer to a viscosity of 5 poise to obtain a monomer suspension of a partially polymerized product. This was applied to one side of the above-mentioned film and left to permeate the film to some extent, then covered with a quartz plate and irradiated with ultraviolet rays from a mercury ultraviolet lamp to polymerize. On the other hand,

【式】 とテトラフルオロエチレンとヘキサフルオロプロ
ピレンの三元共重合体で、アルカリ性雰囲気にお
けるイオン交換容量が1.85ミリ当量/グラム乾燥
膜の0.05mmの厚みを有する薄膜を、上記したカル
ボン酸エステル基を有する面上に加熱融着して、
一枚の高分子膜状物として後、10%の苛性ソーダ
メタノール溶液中に60℃で24時間浸漬して、含ま
れるスルホニルフルオライド及びカルボン酸エス
テルを加水分解処理して本発明の陽イオン交換膜
とした。この膜の一部を実施例1で用いた染色液
中で実施例1と同様の染色テストを行つたとこ
ろ、部分重合物を塗布した側に表面より約0.01mm
が濃緑色に染色され残りの部分は全く染色されて
いなかつた。この膜を用いて実施例1と同様の方
法でカルシウムイオンを2ppm含む3.5規定食塩水
を用いて食塩電解を実施した。但し、陽極液のPH
は7に調整して電解したところ、陰極室から取得
される苛性ソーダ濃度を14規定に調整して電流効
率93%であり、電槽電圧3.80Vであつた。他方、
カルボン酸基を有するフイルムでは、14規定の苛
性ソーダを取得して電流効率93%であつたが、電
槽電圧は4.12Vであつた。これを同じ条件で6ケ
月間電解を続けたところ、本発明の膜は陰極室の
苛性ソーダ、電流効率は変化せず、電槽電圧が
3.92Vとなつていたのに対して、比較に用いたフ
イルムは14規定苛性ソーダを取得して電流効率82
%となり電槽電圧は4.80Vとなつていた。また陽
極で発生する塩素ガス中の酸素の量は電解当初い
ずれの場合も2.5%であつた。そこで陽極液のPH
を電槽入口で0.5に下げたところ、陽極で発生す
る塩素ガス中の酸素の量は0.2%以下に低下した
けれども、電槽電圧は本発明の膜を用いたとき
3.85Vであつたのに対して、比較に用いたフイル
ムは5.7Vと急騰した。 実施例 3 実施例1で得られた部分重合物をポリテトラフ
ルオロエチレン製の型枠中に均一に流延し、さら
にその上に石英板をかぶせ紫外線を照射した。20
時間照射後、石英板を取除き厚みが約0.2mmのシ
ートを得た。このフイルム反射赤外スペクトルを
測定したところ、部分重合物中に存在していた
1850cm-1付近のビニルエーテル基に起因する吸収
帯は殆んど消失し、重合が完結していることが判
つた。 他方、実施例1で用いたテトラフルオロエチレ
ンとパーフルオロ(アルキルビニルエーテルスル
ホニルフルオライド)の共重合物よりなり、厚み
が0.05mmのシートを室温下にエチレンジアミン中
に24時間浸漬し、スルホニルフルオライド基をス
ルホン酸アミド基に変換した。エチレンジアミン
処理を行つた膜を充分水洗後減圧乾燥した。 このようにして得られた2枚のシートの間に実
施例1と同様の方法で得たテトラフルオロエチレ
ンとパーフルオロ(3,6−ジオキサ−4−メチ
ル−7−オクテンスルホニルフルオライド)とか
らなり、重量比で1:1からなる部分重合物を均
一に塗布した。このものをさらに若干のプレス下
にCo60のγ−線を1000rad/hrの線量率で20Mrad
照射たし。照射時の温度は60℃であつた。照射
後、膜状物を取り出し観察したところ部分重合物
は完全に重合しており、2枚のシートをはがすこ
とはできなかつた。又、膜状物の全厚みは約0.3
mmであり、これから計算すると部分重合物が重合
した層の厚みは約0.05mmであることが判つた。得
られた膜状物をさらに実施例1で用いた加水分解
浴中に浸漬して本発明の陽イオン交換膜とした。 この膜を実施例1と同様に電解テストを行つ
た。用いた飽和食塩水中のカルシウム濃度は
2.5ppmであつた。その結果、通電当初電流効率
は10規定の苛性ソーダを取得して94%であり、6
ケ月間同一条件で電解を続けても変化はなかつ
た。又、槽電圧も通電当初3.83Vから2日間位で
3.90Vまで上昇したが、その後一定であり、カル
シウムイオンによる膜性能の低下は認められなか
つた。
[Formula] A thin film made of a terpolymer of tetrafluoroethylene and hexafluoropropylene and having an ion exchange capacity of 1.85 milliequivalents/g in an alkaline atmosphere and a thickness of 0.05 mm on a dry membrane was prepared by adding the above-mentioned carboxylic acid ester groups. by heating and fusing onto the surface of the
The cation exchange membrane of the present invention is formed into a single polymer membrane and then immersed in a 10% caustic soda methanol solution at 60°C for 24 hours to hydrolyze the sulfonyl fluoride and carboxylic acid ester contained therein. And so. When a part of this membrane was subjected to the same staining test as in Example 1 in the staining solution used in Example 1, the side to which the partially polymerized product was applied was about 0.01mm from the surface.
The area was stained dark green, and the remaining area was not stained at all. Using this membrane, salt electrolysis was carried out in the same manner as in Example 1 using 3.5N saline containing 2 ppm of calcium ions. However, the pH of the anolyte
When electrolysis was performed with the solution adjusted to 7, the current efficiency was 93% when the caustic soda concentration obtained from the cathode chamber was adjusted to 14, and the cell voltage was 3.80V. On the other hand,
The film with carboxylic acid groups obtained 14N caustic soda and had a current efficiency of 93%, but the cell voltage was 4.12V. When electrolysis was continued under the same conditions for 6 months, the membrane of the present invention did not change the current efficiency due to the caustic soda in the cathode chamber, and the cell voltage increased.
3.92V, whereas the film used for comparison had a current efficiency of 82V with a 14-normal caustic soda rating.
%, and the battery voltage was 4.80V. In addition, the amount of oxygen in the chlorine gas generated at the anode was 2.5% in all cases at the beginning of electrolysis. Therefore, the pH of the anolyte
When the cell voltage was lowered to 0.5 at the inlet of the cell, the amount of oxygen in the chlorine gas generated at the anode decreased to less than 0.2%, but the cell voltage decreased when using the membrane of the present invention.
While it was 3.85V, the film used for comparison soared to 5.7V. Example 3 The partial polymer obtained in Example 1 was uniformly cast into a polytetrafluoroethylene mold, a quartz plate was placed over the mold, and ultraviolet rays were irradiated. 20
After irradiation for a period of time, the quartz plate was removed to obtain a sheet with a thickness of approximately 0.2 mm. When we measured the reflection infrared spectrum of this film, we found that it was present in the partially polymerized product.
It was found that the absorption band attributable to vinyl ether groups near 1850 cm -1 almost disappeared, indicating that the polymerization was complete. On the other hand, a 0.05 mm thick sheet made of the copolymer of tetrafluoroethylene and perfluoro(alkyl vinyl ether sulfonyl fluoride) used in Example 1 was immersed in ethylenediamine at room temperature for 24 hours to remove the sulfonyl fluoride groups. was converted into a sulfonic acid amide group. The membrane treated with ethylenediamine was thoroughly washed with water and then dried under reduced pressure. Between the two sheets thus obtained, tetrafluoroethylene and perfluoro(3,6-dioxa-4-methyl-7-octensulfonyl fluoride) obtained in the same manner as in Example 1 are placed. A partial polymer having a weight ratio of 1:1 was uniformly applied. This was further pressed slightly and 20 Mrad of Co 60 γ-rays were applied at a dose rate of 1000 rad/hr.
Irradiated. The temperature during irradiation was 60°C. After irradiation, the film-like material was taken out and observed, and it was found that the partially polymerized material had completely polymerized, and the two sheets could not be separated. Also, the total thickness of the film-like material is approximately 0.3
mm, and calculation from this revealed that the thickness of the layer in which the partially polymerized product was polymerized was approximately 0.05 mm. The obtained membrane-like material was further immersed in the hydrolysis bath used in Example 1 to obtain a cation exchange membrane of the present invention. This membrane was subjected to an electrolytic test in the same manner as in Example 1. The calcium concentration in the saturated saline solution used was
It was 2.5ppm. As a result, the current efficiency at the beginning of energization was 94% with 10 standard caustic soda, and 6
Even if electrolysis was continued under the same conditions for several months, there was no change. In addition, the cell voltage also increased from 3.83V at the time of energization for about 2 days.
The voltage rose to 3.90V, but remained constant after that, and no deterioration in membrane performance due to calcium ions was observed.

Claims (1)

【特許請求の範囲】 1 共有結合性の架橋構造を有する陽イオン交換
基を有する層()、共有結合性の架橋構造を有
さない陽イオン交換基を有する層()及び層
()の陽イオン交換基より弱酸性の陽イオン交
換基を有する層()よりなる含弗素系陽イオン
交換膜。 2 層()に存在する陽イオン交換基がスルホ
ン酸基である特許請求の範囲第1項記載の陽イオ
ン交換膜。 3 層()に存在する陽イオン交換基がカルボ
ン酸基、【式】解離しうる水素原子を結合 した酸アミド基のいずれかである特許請求の範囲
第1項記載の陽イオン交換膜。 4 層()に存在する陽イオン交換基がスルホ
ン酸基またはカルボン酸基である特許請求の範囲
第1項記載の陽イオン交換膜。 5 パーフルオロカーボン系の高分子化合物で構
成される特許請求の範囲第1項記載の陽イオン交
換膜。 6 層()の厚みが200Å以上且つ膜の全厚み
の1/3以下である特許請求の範囲第1項記載の陽
イオン交換膜。 7 層()の厚みが200Å以上且つ膜の全厚み
の1/3以下である特許請求の範囲第1項記載の陽
イオン交換膜。 8 アルカリ金属塩の電解用隔膜として用いる特
許請求の範囲第1項記載の陽イオン交換膜。 9 層()を陽極に向けて用いる特許請求の範
囲第8項記載の陽イオン交換膜。
[Scope of Claims] 1. A layer () having a cation exchange group having a covalent crosslinked structure, a layer () having a cation exchange group not having a covalent crosslinked structure, and a layer () having a cation exchange group having a covalent crosslinked structure. A fluorine-containing cation exchange membrane consisting of a layer ( ) having a cation exchange group that is weaker acid than the ion exchange group. 2. The cation exchange membrane according to claim 1, wherein the cation exchange groups present in the layer () are sulfonic acid groups. 3. The cation exchange membrane according to claim 1, wherein the cation exchange group present in the layer (2) is either a carboxylic acid group or an acid amide group bonded to a dissociable hydrogen atom. 4. The cation exchange membrane according to claim 1, wherein the cation exchange groups present in the layer () are sulfonic acid groups or carboxylic acid groups. 5. The cation exchange membrane according to claim 1, which is composed of a perfluorocarbon-based polymer compound. 6. The cation exchange membrane according to claim 1, wherein the thickness of the layer () is 200 Å or more and 1/3 or less of the total thickness of the membrane. 7. The cation exchange membrane according to claim 1, wherein the layer () has a thickness of 200 Å or more and 1/3 or less of the total thickness of the membrane. 8. The cation exchange membrane according to claim 1, which is used as a diaphragm for electrolysis of alkali metal salts. 9. The cation exchange membrane according to claim 8, wherein the layer ( ) is used facing the anode.
JP908579A 1979-01-31 1979-01-31 Fluorine-containing cation-exchange membrane Granted JPS55102629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP908579A JPS55102629A (en) 1979-01-31 1979-01-31 Fluorine-containing cation-exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP908579A JPS55102629A (en) 1979-01-31 1979-01-31 Fluorine-containing cation-exchange membrane

Publications (2)

Publication Number Publication Date
JPS55102629A JPS55102629A (en) 1980-08-06
JPS6223773B2 true JPS6223773B2 (en) 1987-05-25

Family

ID=11710772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP908579A Granted JPS55102629A (en) 1979-01-31 1979-01-31 Fluorine-containing cation-exchange membrane

Country Status (1)

Country Link
JP (1) JPS55102629A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604323A (en) * 1985-02-22 1986-08-05 E. I. Du Pont De Nemours And Company Multilayer cation exchange membrane
EP1375540A4 (en) 2001-02-23 2005-12-28 Daikin Ind Ltd ETHYLENE FLUOROMONOMER CONTAINING A HYDROXYL OR FLUOROALKYLCARBONYL GROUP AND FLUOROPOLYMER OBTAINED BY POLYMERIZATION OF THIS MONOMER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326284A (en) * 1976-08-24 1978-03-10 Tokuyama Soda Co Ltd Production of cation exchanger
JPS5392394A (en) * 1976-12-24 1978-08-14 Asahi Chem Ind Co Ltd Membrance of multi-layer structure and production thereof
JPS53141187A (en) * 1977-05-16 1978-12-08 Tokuyama Soda Co Ltd Process for fabricating cation exchange film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326284A (en) * 1976-08-24 1978-03-10 Tokuyama Soda Co Ltd Production of cation exchanger
JPS5392394A (en) * 1976-12-24 1978-08-14 Asahi Chem Ind Co Ltd Membrance of multi-layer structure and production thereof
JPS53141187A (en) * 1977-05-16 1978-12-08 Tokuyama Soda Co Ltd Process for fabricating cation exchange film

Also Published As

Publication number Publication date
JPS55102629A (en) 1980-08-06

Similar Documents

Publication Publication Date Title
US4298697A (en) Method of making sheet or shaped cation exchange membrane
US4683040A (en) Process for electrolysis of sodium chloride
US4168216A (en) Heat-treated fluorocarbon sulfonamide cation exchange membrane and process therefor
CA1091406A (en) Method of improving current efficiency of cation- exchange membrane
NL8200153A (en) MEMBRANE, ELECTROCHEMICAL CELL, AND ELECTROLYSIS METHOD.
JPS5833886B2 (en) Cation exchange membrane and its manufacturing method
US4990228A (en) Cation exchange membrane and use
JP2753731B2 (en) Preparation method of fluorine ion exchange membrane
US4988364A (en) Coated cation exchange yarn and process
JPS5833249B2 (en) Fluorine-containing cation exchange resin membrane
JPS6031862B2 (en) Manufacturing method of cation exchange membrane
EP0388670B1 (en) Cation exchange reinforced membrane and process
JPH073048A (en) Hydrolyzing method for ion exchange membrane
JPS6223773B2 (en)
US4996098A (en) Coated cation exchange fabric and process
EP0145426A2 (en) Process for making oriented film of fluorinated polymer
JPS6337134A (en) Fluorine-containing ion exchange membrane
JP3511117B2 (en) Cation exchange membrane for electrolysis and method for producing high-purity potassium hydroxide
JPS6128752B2 (en)
EP0385427A2 (en) Cation exchange membrane reinforced with a cation exchange fabric
WO1982003868A1 (en) Method of making sheet or shaped cation exchange membrane
JPH0247491B2 (en)
JPH0410905B2 (en)
JPS648714B2 (en)
JPS6134725B2 (en)