JPS62234297A - Program voltage supplying circuit - Google Patents
Program voltage supplying circuitInfo
- Publication number
- JPS62234297A JPS62234297A JP61231484A JP23148486A JPS62234297A JP S62234297 A JPS62234297 A JP S62234297A JP 61231484 A JP61231484 A JP 61231484A JP 23148486 A JP23148486 A JP 23148486A JP S62234297 A JPS62234297 A JP S62234297A
- Authority
- JP
- Japan
- Prior art keywords
- word line
- igfet
- logic
- potential
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 claims description 4
- 230000005685 electric field effect Effects 0.000 abstract 1
- 230000000295 complement effect Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 4
- 230000015654 memory Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
Landscapes
- Read Only Memory (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はプログラム電圧供給回路に係り、特に不揮発性
半導体メモリ素子のワード線にプログラム電圧を供給す
ることによってデータの薔込みを行なう回路に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a program voltage supply circuit, and more particularly to a circuit that performs data programming by supplying a program voltage to a word line of a nonvolatile semiconductor memory element.
従来の不揮発性半導体メモリ素子を用いる半導体記憶装
置やプログラマブル魯リード・オンリーメモリ(PR,
OM)等は、エヌチャネル(N−ch)またはビーチャ
ネル(P−ch)型の絶縁ゲート型電界効果トランジス
タ(以下IGFET)つまシ単チャネル型IGFETに
よシ構成される。Semiconductor storage devices using conventional non-volatile semiconductor memory elements and programmable read-only memories (PR,
The insulated gate field effect transistor (hereinafter referred to as IGFET) is composed of an N-channel (N-ch) or a B-channel (P-ch) type insulated gate field effect transistor (IGFET) or a single-channel IGFET.
しかし最近、省電力を図るために、不揮発性半導体メモ
リ素子を読出す回路や書込む回路を相補型IGFgT(
CMO8)によシ構成する事が試みられている。一方、
データの書込みIIKプログラム電圧を供給する回路は
、プロゲラ4@圧をワード線に印加して素子へのデータ
書込み、1に行なう。しかし、このワード線はアドレス
デコーダの出力に接続されているので、プログラム電圧
がアドレスデコーダの方に分圧され、高電圧印加が難か
しいという欠点がある。However, recently, in order to save power, the circuits for reading and writing nonvolatile semiconductor memory elements have been replaced with complementary IGFgT (
Attempts have been made to configure the system using CMO8). on the other hand,
Data writing IIK The circuit for supplying the program voltage applies the progera 4@ voltage to the word line to write data to the element. However, since this word line is connected to the output of the address decoder, the programming voltage is divided toward the address decoder, making it difficult to apply a high voltage.
本発明の目的は、正規のプログラム電圧をメモリ素子に
接続されたワード線に供給できる回路を提供することに
ある。SUMMARY OF THE INVENTION An object of the present invention is to provide a circuit that can supply a regular program voltage to a word line connected to a memory element.
本発明は、アドレスデコーダの出力とワード線とをデブ
レーンヨン型の絶縁ゲート型電界効果トランジスタを介
して接続し、このワード線の電位でゲートが制御され、
ワード線にアドレスデコーダからの選択信号が供給され
た時にプログラム電圧をワード線に印加する回路を設け
たことを特徴とする。In the present invention, the output of an address decoder and a word line are connected through a debrainyon type insulated gate field effect transistor, and the gate is controlled by the potential of this word line.
The present invention is characterized in that a circuit is provided for applying a program voltage to the word line when a selection signal from an address decoder is supplied to the word line.
次に本発明を図面を用いて詳細に説明する。Next, the present invention will be explained in detail using the drawings.
第1図は本発明の実施例の3人力のデコーダ回路に接続
されたプログラム電圧供給回路である。FIG. 1 shows a program voltage supply circuit connected to a three-person decoder circuit according to an embodiment of the present invention.
図において、P−ch型IGFgT Ml、M2.及
びN−ch型IGFET M3.M4等から構成され
。In the figure, P-ch type IGFgT Ml, M2. and N-ch type IGFET M3. Consists of M4 etc.
二つのアドレス入力信号AI、A2が印加されている2
人力NAND回路の出力点1は、アドレス入力信号A1
及びA2が論!I Cm出し電源電圧Vccの+5vに
相当)の時だけ、論理O(接地電源に相当)になり、ア
ドレス人力信号AI、A2が他の論理状態では、出力点
1ri全て論理1になる。この出力点1を人力とし、P
−ch型IGFETM5.N−ch型IGFET M
6の2つのIGF’ET等から構成される相補型論理回
路のうち一方のIGFET M6は、ソース接地とし
、他方のIGFgTMsはソースをアドレス入力信号A
3とし。Two address input signals AI, A2 are applied 2
The output point 1 of the human-powered NAND circuit is the address input signal A1
And A2 is the argument! Only when the I Cm output power supply voltage Vcc corresponds to +5V), the logic becomes O (corresponding to the ground power supply), and when the address human input signals AI and A2 are in other logic states, the output points 1ri all become logic 1. This output point 1 is assumed to be human power, and P
-ch type IGFET M5. N-ch type IGFET M
Of the complementary logic circuits consisting of two IGF'ETs, etc., one IGFET M6 has its source grounded, and the source of the other IGFgTMs is connected to the address input signal A.
3.
双方のドレインをそれぞれ共通接続し、これを相補型論
理回路の出力とする。また、この相補型論理回路の出力
(出力点2)をドレインとし、前記アドレス信号A3と
は逆論理なアドレス4.1号A3をゲート人力とし、ソ
ースを接地電源とするIGFET M7を設ける。Both drains are connected in common, and this is used as the output of the complementary logic circuit. Further, an IGFET M7 is provided, which has the output (output point 2) of this complementary logic circuit as its drain, address No. 4.1 A3 having the opposite logic to the address signal A3 as its gate, and its source as the ground power supply.
次に、前記相補型論理回路の出力点2とワード線WLと
の間にデブレーション型IGF’ET M8を設け、
これを書込み信号PGによりゲート制御する。更に、ワ
ード線WLを入力とし、書込み時に高電圧となる曹込み
用電源VpI)と接地間に接続されたP−ch型IGF
ET M9.N−ch型IGFET MIQを含む
別の相補型反転論理回路を設ける。この回路の出力(出
力点3)を入力とし。Next, a deblation type IGF'ET M8 is provided between the output point 2 of the complementary logic circuit and the word line WL,
This is gate-controlled by write signal PG. Furthermore, a P-ch type IGF which takes the word line WL as an input and is connected between the power supply VpI (for loading, which becomes a high voltage during writing) and the ground.
ET M9. Another complementary inverting logic circuit including an N-ch type IGFET MIQ is provided. Take the output of this circuit (output point 3) as input.
ソースを書込み用電源VpI)とし、ドレインをワード
線WLに接続してなるP−ch型IGFET Mll
を設けている。尚、負荷容1tCtはワード線WLに付
加する容量である。まず二つのアドレス入力信号AI、
A2のうちどちらかが論理Oで出力点lの電位が論理1
の場合、IGFET M5がオフ、IGFET M
6がオン状態になシ、アドレス入力信号A3の入力状態
にかかわらす、出力点2の電位は論理Oになる。読出し
状態でri曹込み信号PGは読出し用電源電圧Vccの
電位、書込み相電源電圧Vpptd読出し用電源電圧V
ccと同電位に設定する。このため、デプレーションu
M8rt読出し状態では常にオンになり、ワード線WL
の電位は出力点2と同電位である接地電位になる。P-ch type IGFET Mll whose source is the write power supply VpI) and whose drain is connected to the word line WL
has been established. Note that the load capacitance 1tCt is a capacitance added to the word line WL. First, two address input signals AI,
Either of A2 is logic O and the potential of output point l is logic 1
If , IGFET M5 is off, IGFET M
6 is in the on state, the potential at the output point 2 becomes logic O regardless of the input state of the address input signal A3. In the read state, the ri conditioning signal PG is at the potential of the read power supply voltage Vcc, and the write phase power supply voltage Vpptd is the read power supply voltage V.
Set to the same potential as cc. For this reason, depletion u
In the M8rt read state, it is always on and the word line WL
The potential at the output point 2 becomes the ground potential, which is the same potential as the output point 2.
このワード線WLの電位が論理1から論理0に放電に要
する時間は、IGFET M6.M8のコンダクタン
スgmと負荷容量C1により決定される。The time required for the potential of the word line WL to discharge from logic 1 to logic 0 is determined by IGFET M6. It is determined by the conductance gm of M8 and the load capacitance C1.
ワード!!WLの電位が論理OK決まると、IGF’E
TM9がオン、IGFgT MIOがオフになり、出
力点3の電位は論理1になり、IGPI13T Ml
lはオフになり、畜込み用電源電圧VPpからワード線
WLへの電流ri遮断される。word! ! When the WL potential is determined to be logical, IGF'E
TM9 is turned on, IGFgT MIO is turned off, the potential of output point 3 becomes logic 1, and IGPI13T Ml
1 is turned off, and the current ri from the storage power supply voltage VPp to the word line WL is cut off.
斎込み状態でrlr、IGFET M11i書込ミ電
圧+25Vが印加され、書込み信号PGが論理Oになる
が、IGiT M8がデプレーシゴン型のため、出力
点2の1位が論理0の場合、IGFETM8riオン状
態になり、ワード線Wl、の電位は出力点2と同様の接
地゛α位となる。In the write state, rlr, IGFET M11i write voltage +25V is applied, and the write signal PG becomes logic O, but since IGiT M8 is a depletion type, if the 1st position of output point 2 is logic 0, IGFET M8ri turns on state. Therefore, the potential of the word line Wl becomes the same as the output point 2, which is the ground α level.
二つのアドレス入力信号A!、A2が共に論理1の時だ
け、出力点1の電位ri論理0になシ、IGFgT
M5がオン、IGF’ET M6がオフになり。Two address input signals A! , A2 are both logic 1, the potential ri of output point 1 is logic 0, IGFgT
M5 is on, IGF'ET M6 is off.
アドレス入力信号A30入力状態により、ワード線WL
の電位は決定する。アドレス人力信号A3が論理1の場
合、IGFET M7tdオフVc!す。Depending on the input state of address input signal A30, word line WL
The potential of is determined. If address input signal A3 is logic 1, IGFET M7td off Vc! vinegar.
出力点2の電位はアドレス入力信号A3の電位と同電位
である論理1即ち電源Vccの電位になる。The potential of the output point 2 becomes logic 1, which is the same potential as the potential of the address input signal A3, that is, the potential of the power supply Vcc.
胱出し状態では書込み信号PGが論理1であるため、I
GFBT M8がオンして、ワード線Wl。Since the write signal PG is logic 1 in the bladder-out state, I
GFBT M8 turns on and the word line Wl.
は出力点2と同電位である論理1になる。ワード線WL
の電位が論理1に決まる事により、IGFgTMsがオ
フ、IGFET MIOがオン、IGFETMllが
オンになる。becomes logic 1, which is the same potential as output point 2. Word line WL
By determining the potential at logic 1, IGFgTMs is turned off, IGFET MIO is turned on, and IGFET Mll is turned on.
ワード線VvLので電位を論理Oから1にするのに要す
る時間は、IGFET M5.M8のコンダクタンス
gmと負荷容量C1とにより決定される。The time required to change the potential on word line VvL from logic O to logic 1 is determined by IGFET M5. It is determined by the conductance gm of M8 and the load capacitance C1.
また、告込み状態では書込み信号PGが論理0になるこ
とにより、IGFET Msのソースに+5■、ゲー
トVcO■が印加されるため、オフになシ書込み用電源
電圧Vpl)から読出し用電源電圧Vccへの電流路r
t趣断され、ワード線WLは書込み用電源電圧Vppの
電位になる。なお、IGFET Msのしきい値電圧
vTは前記条件ソースに+5V。In addition, in the write state, when the write signal PG becomes logic 0, +5■ and gate VcO■ are applied to the source of IGFET Ms. current path r to
The word line WL becomes the potential of the write power supply voltage Vpp. Note that the threshold voltage vT of the IGFET Ms is +5V at the source under the above conditions.
ゲートico v印加した場合IGFgT Msがオ
フする条件を満すのに必要な値−5V以下である必要が
ある。It needs to be less than -5V, a value necessary to satisfy the condition that IGFgTMs is turned off when gate ico v is applied.
詳しく説明すると、IGFET M5がオンになり、
出力点2の電位が電源電圧+5■になると。To explain in detail, IGFET M5 is turned on,
When the potential of output point 2 becomes power supply voltage +5■.
7− )”iW L (i’)1[位1dIGFET
Msを介して充電され、IGFgT Msがオフに
なる電位まで上昇する。この時のワード?fMWLの電
位はIGFETM8のしきい値電圧7丁の絶対値になる
。これによりIGFgT MIOがオンして出力点3
の電位は下がり、IGPFiT Mllがオンになり
、ワード線WLの電位は書込み用電源電圧VpI)から
充電され上昇し、IGFBT Msがオフである事よ
り、IGFET M1及至M7により構成される読出
し回路から遮断され、最終的にrt4F込み用電源電圧
Vf)I)の電位(+25V)になる。7-)"iW L (i') 1[1dIGFET
It is charged through Ms and rises to a potential where IGFgT Ms turns off. The word at this time? The potential of fMWL becomes the absolute value of the threshold voltage of IGFET M8. This turns on IGFgT MIO and outputs point 3.
The potential of the word line WL decreases, the IGPFiT Mll is turned on, the potential of the word line WL is charged from the write power supply voltage VpI) and rises, and since the IGFBT Ms is off, the potential of the word line WL is charged from the write power supply voltage VpI). It is cut off, and finally becomes the potential (+25V) of the power supply voltage Vf)I) for rt4F.
次に出力点1が論理Oで、アドレス入力信号A3が論理
0の場合IGFET M7がオンして、出力点2が論
理0になるため、ワード線WLの電位は論理0になる。Next, when output point 1 is logic O and address input signal A3 is logic 0, IGFET M7 is turned on and output point 2 becomes logic 0, so the potential of word line WL becomes logic 0.
以上のように、読出し時の充放電時間は、それぞれIG
FET M5.Msのgm、IGFET M6 。As mentioned above, the charging and discharging time during reading is
FET M5. Ms gm, IGFET M6.
Msのgmの大きさにより決定され1本発明ではIGF
ET Msがデプレーシ、ン型で、更にゲート電圧が
読出し用電源電圧Vccの電圧であるため。It is determined by the size of gm of Ms. In the present invention, IGF
This is because ET Ms is of the depletion type and the gate voltage is the voltage of the read power supply voltage Vcc.
IGFgT Msのgmri大きい。このため、充放
電時間は小さく、高速動作が可能になる。The gmri of IGFgT Ms is large. Therefore, the charging/discharging time is short and high-speed operation is possible.
また、書込み時riIGFET Msにより、書込み
用電源電圧vppから読出し用電源電圧Vccへの電流
路を遮断する事ができるため、読出しに必要な回路と書
込みに必要な回路とを容易に分離することができる。こ
の事により、高速読出し動作が要求される回路を高い耐
圧を必要としない最小チャンネル長のIGFgTによシ
構成する事が可能になる。Furthermore, during writing, the current path from the writing power supply voltage vpp to the reading power supply voltage Vcc can be cut off by the riIGFET Ms, so the circuits necessary for reading and the circuits necessary for writing can be easily separated. can. This makes it possible to configure a circuit that requires a high-speed read operation using an IGFgT with a minimum channel length that does not require a high withstand voltage.
なお、実施例で提示したデコーダ回路においては出力点
1の出力をアドレス入力信号A3* A3によシ2つに
分離しているため、アドレス人力信号A1.A2の2N
AND回路をワード線出力数の半分で済ます事ができる
。In the decoder circuit presented in the embodiment, since the output of output point 1 is separated into two parts according to the address input signal A3*A3, the address input signal A1. A2 2N
The AND circuit can be reduced to half the number of word line outputs.
この事によりデコーダ回路を構成するのに要するIGF
ETの数を少なくする事が可能になる。Due to this, the IGF required to configure the decoder circuit
It becomes possible to reduce the number of ETs.
本実施例ではアドレス入力信号A3eに3で2つに分離
したが、4つまたは8つのように分離する数が太きけれ
は大きい程、構成するに要するIGFETの数は従来と
比較して少なくなる。In this embodiment, the address input signal A3e is divided into two by 3, but the larger the number of divisions, such as 4 or 8, the smaller the number of IGFETs required to configure it compared to the conventional one. .
なお1本実施例では、デブレーション型I GFETを
用いる事により読出し動作の高速化が可能で。Note that in this embodiment, the read operation can be made faster by using a deblation type IGFET.
書込み動作でのワード線出力ri書込み電圧から読出し
電圧への電流路が遮断されるため、電圧降下が起こらず
畜込み電圧が充分量る。Since the current path from the word line output ri write voltage to the read voltage in the write operation is cut off, no voltage drop occurs and the stored voltage is sufficient.
本発明は以上のような利点があり、特に大容量メモリを
設計するのに非常に大きな効果がある。The present invention has the above-mentioned advantages, and is particularly effective in designing large-capacity memories.
第1図は本発明の実施例のプログラム電圧供給回路を示
す回路である。
面図において1Ml 、M2 、M5 、M9 、Ml
1・・・−0・P−ch型IGFET、M3.M4.
M6.M7゜M 10−−−−N−c h型IGFBT
%M8=・・−n−chデプレーション型IGFFjT
、A、、A、、A3.A3・・・・・・アドレス入力信
号、PG・・・・・・書込み信号。
WL・・・・・・ワードThi、 Vcc・・・・・・
読出し用電ms圧。
Vl)り・・・・・・書込み用電源電圧、1,2.3・
・・・・・出力点、C1・・・・・・負荷容量。
、〈τゝ1
、tX
代理人 弁理士 内 原 晋
手続補正書働側FIG. 1 shows a program voltage supply circuit according to an embodiment of the present invention. In the top view, 1Ml, M2, M5, M9, Ml
1...-0・P-ch type IGFET, M3. M4.
M6. M7゜M 10---N-c h type IGFBT
%M8=...-n-ch depletion type IGFFjT
,A, ,A, ,A3. A3: Address input signal, PG: Write signal. WL...Word Thi, Vcc...
Read voltage ms voltage. Vl)ri...Writing power supply voltage, 1, 2.3.
...Output point, C1...Load capacity. ,〈τゝ1,tX Agent Patent Attorney Susumu Hara Procedural Amendment Worker
Claims (1)
ゲート型電界効果トランジスタを介してワード線に接続
し、該ワード線上の信号によってゲートが制御され、前
記ワード線が選択された時に該ワード線にプログラム電
圧を印加する回路を設けたことを特徴とするプログラム
電圧供給回路。The output of the address decoder circuit is connected to a word line via a depletion type insulated gate field effect transistor, the gate is controlled by a signal on the word line, and a program voltage is applied to the word line when the word line is selected. A program voltage supply circuit comprising a circuit for applying .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61231484A JPS62234297A (en) | 1986-09-29 | 1986-09-29 | Program voltage supplying circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61231484A JPS62234297A (en) | 1986-09-29 | 1986-09-29 | Program voltage supplying circuit |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57161861A Division JPS5952497A (en) | 1982-09-17 | 1982-09-17 | Decoder circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62234297A true JPS62234297A (en) | 1987-10-14 |
Family
ID=16924214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61231484A Pending JPS62234297A (en) | 1986-09-29 | 1986-09-29 | Program voltage supplying circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62234297A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54152826A (en) * | 1978-05-24 | 1979-12-01 | Nec Corp | Writing method of nonvolatile memory |
JPS57143795A (en) * | 1981-03-03 | 1982-09-06 | Toshiba Corp | Nonvolatile semiconductor storage device |
-
1986
- 1986-09-29 JP JP61231484A patent/JPS62234297A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54152826A (en) * | 1978-05-24 | 1979-12-01 | Nec Corp | Writing method of nonvolatile memory |
JPS57143795A (en) * | 1981-03-03 | 1982-09-06 | Toshiba Corp | Nonvolatile semiconductor storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6314437B2 (en) | ||
EP0175102B1 (en) | Semiconductor memory device | |
JP5059199B2 (en) | CMOS decoding circuit | |
US5351208A (en) | Content addressable memory | |
HK69393A (en) | Semiconductor integrated circuit device with built-in memories | |
JPH03210818A (en) | Erasable non-volatile storage cell, array connection switching element of programmable logicale device, and programmable logical device | |
US4381460A (en) | Bootstrap driver circuit | |
US6064623A (en) | Row decoder having global and local decoders in flash memory devices | |
US20050265060A1 (en) | Adjustable timing circuit of an integrated circuit | |
US5721703A (en) | Reprogrammable option select circuit | |
US4803662A (en) | EEPROM cell | |
JPS595989B2 (en) | Static random access memory | |
JPH0515000B2 (en) | ||
JPS6331091A (en) | Semiconductor memory device | |
US20060176750A1 (en) | Circuit and method for reading an antifuse | |
JPS62234297A (en) | Program voltage supplying circuit | |
US6104634A (en) | Electrical programmable non-volatile memory integrated circuit with option configuration register | |
US6571307B1 (en) | Multiple purpose bus for a simultaneous operation flash memory device | |
JP3665197B2 (en) | Decoder circuit for flash memory | |
KR100250754B1 (en) | Decoder Circuit in Flash Memory | |
JPS6323297A (en) | Signal line driving circuit | |
US6999348B2 (en) | Nonvolatile semiconductor storage unit | |
JPS58161198A (en) | Semiconductor memory | |
KR100221024B1 (en) | Nonvolatile semiconductor memory device | |
JPH11283384A (en) | Data storage device of non-volatile memory |