JPS62231936A - Liquid crystal element - Google Patents
Liquid crystal elementInfo
- Publication number
- JPS62231936A JPS62231936A JP7257386A JP7257386A JPS62231936A JP S62231936 A JPS62231936 A JP S62231936A JP 7257386 A JP7257386 A JP 7257386A JP 7257386 A JP7257386 A JP 7257386A JP S62231936 A JPS62231936 A JP S62231936A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- substrate
- tables
- formulas
- substrates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 106
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 238000000576 coating method Methods 0.000 claims abstract description 16
- 239000011248 coating agent Substances 0.000 claims abstract description 12
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 claims description 40
- 239000000126 substance Substances 0.000 claims description 20
- 239000004990 Smectic liquid crystal Substances 0.000 claims description 14
- 238000002834 transmittance Methods 0.000 abstract description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 abstract description 12
- 229920005575 poly(amic acid) Polymers 0.000 abstract description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 abstract description 9
- 229920000642 polymer Polymers 0.000 abstract description 4
- WFKAJVHLWXSISD-UHFFFAOYSA-N isobutyramide Chemical compound CC(C)C(N)=O WFKAJVHLWXSISD-UHFFFAOYSA-N 0.000 abstract 2
- 229920006254 polymer film Polymers 0.000 abstract 1
- 210000002858 crystal cell Anatomy 0.000 description 25
- 239000010408 film Substances 0.000 description 22
- 230000005684 electric field Effects 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 229920001721 polyimide Polymers 0.000 description 10
- 230000010287 polarization Effects 0.000 description 8
- 239000004642 Polyimide Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 230000018044 dehydration Effects 0.000 description 5
- 238000006297 dehydration reaction Methods 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000002203 pretreatment Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical group NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 3
- 150000008065 acid anhydrides Chemical class 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000006798 ring closing metathesis reaction Methods 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- GTXPSGDFCGXXBM-UHFFFAOYSA-N 3-[4-(2-methylbutyl)phenyl]-4-(4-octoxyphenyl)benzoic acid Chemical compound C1=CC(OCCCCCCCC)=CC=C1C1=CC=C(C(O)=O)C=C1C1=CC=C(CC(C)CC)C=C1 GTXPSGDFCGXXBM-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- LOIBXBUXWRVJCF-UHFFFAOYSA-N 4-(4-aminophenyl)-3-phenylaniline Chemical group C1=CC(N)=CC=C1C1=CC=C(N)C=C1C1=CC=CC=C1 LOIBXBUXWRVJCF-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- -1 butyrolavone Chemical compound 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、液晶表示素子や液晶−光シャッタ等で用いる
液晶素子、特に強誘電性液晶を用いた液晶素子に関し、
更に詳しくは液晶分子の初期配向状態を改善することに
より1表示特性を改善した液晶素子に関するものである
。[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a liquid crystal element used in a liquid crystal display element, a liquid crystal-optical shutter, etc., particularly a liquid crystal element using ferroelectric liquid crystal,
More specifically, the present invention relates to a liquid crystal element with improved display characteristics by improving the initial alignment state of liquid crystal molecules.
強誘電性液晶分子の屈折率異方性を利用して偏光素子と
の組み合わせにより透過光線を制御する型の表示素子が
クラーク(C1ark)及びラガーウォル(Lager
vall)により提案されている(特開昭58−107
216号公報、米国特許第4387924号明細四等)
、この強誘電性液晶は、一般に特定の温度域において、
カイラルスメクチックC相(5raC” )又はH相(
Sa+H°)を有し、この状態において、加えられる電
界に応答して第1の光学的安定状態と第2の光学的安定
状態のいずれかを取り、且つ電界の印加のないときはそ
の状態を維持する性質、すなわち双安定性を有し、また
電界の変化に対する応答も速やかであり、高速ならびに
記憶型の表示素子としての広い利用が期待されている。A type of display element that uses the refractive index anisotropy of ferroelectric liquid crystal molecules to control transmitted light in combination with a polarizing element has been developed by Clark and Lager.
vall) (Japanese Unexamined Patent Publication No. 58-107
No. 216, U.S. Patent No. 4,387,924, etc.)
, this ferroelectric liquid crystal generally exhibits
Chiral smectic C phase (5raC”) or H phase (
Sa+H°), and in this state, it assumes either the first optically stable state or the second optically stable state in response to an applied electric field, and maintains that state when no electric field is applied. It has the property of maintaining its stability, that is, bistability, and also has a quick response to changes in electric field, and is expected to be widely used as a high-speed and memory-type display element.
この双安定性を有する液晶を用いた光学変調素子が所定
の駆動特性を発揮するためには、一対の平行基板間に配
置される液晶が、電界の印加状態とは無関係に、上記2
つの安定状態の間での変換が効果的に起るような分子配
列状態にあることが必要である。たとえばSac”また
はSmH’相を有する強誘電性液晶については、Sac
・またはS+s)l”相を有する液晶分子相が基板面に
対して垂直で、したがって液晶分子軸が基板面にほぼ平
行に配列した領域(モノドメイン)が形成される必要が
ある。In order for an optical modulation element using this bistable liquid crystal to exhibit predetermined driving characteristics, the liquid crystal disposed between a pair of parallel substrates must be
It is necessary that the molecules be in such a state that conversion between two stable states can occur effectively. For example, for ferroelectric liquid crystals having Sac'' or SmH' phases, Sac
-or S+s) It is necessary to form a region (monodomain) in which the liquid crystal molecular phase having the l'' phase is perpendicular to the substrate surface, and the liquid crystal molecular axes are arranged substantially parallel to the substrate surface.
ところで、強誘電性液晶の配向方法としては、一般にラ
ビング処理や斜方蒸若処理などによる一軸性配向処理を
施した配向制御膜を用いる方法が知られている。By the way, as a method for aligning ferroelectric liquid crystals, a method using an alignment control film that has been subjected to a uniaxial alignment treatment such as a rubbing treatment or an oblique evaporation treatment is generally known.
この従来からの配向方法は、そのほとんどが双安定性を
示さないらせん構造をもつ強誘電性液晶に対するものて
あった。例えば、特開昭60−230[1:15号公報
に開示された配向方法は、双安定性を示さないらせん構
造の状態下で強誘電性液晶をラビング処理したポリイミ
ド1漠によって配向制御するものであった。Most of these conventional alignment methods have been applied to ferroelectric liquid crystals having a helical structure that does not exhibit bistability. For example, the alignment method disclosed in Japanese Patent Application Laid-Open No. 60-230 [1:15] involves controlling the alignment of a ferroelectric liquid crystal using a polyimide compound rubbed with a ferroelectric liquid crystal in a state of a helical structure that does not exhibit bistability. Met.
しかしながら、前述した如きの従来の配向制御膜をクラ
ークとラガウオールによって発表された双安定性を示す
非らせん構造の強誘電性液晶に対する配向制御に適用し
た場合には、下達の如き問題点を有していた。However, when the conventional alignment control film as described above is applied to control the alignment of a ferroelectric liquid crystal with a non-helical structure that exhibits bistability as announced by Clark and Lagauer, it has the following problems. was.
し発明か解決しようとする問題点コ
すなわち、本発明者らの実験によれば、従来の配向量u
n nyによって配向させて得られた非らせん構造の強
誘電性液晶でのチルト角(後述のft5a図に示す角度
)からせん構造をもつ強誘電性液晶でのチルト角(後述
の第2図に示す五角錐の頂角の1/2の角度■)と較べ
て小さくなっていることか判明した。特に、従来の配向
制御膜によって配向させて得た非らせん構造の強誘電性
液晶てのチルト角θは、一般にlO°程度で、その時の
透過率はせいぜい3〜5%程度てあった。However, according to experiments conducted by the present inventors, the conventional orientation amount u
The tilt angle of a ferroelectric liquid crystal with a non-helical structure obtained by aligning by It was found that the angle is smaller than the angle (■) which is 1/2 of the apex angle of the pentagonal pyramid shown. In particular, the tilt angle θ of a ferroelectric liquid crystal with a non-helical structure obtained by alignment using a conventional alignment control film is generally about 10°, and the transmittance at that time is about 3 to 5% at most.
この様に、クラークとラガウオールによれば双安定性を
実現する非らせん構造の強誘電性液晶゛Cのチルト角か
らせん構造をもつ強誘電性液晶てのチルト角と同一の角
度をもつはずであるか、実際には非らせん構造でのチル
ト角θの方からせん構造でのチルト角Oより小さくなっ
ている。しかも、この非らせん構造でのチルト角0から
せん構造でのチルト角0より小さくなる原因か非らせん
構造での液晶分子のねじれ配列に帰因していることか判
明した。つまり、非らせん構造をもつ強誘電性液晶では
、液晶分子か第4図に示す様に基板の法線に対して上基
板に隣接する液晶分子の軸12より下基板に隣接す色液
晶分子の軸43(ねじれ配列の方向44)へ連続的にね
しれ角δてねしれて配列しており、このことか非らせん
構造てのチルトf60からせん構造でのチルト角■より
小さくなる原因となっている。In this way, according to Clark and Lagauer, the tilt angle of a ferroelectric liquid crystal C with a non-helical structure that achieves bistability should be the same as the tilt angle of a ferroelectric liquid crystal with a helical structure. In fact, the tilt angle θ of the non-helical structure is smaller than the tilt angle O of the helical structure. Furthermore, it has been found that the reason why the tilt angle becomes smaller than 0 in the helical structure from 0 in the non-helical structure is due to the twisted arrangement of the liquid crystal molecules in the non-helical structure. In other words, in a ferroelectric liquid crystal with a non-helical structure, as shown in FIG. They are arranged in a continuous twisted manner toward the axis 43 (direction of twisted arrangement 44), and this may be the reason why the tilt angle f60 for a non-helical structure becomes smaller than the tilt angle ■ for a helical structure. ing.
尚、IA中41は上下基板に形成したラビンク処理や斜
方蒸若処理によって得られた一軸性配向軸を表わしてい
る。Note that 41 in the IA represents a uniaxial alignment axis obtained by the Ravinck process or the oblique evaporation process formed on the upper and lower substrates.
ところで、液晶の複屈折を利用した液晶素子の場合、直
交ニコル下での透過率は、
で表わされる。前述の非らせん構造におけるチルト0は
第1と第2の配向状態でのねじれ配列した液晶分子の平
均分子軸方向の角度として現われることになる。上式に
よれば、かかるチルトθが22.5°の角度の時最大の
透過率となるが、双安定、 性を実現する非らせん構造
でのチルト角Oは大きくてlO°程度の角度であり、従
って表示装置としての適用を考慮した時にはその透過率
は3〜5%程度で十分なものとはならない問題がある。By the way, in the case of a liquid crystal element that utilizes the birefringence of liquid crystal, the transmittance under crossed Nicols is expressed as follows. The zero tilt in the non-helical structure described above appears as an angle between the average molecular axes of the twisted liquid crystal molecules in the first and second alignment states. According to the above equation, the maximum transmittance occurs when the tilt θ is 22.5°, but the tilt angle O in a non-helical structure that achieves bistable properties is large, at an angle of about 10°. Therefore, when considering application as a display device, there is a problem that the transmittance is about 3 to 5%, which is not sufficient.
従って、本発明の目的は、前述の問題点を解決すること
、すなわち少なくとも2つの安定状態、特に双安定性を
実現する非らせん構造の強誘電性液晶でのチルト角を増
大し、これによって画素シャッタ開口時の透過率を向上
させた液晶素子を提供することにある。It is therefore an object of the present invention to solve the aforementioned problems, namely to increase the tilt angle in a ferroelectric liquid crystal with a non-helical structure that achieves at least two stable states, in particular bistability, and thereby An object of the present invention is to provide a liquid crystal element with improved transmittance when the shutter is opened.
本発明の別の目的は、強誘電性液晶のモノドメイン形成
に適した配向制御膜を用いた液晶素子を提供することに
ある。Another object of the present invention is to provide a liquid crystal element using an alignment control film suitable for forming monodomains of ferroelectric liquid crystal.
[問題点を解決するための手段]及び[作 用]すなわ
ち、本発明は一対の平行基板と、該一対の平行基板の面
に対して垂直な複数の層を形成している分子の配列をも
つ強誘電性液晶とを有する液晶素子において、前記一対
の平行基板のうち少なくとも一方の基板が前記複数の居
を一方向に優先して配向させる下記一般式(I)で示さ
れる構造単位を有する高分子物質の被膜を有しているこ
とを特徴とする液晶素子である。[Means for Solving the Problem] and [Operation] That is, the present invention comprises a pair of parallel substrates and an arrangement of molecules forming a plurality of layers perpendicular to the planes of the pair of parallel substrates. In a liquid crystal element having a ferroelectric liquid crystal, at least one of the pair of parallel substrates has a structural unit represented by the following general formula (I) that preferentially orients the plurality of groups in one direction. This is a liquid crystal element characterized by having a coating made of a polymeric substance.
一般式(1) %式%() て示される2価の基を表わすコ 以下、本発明の詳細な説明する。General formula (1) %formula%() A code representing a divalent group shown in The present invention will be explained in detail below.
7tS1図は、本発明の液晶素子の一実施態様を示す断
面図である。第16に示す液晶素子は、一対の平行配置
した上基板11a及び下基板11bと、それぞれの基板
に配線した透明電極12aとtzb′?:&1えている
。上基板11aと下基板11bとの間には強誘電性液晶
、好ましくは少なくとも2つの安定状態を示す非らせん
構造の強誘電性液晶13が配置されている。7tS1 is a sectional view showing one embodiment of the liquid crystal element of the present invention. The liquid crystal element shown in No. 16 has a pair of upper and lower substrates 11a and 11b arranged in parallel, and transparent electrodes 12a and tzb'? that are wired to each substrate. :&1 is counted. A ferroelectric liquid crystal, preferably a non-helical ferroelectric liquid crystal 13 exhibiting at least two stable states, is arranged between the upper substrate 11a and the lower substrate 11b.
前述した透明電極12aと12bは1強誘電性液晶13
をマルチプレクシング駆動するために、それぞれストラ
イプ形状で配線され、且つそのストライプ形状が互いに
交差させて配置されていることか好ましい。The transparent electrodes 12a and 12b described above are 1 ferroelectric liquid crystal 13.
In order to perform multiplexing drive, it is preferable that the wiring be arranged in a stripe shape, and that the stripe shapes be arranged so as to intersect with each other.
本発明の液晶素子は、基板11aとIlbにそれぞれ前
記一般式(1)で示された高分子物質の被lQで形成し
た配向制御n214aと14bが配置されている。In the liquid crystal element of the present invention, alignment controls n214a and 14b formed of a polymeric substance lQ represented by the general formula (1) are arranged on the substrates 11a and Ilb, respectively.
前記一般式(I)で示される構造単位を有す゛る高分子
物質の具体例は、下記のとおりである。Specific examples of the polymeric substance having the structural unit represented by the general formula (I) are as follows.
(1) 。(1).
日 υ (2) 。Day υ (2).
(5) 。(5).
口
基板上に上記一般式(I)で示される構造単位を有する
ポリイミド系高分子の被膜を設けるためにはポリアミッ
ク酸をN−メチルピロリドン(NMP) 、ジメチルホ
ルムアミド(DMF) 、ジメチルアセトアミド(DM
AC)、ジメチルスルホキサイド(DMSO) 、硫酸
ジメチル、スルホラン、ブチロラフ1−ン、クレゾール
、フェノール、ハロゲン化フェノール、シクロヘキサノ
ン、ジオキサンなどに溶解し、基板上に塗布した後、加
熱処理して脱水閉環してイミド結合を持たせることによ
り形成する。In order to provide a film of a polyimide polymer having a structural unit represented by the above general formula (I) on a substrate, polyamic acid is mixed with N-methylpyrrolidone (NMP), dimethylformamide (DMF), and dimethylacetamide (DM).
AC), dimethyl sulfoxide (DMSO), dimethyl sulfate, sulfolane, butyrolavone, cresol, phenol, halogenated phenol, cyclohexanone, dioxane, etc., and coated on a substrate, followed by heat treatment for dehydration and ring closure. It is formed by adding an imide bond.
ポリイミド前駆体のポリアミック酸はテトラカルボン酸
の無水物とジアミンの縮合により合成される。用いられ
るテトラカルボン酸の無水物としては2.2−ビス[4
−(2,:l−ジカルボキシフェノキシ)フェニル]プ
ロパンニ酸無水物か有用である。Polyamic acid, which is a polyimide precursor, is synthesized by condensation of tetracarboxylic acid anhydride and diamine. The anhydride of tetracarboxylic acid used is 2,2-bis[4
-(2,:l-dicarboxyphenoxy)phenyl]propanedioic anhydride is useful.
ジアミンとしては、p−フェニレンジアミン。The diamine is p-phenylenediamine.
m−フェニレンジアミン、 4.4’−ジアミノジフェ
ニルエーテル、 4.4’−ジアミノジフェニルメタン
、ベンジジン、 4.4’−ジアミノターフェニル。m-phenylenediamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, benzidine, 4,4'-diaminoterphenyl.
4.4′−ジアミノジフェニルスルフィl’ 、 4.
4’ −ジアミノジフェニルスルホン、1.5−ジアミ
ノナフタレン、5(8)アミノ−1(4’−アミノフェ
ニル)1.3.3−トリメチルインダン、 3.3’−
ベンゾフェノンジアミン等が用いられる。4.4'-diaminodiphenylsulfyl', 4.
4'-diaminodiphenylsulfone, 1.5-diaminonaphthalene, 5(8)amino-1(4'-aminophenyl)1.3.3-trimethylindane, 3.3'-
Benzophenone diamine and the like are used.
このようにして得られたポリアミック酸は極限粘度([
η] ) 0.1〜5.0が好ましい、得られたポリア
ミック酸を溶剤により希釈したのち基板に塗布すること
でFJ膜を形成する。塗布後、100〜400℃で脱水
閉環してポリイミド高分子薄膜を設けることができる。The polyamic acid obtained in this way has an intrinsic viscosity ([
[eta]) The obtained polyamic acid, preferably 0.1 to 5.0, is diluted with a solvent and then applied to a substrate to form an FJ film. After coating, a polyimide polymer thin film can be provided by dehydration and ring closure at 100 to 400°C.
これらの高分子物質の被膜は、絶縁膜としての機能をも
たさせることが可能で1通常100 A〜1μ程度、好
ましくは500A〜200OAの範囲の膜厚で形成され
る。The film of these polymeric substances can function as an insulating film, and is usually formed to have a thickness in the range of about 100 Å to 1 μm, preferably 500 Å to 200 OA.
又、これら高分子物質の被11λの形成法としては、こ
の高分子物質の溶液あるいはその前駆体溶液をスピンナ
ー塗布法、浸漬塗布法、スクリーン印刷法、スプレー塗
布法やロール塗布法などの方法によって塗布した後、所
定の硬化条件(例えば加熱)下で硬化させる方法を用い
ることができる。In addition, as a method for forming the 11λ layer of these polymeric substances, a solution of the polymeric substance or its precursor solution is coated with a spinner coating method, a dip coating method, a screen printing method, a spray coating method, a roll coating method, or the like. After coating, a method of curing under predetermined curing conditions (for example, heating) can be used.
次に、本発明の液晶素子に用いられる一対の平行基板の
面に対して垂直な複数の層を形成している分子の配列を
もつ強誘電性液晶について説明する。Next, a ferroelectric liquid crystal having molecular alignment forming a plurality of layers perpendicular to the planes of a pair of parallel substrates used in the liquid crystal element of the present invention will be described.
第2図は、らせん構造を用いた強誘電性液晶セルの例を
模式的に描いたものである。21aと21bは、 I!
1203 、5nOzやITO(Indium Tin
0xide)等の透明電極がコートされた基板(ガラ
ス板)であり、その間にN数の液晶分子層22がガラス
基板面に対して垂直な層となるよう配向したSmC0(
カイラルスメクチックC相)の液晶が封入されている。FIG. 2 schematically depicts an example of a ferroelectric liquid crystal cell using a helical structure. 21a and 21b are I!
1203, 5nOz and ITO (Indium Tin
It is a substrate (glass plate) coated with a transparent electrode such as SmC0(
Chiral smectic C phase) liquid crystal is sealed.
太線で示した線23が液晶分子を表わしており、この液
晶分子23は、その分子に直交した方向に双極子モーメ
ント(ρ、)24を有している。この時の五角錐の頂角
をなす角度がかかるらせん構造のカイラルスメクチック
相でのチルト角0を表わしている。基板21aと21b
上の電極間に一定の閾値以上の電圧を印加すると、液晶
分子23のらせん構造がほどけ、双極子モーメント(P
工)24はすべて電界方向に向くよう、液晶分子23の
配向方向を変えることができる。A thick line 23 represents a liquid crystal molecule, and this liquid crystal molecule 23 has a dipole moment (ρ, ) 24 in a direction perpendicular to the molecule. At this time, the angle forming the apex angle of the pentagonal pyramid represents the tilt angle of 0 in the chiral smectic phase of the helical structure. Substrates 21a and 21b
When a voltage higher than a certain threshold is applied between the upper electrodes, the helical structure of the liquid crystal molecules 23 is unraveled, and the dipole moment (P
(4) The alignment direction of the liquid crystal molecules 23 can be changed so that all of the liquid crystal molecules 24 are oriented in the direction of the electric field.
しかし、このらせん構造を用いた強誘電性液晶は、電界
無印加時には、もとのらせん構造に復帰するもので、下
達する双安定性を示さない。However, a ferroelectric liquid crystal using this helical structure returns to its original helical structure when no electric field is applied, and does not show any decline in bistability.
本発明の好ましい具体例では、少なくとも2つの安定状
態、特に双安定状態をもつ第3図に示す強誘電性液晶素
子を用いることができる。すなわち、液晶セルの厚さを
充分に薄くシた場合(例えjf 1ル)に゛は、第3図
に示すように電界を印加していない状態でも液晶分子の
らせん構造はほどけ、非らせん構造となり、その双極子
モーメントPa又はpbは上向き(34a)又は下向き
(34b)のどちらかの状fEをとり、双安定状態が形
成される。このようなセルに第3図に示す如く一定の閾
値以上の極性の異なる電界EaまたはEbを付与すると
、双極子モーメント電界Ea又はEbは電界ベクトルに
対応して上向き34a又は、下向き34bと向きを変え
、それに応じて液晶分子は第1の安定状5m 33 a
かあるいは第2の安定状態33bの何れか一方に配向す
る。この時の第1と第2の安定状態のなす角度の1/2
がチルト角0に相当している。In a preferred embodiment of the invention, a ferroelectric liquid crystal element as shown in FIG. 3 can be used which has at least two stable states, especially a bistable state. In other words, when the thickness of the liquid crystal cell is made sufficiently thin (for example, jf 1), the helical structure of the liquid crystal molecules unravels even when no electric field is applied, and becomes a non-helical structure, as shown in Figure 3. The dipole moment Pa or pb takes either an upward (34a) or downward (34b) state fE, and a bistable state is formed. When such a cell is given an electric field Ea or Eb of different polarity above a certain threshold as shown in FIG. 3, the dipole moment electric field Ea or Eb will be directed upward 34a or downward 34b in accordance with the electric field vector. and accordingly the liquid crystal molecules are in the first stable state 5m 33 a
or the second stable state 33b. 1/2 of the angle formed by the first and second stable states at this time
corresponds to a tilt angle of 0.
このような強誘電性液晶を光学変調素子として用いるこ
との利点は2つある。第1に、応答速度が極めて速いこ
と、第2に液晶分子の配向が双安定性を有することであ
る。第2の点を1例えば第3図によって説明すると、電
界Eaを印加すると液晶分子は第1の安定状333aに
配向するが、この状態は電界を切っても安定である。又
、逆向きの電界Ebを印加すると、液晶分子は第2の安
定状態33bに配向して、その分子の向きを変えるが、
やはり電界を切ってもこの状態に留っている。又。There are two advantages to using such a ferroelectric liquid crystal as an optical modulation element. Firstly, the response speed is extremely fast, and secondly, the alignment of liquid crystal molecules has bistability. To explain the second point with reference to FIG. 3, for example, when the electric field Ea is applied, the liquid crystal molecules are oriented in a first stable state 333a, and this state remains stable even when the electric field is turned off. Furthermore, when an electric field Eb in the opposite direction is applied, the liquid crystal molecules are oriented to the second stable state 33b and the orientation of the molecules is changed.
It remains in this state even if the electric field is turned off. or.
ダーえる電界Eaが一定の田植を越えない限り、それぞ
れの配向状態にやはり維持されている。このような応答
速度の速さと、双安定性によるメモリー効果が有効に実
現されるには、セルとしては出来るだけ薄い方が好まし
く、一般的には、0.5牌〜20μ、特に1μ〜5ルが
適している。この種の強請・電性液晶を用いたマトリク
ス電極構造を有する液晶−電気光学装置は、例えばクラ
ークとラガバルにより、米国特許第43G7924号明
細書で提案されている。As long as the electric field Ea that decreases does not exceed a certain level of rice planting, each orientation state is maintained. In order to effectively realize the fast response speed and the memory effect due to bistability, it is preferable for the cell to be as thin as possible, and it is generally 0.5 to 20 μm, especially 1 μ to 5 μm. is suitable. A liquid crystal-electro-optical device having a matrix electrode structure using a highly conductive liquid crystal of this type has been proposed, for example, by Clark and Ragaval in US Pat. No. 43G7924.
本発明の液晶素子で用いることができる強誘電性液晶と
しては1例えばp−デシロキシベンジリデン−p′−ア
ミノ−2−メチルブチルシンナメート(DOBAMBG
) 、 P−へキシロキシベンジリデン−p′−アミ
ノ−2−クロルプロピルシンナメート()IOBACP
C)、p−デシロキシベンジリデン−p’−アミノ−2
−メチルブチル−α−シアノシンナメー) (DOBA
MBCC)、 P−テトラデシロキシベンジリデン−
p′−アミノ−2−メチルブチル−α−シアノシンナメ
ート(TDOBAMBCG) 、 P−才クチルオキ
シベンジリデン−P′−アミ/−2−メチルブチル−α
−グロロシンナメー) (OOBAMBCC)、p−オ
クチルオキシベンジリデン−p′−アミノ−2−メチル
ブチル−α−メチルシンナメート、4.4′−アゾキシ
シンナミックアシッド−ビス(2−メチルブチル)エス
テル、4−o−(2−メチル)プチルレゾシリデンー4
′−オクチルアニリン、4−(2’−メチルブチル)フ
ェニル−4′−オクチルオキシビフェニル−4−カルボ
キシレート、4−へキシルオキシフェニル−4−(2″
−メチルブチル)ビフェニル−4′−力ルポキシレート
、4−オクチルオキシフェニル−4−(2’−メチルブ
チル)ビフェニル−4′−力ルポキシレート、4−へブ
チルフェニル−4−(4″−メチルヘキシル)ビフェニ
ル−4′−力ルポキシレート、4− (2’−メチルブ
チル)フェニル−4−(4“−メチルヘキシル)ビフェ
ニル−4′−力ルポキシレートなどを挙げることができ
、これらは単独又は2種以上組合せて用いることができ
、又強誘電性を示す範囲で他のコレステリック液晶やス
メクチック液晶を含有させることができる。Examples of the ferroelectric liquid crystal that can be used in the liquid crystal element of the present invention include p-decyloxybenzylidene-p'-amino-2-methylbutylcinnamate (DOBAMBG
), P-hexyloxybenzylidene-p'-amino-2-chloropropylcinnamate ()IOBACP
C), p-decyloxybenzylidene-p'-amino-2
-Methylbutyl-α-cyanosinname) (DOBA
MBCC), P-tetradecyloxybenzylidene-
p'-Amino-2-methylbutyl-α-cyanocinnamate (TDOBAMBCG), P-amino-2-methylbutyl-α-cyanocinnamate-P’-amino/-2-methylbutyl-α
(OOBAMBCC), p-octyloxybenzylidene-p'-amino-2-methylbutyl-α-methylcinnamate, 4,4'-azoxycinnamic acid-bis(2-methylbutyl) ester, 4-o -(2-methyl)butylresocylidene-4
'-Octylaniline, 4-(2'-methylbutyl)phenyl-4'-octyloxybiphenyl-4-carboxylate, 4-hexyloxyphenyl-4-(2''
-Methylbutyl)biphenyl-4'-rupoxylate, 4-octyloxyphenyl-4-(2'-methylbutyl)biphenyl-4'-rupoxylate, 4-hebutylphenyl-4-(4''-methylhexyl)biphenyl- Examples include 4'-rupoxylate, 4-(2'-methylbutyl)phenyl-4-(4"-methylhexyl)biphenyl-4'-rupoxylate, and these may be used alone or in combination of two or more. It is also possible to contain other cholesteric liquid crystals or smectic liquid crystals as long as they exhibit ferroelectricity.
又、本発明では強誘電性液晶としてカイラルスメクチッ
ク相を用いることができ、具体的には、カイラルスメク
チックC相(Sa+Cつ、H相(Sd・)、1相(Sm
l◆)、K相(SIIIKつやG相(S+++G◆)を
用いることができる。Furthermore, in the present invention, a chiral smectic phase can be used as the ferroelectric liquid crystal, and specifically, a chiral smectic C phase (Sa + C, H phase (Sd), one phase (Sm
l◆), K phase (SIIIK gloss G phase (S+++G◆)) can be used.
次に、本発明の液晶素子においては、前述した配向制御
IE214aと14bは、前述の高分子物質の被膜表面
をラビング処理などの一軸性配向処理を施すことによっ
て得ることができる。この際1本発明では、ラビング軸
などの一軸性配向軸を互いに平行又は交差させることが
できる。Next, in the liquid crystal element of the present invention, the aforementioned alignment control IEs 214a and 14b can be obtained by subjecting the surface of the coating of the aforementioned polymeric substance to a uniaxial alignment treatment such as a rubbing treatment. In this case, in one aspect of the present invention, uniaxial alignment axes such as rubbing axes can be parallel to or intersect with each other.
特に、本発明では、第5図に示す様に一軸性配向軸を交
差させることが好ましい、すなわち、第5図に示す様に
、上基板と下基板に形成する一軸性配向処理面では、無
電界時にそれぞれの一軸性配向軸51と52が第4図に
示すねじれ配列の方向44とは反対方向55の角度で交
差している。この様な一軸性配向処理面の存在下にカイ
ラルスメクチック相を該相より高温側の相よりの降温で
配向させた時に、1下基板に隣接する液晶分子の軸53
は互いに平行となる。このカイラルスメクチック相では
降温下で一軸性配向4+l+ 51と52の中間の角度
をもって配向したスメクチックA相(SmA)での液晶
分子の軸54からチルト角θ(又は−〇)をもって液晶
分子が配向し、第1と第2の安定状態(チルト角0のと
き第1の安定状態、チルト−〇の時第2の安定状態)を
形成することができる。In particular, in the present invention, it is preferable that the uniaxial orientation axes intersect as shown in FIG. 5. In other words, as shown in FIG. During the electric field, the respective uniaxial orientation axes 51 and 52 intersect at an angle 55 in the opposite direction to the direction 44 of the twisted arrangement shown in FIG. When the chiral smectic phase is aligned in the presence of such a uniaxially aligned surface by lowering the temperature of the phase on the higher temperature side, the axis 53 of the liquid crystal molecules adjacent to the lower substrate 1
are parallel to each other. In this chiral smectic phase, the liquid crystal molecules are oriented at a tilt angle θ (or -〇) from the axis 54 of the liquid crystal molecules in the smectic A phase (SmA), which is oriented at an angle between uniaxial orientation 4+l+ 51 and 52 as the temperature decreases. , first and second stable states (first stable state when the tilt angle is 0, second stable state when the tilt angle is -0) can be formed.
この液晶素子では、直交ニコルの一方の偏光軸56を第
1の安定状態における分子軸方向に対応する液晶分子の
軸53と平行として、他方の偏光軸57を偏光軸56と
直交させた時に最大コントラストを得ることができる。In this liquid crystal element, when one polarization axis 56 of crossed Nicols is set parallel to the axis 53 of the liquid crystal molecules corresponding to the molecular axis direction in the first stable state, and the other polarization axis 57 is made orthogonal to the polarization axis 56, the maximum You can get contrast.
本発明の好ましい具体例では、交流印加前処理により前
述したチルト0をらせん構造でのチルト0と等しいか、
あるいは同程度の角度まで増大させることができる。こ
の時のチルト角をθ′とする。この際に用いる交流とし
ては、電圧20〜500ボルト、好ましくは30〜+5
0ボルトで同波数lO〜500Hz 、好ましくは■0
〜200Hzを用いることができ、その印加時間を数秒
〜10分間程度で交流印加前処理を施すことができる。In a preferred embodiment of the present invention, the above-mentioned tilt 0 is made equal to the tilt 0 in the helical structure by pre-treatment of applying an alternating current.
Alternatively, the angle can be increased to the same degree. Let the tilt angle at this time be θ'. The alternating current used in this case has a voltage of 20 to 500 volts, preferably 30 to +5 volts.
Same wave number lO~500Hz at 0 volts, preferably ■0
~200 Hz can be used, and the AC application pretreatment can be performed with the application time being about several seconds to about 10 minutes.
又、かかる交流印加前処理は、液晶素子を例えば映像信
号や情報信号に応じて書込みを行う前の段階で行なわれ
、好ましくはかかる液晶素子を装置に組込み、かかる装
こを操作する時のウェイトタイムで前述の交流印加前処
理を行なうか、あるいはかかる液晶素子の製造時でも交
流印加前処理を施すことができる。Further, such AC application pre-processing is performed at a stage before writing is performed on the liquid crystal element according to, for example, a video signal or an information signal, and preferably, such a liquid crystal element is incorporated into a device and the weight when operating such a device is reduced. The above-mentioned AC application pre-treatment can be performed at a time, or alternatively, the AC application pre-treatment can be performed at the time of manufacturing such a liquid crystal element.
かかる交流印加前処理は1本発明者らが行なった実験、
すなわち第4図又は第5図に示す双安定状態をもつ強誘
電性液晶素子に交流電場を印加すると、印加前のチルト
角0がらせん構造でのチルトOと同程度にまで増大させ
たチルト角θ′とすることができ、しかも第5図に示す
状態の場合ではかかる交流印加を除去した後であっても
その増大されたチルト角θ′を維持することができる。Such alternating current application pretreatment is based on one experiment conducted by the present inventors.
That is, when an alternating current electric field is applied to a ferroelectric liquid crystal element having a bistable state as shown in FIG. 4 or FIG. 5, the tilt angle 0 before application increases to the same degree as the tilt O in the helical structure. .theta.', and in the state shown in FIG. 5, the increased tilt angle .theta.' can be maintained even after the alternating current application is removed.
又、かかる交流印加前処理は、自発分極の大きい強誘電
性液晶(例えば25℃で5 ne/ca+2以上、好ま
しくはIO+IC/C!12〜300nc/cm2
; ncはナノクーロンを示す単位である)に対して有
効である。この自発分極は100牌セルで三角波印加法
・によりΔ111定することができる。In addition, such AC application pretreatment is performed on a ferroelectric liquid crystal with large spontaneous polarization (for example, 5 ne/ca+2 or more at 25°C, preferably IO+IC/C!12 to 300 nc/cm2).
; nc is a unit indicating nanocoulombs). This spontaneous polarization can be determined by Δ111 using the triangular wave application method in a 100-tile cell.
・ジャパニーズ・ジャーナル・オブ・アプライド°フィ
ジックス(Japanese Journal of
AppliedPhysics) 22 (10)号、
1361〜Et83頁(1983年)に掲載されたケー
・ミャサト(K、旧yasato)らの共著の“グイレ
ックト・メソッド・クイズ・ドライアングラ−・ウエー
ブズ・フォー・メジャーリング・スボンタナス・ポーラ
リゼーション・イン・フェロエレクトリック・リキッド
・クリスタルパ(”Direct Method wi
th Triangular Wavesfar Me
aSuring 5pontaneous Po1ar
ization 1nFerroelectric L
iquid Crystal” )による。・Japanese Journal of Applied Physics
Applied Physics) 22 (10),
1361-ET83 (1983), co-authored by K. Myasato et al.・Ferroelectric Liquid Crystalpa (“Direct Method wi
th Triangular Wavesfar Me
aSuring 5pontaneous Po1ar
ization 1nFerroelectric L
iquid Crystal”).
本発明では、@述した配向制御N14aと1,4bのう
ち、一方の配向制す1膜の使用を省略することができる
。又、本発明の別の具体例では、前述した配向制御!1
pa 14aと14bのうち、一方の配向制御1りを別
の配向制御膜とすることも可能である。この他の配向制
御膜を形成する被膜としては5例えばポリビニルアルコ
ール、ポリアミド、ポリエステル、ポリイミド、ポリア
ミドイミド、ポリエステルイミドなどの被膜を挙げるこ
とができる。又、他の配向制御膜としてSiOや5i0
2などの無a物質を斜方蒸着によって形成したものも使
用可能である。In the present invention, it is possible to omit the use of one film that controls one of the orientation controls N14a and 1, 4b described above. In another specific example of the present invention, the above-mentioned orientation control! 1
It is also possible to use a separate alignment control film for one of the pas 14a and 14b. Examples of other coatings forming the orientation control film include coatings of polyvinyl alcohol, polyamide, polyester, polyimide, polyamideimide, polyesterimide, and the like. In addition, as other orientation control films, SiO and 5i0
It is also possible to use an amorphous material such as No. 2 formed by oblique evaporation.
[実施例]
以下1本発明を実施例及び比較例を示し、さらに具体例
を挙げて説明する。[Example] The present invention will be described below by showing Examples and Comparative Examples, and further by giving specific examples.
実施例1
2枚の0.7 am厚のガラス板を用意し、それぞれの
ガラス板の上に100OAのITOyを形成した。Example 1 Two 0.7 am thick glass plates were prepared, and 100 OA of ITOy was formed on each glass plate.
このITO膜付きのガラ板のそれぞれに2.2−ビス[
4〜(2,3−ジカルボキシフェノキシ)フェニル]ブ
ロバンニ酸無水物とP−フェニレンジアミンを1=1の
モル比で縮合し、合成したポリアミック酸をNMPで2
重量%に希釈した液を回転数3500r、p、mのスピ
ンナーで40秒間塗布した。塗布後、約1時mlの加熱
処理を施した。この時の塗膜の膜厚は約850Aであっ
た。2.2-bis [
4-(2,3-dicarboxyphenoxy)phenyl]brovanic acid anhydride and P-phenylenediamine were condensed at a molar ratio of 1=1, and the synthesized polyamic acid was diluted with NMP.
The solution diluted to % by weight was applied for 40 seconds using a spinner with a rotation speed of 3500 r, p, m. After application, heat treatment was performed for about 1 hour ml. The thickness of the coating film at this time was about 850A.
その被1模には、布によるラビング処理かなされ、それ
ぞれの配向制御膜におけるラビング軸を互いに平行とな
る様に2枚のガラスノ、(板をセルMlみした。The first pattern was subjected to a rubbing treatment with a cloth, and two sheets of glass (plates were placed in a cell Ml) so that the rubbing axes of the respective alignment control films were parallel to each other.
セル厚(上下基板の間隔)は下基板に予め形成しておい
たフォトレジストスペーサーで保持した。The cell thickness (distance between the upper and lower substrates) was maintained by photoresist spacers previously formed on the lower substrate.
この液晶セル(これを1.8#L鳳セルという)に上述
の混合液晶を等方相下で真空注入してから、等吉相から
0.5°Cハで30℃まで徐冷することにより配向させ
ることができた。以後の実験は30°Cで行った。By vacuum injecting the above-mentioned mixed liquid crystal into this liquid crystal cell (this is called a 1.8#L Otori cell) under an isotropic phase, and then slowly cooling it from the tokichi phase to 30°C at 0.5°C. I was able to orient it. Subsequent experiments were conducted at 30°C.
混合液晶
(ffi量比)
H3
Ca1170イトOCOは)(妊C)Iz5H−C2)
!s 1H3
C)+3
(Smc”の温度範囲;3〜35℃)
直交ニコル下てこのセルを観察すると、一様で欠陥のな
い非らせん構造のカイラルスメクチックC相を形成した
モノドメインが得られていた。Mixed liquid crystal (ffi amount ratio) H3 Ca1170ite OCO) (pregnancy C) Iz5H-C2)
! s 1H3 C)+3 (Temperature range of "Smc"; 3 to 35°C) Observation of the lever cell under crossed nicols reveals monodomains that form a chiral smectic C phase with a uniform, defect-free, non-helical structure. Ta.
この液晶セルにパルス電界(20V 、 5OOILs
ec )を印加することにより、一方の安定状態に液晶
分子方向をそろえ、直交ニコル下で、液晶セルを回転さ
せながら透過光量か最も低くなる最暗状fEjとなる位
首な見つけ1次に、前のパルスと逆極性のパルス電界(
−20V 、 SOD終sec )を印加し、もう一方
の安定分子配列状態に転移させ、液晶セルを回転させて
、最暗状態となる角度を見つけた0以上2つの最暗状態
の位こは、液晶の安定な平均的分子軸を検出しているこ
とに対応しこれらの間の角度かチルト角20に相当して
いる。A pulse electric field (20V, 5OOILs) is applied to this liquid crystal cell.
By applying ec), the direction of the liquid crystal molecules is aligned in one stable state, and while rotating the liquid crystal cell under crossed Nicols, the darkest state fEj where the amount of transmitted light is the lowest is found. A pulsed electric field of opposite polarity to the previous pulse (
-20V, SOD end sec) was applied to transition to the other stable molecular alignment state, and the liquid crystal cell was rotated to find the angle at which the darkest state was found.The positions of the two darkest states of 0 or more are as follows. Corresponding to the detection of the stable average molecular axes of the liquid crystal, the angle between them corresponds to a tilt angle of 20.
こうして前述の液晶セルのチルト角を測定したところ、
13°であった。すなわち、本例の液晶セルは、双安定
性カイラルスメクチック相て実現したメモリー状yE;
下で、そのチル;〜角か従来のものにはない大きなチル
ト角を示していた。又、この液晶セルにおける最明状態
での透過光量を5111足したところ、11%てあった
。この時の透過光量の測定は、フォトマルによって行な
った。When we measured the tilt angle of the liquid crystal cell mentioned above, we found that
It was 13°. That is, the liquid crystal cell of this example has a memory-like yE realized by a bistable chiral smectic phase;
Below, you can see that it has a large tilt angle that is not found in conventional models. Further, when the amount of transmitted light in the brightest state of this liquid crystal cell was added to 5111, it was 11%. The amount of transmitted light at this time was measured using Photomul.
次に、本発明者らは、前述の液晶セルにおける基板の法
線方向に対する液晶分子のねじれ配列角度とその方向を
測定した。この測定のために4前述の液晶セルで用いた
1、8g+sのフォトレジストスペーサに代えて、3.
0μlのアルミナビーズなスペーサとして用いたほかは
、全く同様の方法で液晶セル(IOHセルという)を作
成した。Next, the present inventors measured the twist alignment angle and direction of the liquid crystal molecules with respect to the normal direction of the substrate in the liquid crystal cell described above. For this measurement, instead of the 1.8 g+s photoresist spacer used in the liquid crystal cell described above, 3.
A liquid crystal cell (referred to as an IOH cell) was prepared in exactly the same manner except that 0 μl of alumina beads were used as a spacer.
液晶分子のねじれ配列角度の測定は、直交ニコル下ての
最暗状態時の交差角から、一方の検光子を回転させて、
その交差角を変化させ、さらに暗い状態となる位首な見
つけ、直交時から一方の検光子を回転させた角度を測定
した。この角度は、前述のねじれ角δに相当している。To measure the twist alignment angle of liquid crystal molecules, rotate one analyzer from the intersection angle in the darkest state under crossed Nicols.
By changing the intersection angle, we found the position that would make the light even darker, and measured the angle at which one analyzer was rotated from the orthogonal position. This angle corresponds to the twist angle δ mentioned above.
従って、前述の3.Olセルに関して、観察者から見て
、時計まわりを正(+)とし1反時計まわりを負(−)
とすると、検光子を直交ニコルから負方向に5〜7°回
転し、次いで液晶セルを回転して暗状態を捜すことかて
きた。また、偏光子を直交ニコルから正方向に5〜7°
回転しても同様に暗状態が得られた。従って、この素子
での液晶分子は、正方向にねじれ配列を形成しており、
上下基板の隣接面にある液晶分子の長袖がlO″−14
°のねじれ角δをもってねじれていることが判った。Therefore, the above 3. Regarding the Ol cell, from the observer's perspective, clockwise rotation is positive (+) and counterclockwise rotation is negative (-).
In this case, the analyzer was rotated 5 to 7 degrees in the negative direction from crossed nicols, and then the liquid crystal cell was rotated to search for a dark state. Also, move the polarizer 5 to 7 degrees in the positive direction from crossed Nicols.
Even with rotation, a dark state was similarly obtained. Therefore, the liquid crystal molecules in this device form a twisted arrangement in the positive direction,
The long sleeves of liquid crystal molecules on the adjacent surfaces of the upper and lower substrates are lO″-14
It was found that it was twisted with a twist angle δ of °.
実施例2
実施例1の1.8μmセルで用いた平行なうピング軸に
代えて、負方向(−)に45゛及び20°の角度で交差
したラビング軸を用いたほかは、実施例1と全く同様の
方法で液晶セルを作成した。Example 2 The same procedure as Example 1 was used, except that rubbing axes intersecting at angles of 45° and 20° in the negative direction (-) were used in place of the parallel wrapping axes used in the 1.8 μm cell of Example 1. A liquid crystal cell was created in exactly the same manner.
この液晶セルのチルト角を測定したところ、何れも14
″であった。これら2つの液晶セルは、何れも5III
C・の高温側にS+sAが存在しているが、S+++A
の光軸は交差したラビング軸のなす角度の二等分線上に
存在していることが判った。When the tilt angle of this liquid crystal cell was measured, it was 14
''. Both of these two liquid crystal cells were 5III
S+sA exists on the high temperature side of C., but S+++A
It was found that the optical axis of is located on the bisector of the angle formed by the crossed rubbing axes.
次いで、上述した2gの液晶セルにそれぞれ電圧70ポ
ルトで周波数70Hzの高電界交流を約5分間印加した
(交流印加前処理)、この時のチルト角θ′をδI11
定した。この結果を下記の表1に示す。Next, a high electric field alternating current with a voltage of 70 volts and a frequency of 70 Hz was applied to each of the above-mentioned 2 g liquid crystal cells for about 5 minutes (AC application pretreatment), and the tilt angle θ' at this time was set to δI11
Established. The results are shown in Table 1 below.
表 1
この2種の液晶セルについて、前述の3gmセルの液晶
素子てのねしれ角δを測定した時の方法と同様の方法で
第4図に示すねじれ角δを測定したところ、交差角−4
5°と一20°の交差ラヒ′ング軸を用いた液晶素子て
は、上下基板の法線に対する液晶分子のねじれ角δは観
察されず、上下基板に隣接する液晶分子軸は互いに平行
であること力1判った。しかも交差角−45°と一20
゛の交差ラビング軸を用いた液晶素子では+20ボルト
と−204(ルトの駆動用矩形パルスをl m5ecて
交互に印加し続けても表1のチルト角θ′を維持するこ
とカイできた。これは、実際に映像信号や情報信号に応
じて、この液晶素子に例えば特開昭59−19:142
6号公報や特開昭59−19347号公報に記載された
様な時分割駆動法を適用した場合てあっても、最大チル
トf110 ’を維持することかてきる点に対応したも
のである。又、この時の透過率を測定したところ。Table 1 For these two types of liquid crystal cells, the torsion angle δ shown in Figure 4 was measured using the same method used to measure the torsion angle δ of the liquid crystal element of the 3gm cell described above. 4
In a liquid crystal device using crossed Rahing axes of 5° and -20°, the twist angle δ of the liquid crystal molecules with respect to the normal to the upper and lower substrates is not observed, and the liquid crystal molecular axes adjacent to the upper and lower substrates are parallel to each other. I found it to be powerful. Moreover, the intersection angle is -45° and -20°.
In the liquid crystal device using the crossed rubbing axes, the tilt angle θ' shown in Table 1 could be maintained even if the driving rectangular pulses of +20 volts and -204 volts (1 m5ec) were applied alternately. Actually, depending on the video signal or information signal, this liquid crystal element is
This corresponds to the point that even when a time division driving method such as that described in Japanese Patent No. 6 or Japanese Unexamined Patent Publication No. 59-19347 is applied, the maximum tilt f110' can be maintained. Also, the transmittance at this time was measured.
何れも約17%であった。Both were about 17%.
ねじれ角δをもつねしれ配列状態の方向は、基板とその
界面付近の液晶との相互作用により決まる。つまり、界
面付近の液晶分子の分極方向か基板に対して内向きか、
外向きかか、基板の性質により決められ、上下基板とも
同一の配向制御膜を用いた場合、基板間の液晶は強制的
にねじれ配列をもって配向させられる。The direction of the twisted state with twist angle δ is determined by the interaction between the substrate and the liquid crystal near the interface. In other words, whether the polarization direction of the liquid crystal molecules near the interface is inward with respect to the substrate,
The outward orientation is determined by the properties of the substrates, and when the same alignment control film is used for both the upper and lower substrates, the liquid crystal between the substrates is forcibly oriented in a twisted alignment.
基板の法線に沿ったねじれ配列の方向と一軸性配向軸の
ずらし方向か同一方向の場合、基板の界面付近の分子は
各基板の配向軸方向に配列するため、ねじれ配列状態か
より安定化され、前述の交流印加前処理の後のチルト角
O′の状態では準安定の配向状態となる。If the direction of twisted alignment along the normal line of the substrate and the uniaxial alignment axis are shifted or in the same direction, the molecules near the interface of the substrates are aligned in the direction of the alignment axis of each substrate, making the twisted alignment state more stable. In the state where the tilt angle is O' after the above-mentioned alternating current application pretreatment, a metastable orientation state is obtained.
前述の交流印加前処理の後のチルト角θ′の状態ては界
面付近の分子の分極か、一方の基板では内向きて、他の
基板ては外向きの配列をとる必要がある。The state of the tilt angle θ' after the above-mentioned alternating current application pretreatment is due to the polarization of molecules near the interface, or it is necessary that one substrate faces inward and the other substrate faces outward.
液晶のねじれ配列方向と反対方向に一軸性配向軸をずら
した場合、すなわち、ねじれ配列方向と反対方向の角度
で一軸性配向軸を交差した場合、分子分極と界面との相
互作用による安定化エネルギーよりも、−軸配向性軸に
よる強制的なアンカリングによる安定化エネルギーの方
が大きく。When the uniaxial alignment axis is shifted in the opposite direction to the twisted alignment direction of the liquid crystal, that is, when the uniaxial alignment axis is crossed at an angle opposite to the twisted alignment direction, the stabilization energy due to the interaction between molecular polarization and the interface The stabilization energy due to forced anchoring by the -axis orientation axis is larger than that of the -axis orientation axis.
従って安定なチルト角θ′をもつ状態が実現できる。Therefore, a state with a stable tilt angle θ' can be realized.
従って、透過率が高い強調電性液晶素子を実現するため
には、ねじれ配列状態を解消し、しかも交流印加前処理
によって付加された理想的な配列状IEを安定化する方
向に一軸性配向軸に互いにずらすことが必要である。そ
の方向とは、液晶と基板界面によって決められるねじれ
角δをもつ液晶のねじれ配列方向の反対方向である。Therefore, in order to realize an enhanced electroconductive liquid crystal element with high transmittance, it is necessary to eliminate the twisted alignment state and to align the uniaxial alignment axis in a direction that stabilizes the ideal aligned IE added by the AC application pre-treatment. It is necessary to shift them from each other. This direction is opposite to the direction in which the liquid crystal is twisted and arranged at a twist angle δ determined by the interface between the liquid crystal and the substrate.
比較例1
実施例1の1.81セルを作成した時に用いた配向制御
膜として、3.3’、4.4’−ジフェニルテトラカル
ボン酸無水物とp−フェニレンジアミンとをl:lのモ
ル比て脱水縮合反応させて得たポリアミック酸の3.5
重量%N−メチル−2−ピロリ1くン液による塗布膜を
脱水閉環させて形成したポリイミド11りにラビング処
理したものに代えて使用したほかは、全く同様の方法て
液晶セルを作成した。Comparative Example 1 As the alignment control film used when creating the 1.81 cell of Example 1, 3.3',4.4'-diphenyltetracarboxylic acid anhydride and p-phenylenediamine were mixed in a molar ratio of 1:1. 3.5 of polyamic acid obtained by dehydration condensation reaction.
A liquid crystal cell was prepared in exactly the same manner except that polyimide 11, which was formed by dehydrating and ring-closing a coating film of 1% by weight N-methyl-2-pyrroli solution, was subjected to a rubbing treatment.
この液晶セルにおけるチルト角Oと透過率を実施例1と
同様の方法で測定したところ、チルト角θは6°〜81
て、その時の透過率は3〜5%程度であった。すなわち
、本比較セルは、y、安定性カイラルスメクチック相で
実現したメモリー状態下てのチルト角か小さく、又その
透過率は表示装置に適用するには全く不十分である。When the tilt angle O and transmittance of this liquid crystal cell were measured in the same manner as in Example 1, the tilt angle θ was 6° to 81°.
The transmittance at that time was about 3 to 5%. That is, the comparative cell has a small tilt angle under a memory state realized by a stable chiral smectic phase, and its transmittance is completely insufficient for application to a display device.
比較例2
実施例1の1.8μIセルを作成した時に用いた配向制
御膜として、3.3’、4.C−ジフェニルテトラカル
ボン酸無水物と4.4′−ジアミノジフェニルとを1:
1のモル比て脱水縮合反応させて得たポリアミック酸の
3.5重量%N−メチル−2−ピロリドン液による塗I
II膜を脱水閉環させて形成したボリイミド膜にラビン
グ処理したものに代えて使用したほかは、全く同様の方
法で液晶セルを作成した。Comparative Example 2 The alignment control films used when creating the 1.8μI cell of Example 1 were 3.3', 4. C-diphenyltetracarboxylic anhydride and 4,4'-diaminodiphenyl in 1:
Coating I with a 3.5% by weight N-methyl-2-pyrrolidone solution of polyamic acid obtained by dehydration condensation reaction at a molar ratio of 1
A liquid crystal cell was prepared in exactly the same manner except that a polyimide film formed by dehydrating and ring-closing the II film was used instead of a rubbed polyimide film.
この液晶セルにおけるチルト角θと透過率を実施例1と
同様の方法でΔIII定したところ、チルト角0は6°
〜7°で、その時の透過率は3〜4%程度であった。When the tilt angle θ and transmittance of this liquid crystal cell were determined as ΔIII in the same manner as in Example 1, the tilt angle 0 was 6°.
~7°, and the transmittance at that time was about 3 to 4%.
比較例3
実施例1の1.8μ■セルを作成した時に用いた配向制
m1lQとして、3.3’、4.4’−ジフェニルテト
ラカルボン酸無水物と4.4′−ジアミノターフェニル
とをl:lのモル比で脱水綜合反応させて得たポリアミ
ック酸の3.5重量%N−メチル−2−ピロリドン液に
よる塗布膜を脱水閉環させて形成したポリイミド膜にラ
ビング処理したものに代えて使用したほかは、全く同様
の方法で液晶セルを作成した。Comparative Example 3 3.3',4.4'-diphenyltetracarboxylic acid anhydride and 4.4'-diaminoterphenyl were used as the orientation control m11Q used when creating the 1.8μ■ cell in Example 1. Instead of a polyimide film formed by dehydrating and ring-closing a coating film of a 3.5% by weight N-methyl-2-pyrrolidone solution of polyamic acid obtained by dehydration and synthesis reaction at a molar ratio of 1:1, rubbing treatment was performed. A liquid crystal cell was created in exactly the same manner except for using the same method.
この液晶セルにおけるチルト角θと透過率を実施例1と
同様の方法で測定したところ、チルト角0は5°〜7°
で、その時の透過率は3〜4%程度であった。When the tilt angle θ and transmittance of this liquid crystal cell were measured in the same manner as in Example 1, the tilt angle 0 was 5° to 7°.
The transmittance at that time was about 3 to 4%.
実施例3〜12
実施例1の1.8μ層セルて用いた配向制御21膜の代
りに、下記の表2に示す出発原料を縮合して合成したポ
リアミック酸から得たポリイミドを用いて、表3に挙げ
た被膜を形成し、該被膜をラビング処理したものを使用
したほかは、実施例1と全く同様の方法て液晶セルを作
成してから、同様の方法で液晶セルにおけるチルト角0
と、その時の透過率を測定した。その結果を表3に示す
。Examples 3 to 12 Instead of the orientation control 21 film used in the 1.8μ layer cell of Example 1, polyimide obtained from polyamic acid synthesized by condensing the starting materials shown in Table 2 below was used. A liquid crystal cell was prepared in exactly the same manner as in Example 1, except that the coating mentioned in 3 was formed and the coating was rubbed.
The transmittance at that time was measured. The results are shown in Table 3.
[発明の効果]
本発明の液晶素子による配向制御によれば1強誘電性液
晶、特に非らせん構造によって得られる少なくとも2つ
の安定状態をもつ強請゛を性液晶のモノドメインを得る
ことかできる点に第1の効果を有し、さらに強誘電性液
晶の非らせん構造によって発現する少なくとも2つの安
定状態下、特に双安定状態下、(すなわち、メモリー状
態下)でのチルト角θを増大させることかできる点に第
2の優れた効果を有する。[Effects of the Invention] By controlling the orientation using the liquid crystal element of the present invention, it is possible to obtain a monodomain of a ferroelectric liquid crystal, particularly a ferroelectric liquid crystal having at least two stable states obtained by a non-helical structure. The first effect is to increase the tilt angle θ under at least two stable states, particularly under a bistable state (i.e., under a memory state) developed by the non-helical structure of the ferroelectric liquid crystal. The second excellent effect is that it can be used in a variety of ways.
第1図は本発明の液晶素子の1つの実施態様を表わす断
面図、fjS2図はらせん構造の強誘電性液晶を用いた
液晶素子を模式的に表わす斜視図、第3図は非らせん構
造の強誘電性液晶を用いた液晶素子を模式的に表わす斜
視図、第4図は基板の一軸性配向軸と非らせん構造の強
誘電性液晶分子の軸との関係を表わす説明図、第5図は
本発明の液晶素子て用いた一軸性配向軸と液晶分子の軸
との関係を表わす説明図である。
lea・・・上基板 11b・・・下基板12
a、12b・・・透明電極 13・・・強誘電性液晶
14a、+4b・・・配向制御膜 21・・・基板22
・・・液晶分子層 23・・・液晶分子24・・
・双極子モーメント ’l’la・・・第1の安定状態
3コb・・・第2の安定状態
34a・・・L向き双極子モーメント
34b・・・下向き双極子モーメント
◎・・・らせん構造でのチルト角
θ・・・非らせん構造でのチルト角
Ea、Eb・・・電界Fig. 1 is a cross-sectional view showing one embodiment of the liquid crystal element of the present invention, Fig. fjS2 is a perspective view schematically showing a liquid crystal element using a ferroelectric liquid crystal with a helical structure, and Fig. 3 is a diagram showing a liquid crystal element with a non-helical structure. FIG. 4 is a perspective view schematically showing a liquid crystal element using ferroelectric liquid crystal, and FIG. FIG. 2 is an explanatory diagram showing the relationship between the uniaxial alignment axis and the axis of liquid crystal molecules used in the liquid crystal element of the present invention. lea...upper board 11b...lower board 12
a, 12b...Transparent electrode 13...Ferroelectric liquid crystal 14a, +4b...Orientation control film 21...Substrate 22
...Liquid crystal molecule layer 23...Liquid crystal molecule 24...
・Dipole moment 'l'la...First stable state 3 pieces b...Second stable state 34a...L direction dipole moment 34b...Downward dipole moment ◎...Helical structure Tilt angle θ at...Tilt angle Ea, Eb at non-helical structure...Electric field
Claims (5)
て垂直な複数の層を形成している分子の配列をもつ強誘
電性液晶とを有する液晶素子において、前記一対の平行
基板のうちの少なくとも一方の基板が前記複数の層を一
方向に優先して配向させる下記一般式で示される構造単
位を有する高分子物質の被膜を有していることを特徴と
する液晶素子。 一般式 ▲数式、化学式、表等があります▼ [式中Rは次式▲数式、化学式、表等があります▼、▲
数式、化学式、表等があります▼、▲数式、化学式、表
等があります▼、 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼
、 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼ ▲数式、化学式、表等があります▼または▲数式、化学
式、表等があります▼ で示される2価の基を表わす](1) In a liquid crystal element comprising a pair of parallel substrates and a ferroelectric liquid crystal having a molecular arrangement forming a plurality of layers perpendicular to the planes of the pair of parallel substrates, the pair of parallel substrates A liquid crystal element, wherein at least one of the substrates has a coating of a polymeric substance having a structural unit represented by the following general formula that preferentially orients the plurality of layers in one direction. General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [In the formula, R is the following formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲
There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ Mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
, ▲There are mathematical formulas, chemical formulas, tables, etc.▼,▲Mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Represents a divalent group shown by
もつ液晶である特許請求の範囲第1項記載の液晶素子。(2) The liquid crystal element according to claim 1, wherein the ferroelectric liquid crystal is a liquid crystal having at least two stable states.
許請求の範囲第1項記載の液晶素子。(3) The liquid crystal element according to claim 1, wherein the ferroelectric liquid crystal is a bistable liquid crystal.
ある特許請求の範囲第1項記載の液晶素子。(4) The liquid crystal element according to claim 1, wherein the ferroelectric liquid crystal is a chiral smectic liquid crystal.
クチック液晶である特許請求の範囲第1項記載の液晶素
子。(5) The liquid crystal device according to claim 1, wherein the ferroelectric liquid crystal is a chiral smectic liquid crystal with a non-helical structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7257386A JPS62231936A (en) | 1986-04-01 | 1986-04-01 | Liquid crystal element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7257386A JPS62231936A (en) | 1986-04-01 | 1986-04-01 | Liquid crystal element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62231936A true JPS62231936A (en) | 1987-10-12 |
Family
ID=13493252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7257386A Pending JPS62231936A (en) | 1986-04-01 | 1986-04-01 | Liquid crystal element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62231936A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5272247A (en) * | 1990-10-19 | 1993-12-21 | Hitachi, Ltd. | Polyimide precursor, cured product thereof, and processes for producing them |
JPH06329794A (en) * | 1993-04-09 | 1994-11-29 | Ciba Geigy Ag | Polyimide oligomer |
US5536584A (en) * | 1992-01-31 | 1996-07-16 | Hitachi, Ltd. | Polyimide precursor, polyimide and metalization structure using said polyimide |
JP2011138104A (en) * | 2009-12-03 | 2011-07-14 | Jsr Corp | Liquid crystal aligner and liquid crystal display element |
-
1986
- 1986-04-01 JP JP7257386A patent/JPS62231936A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5272247A (en) * | 1990-10-19 | 1993-12-21 | Hitachi, Ltd. | Polyimide precursor, cured product thereof, and processes for producing them |
US5536584A (en) * | 1992-01-31 | 1996-07-16 | Hitachi, Ltd. | Polyimide precursor, polyimide and metalization structure using said polyimide |
JPH06329794A (en) * | 1993-04-09 | 1994-11-29 | Ciba Geigy Ag | Polyimide oligomer |
US5412065A (en) * | 1993-04-09 | 1995-05-02 | Ciba-Geigy Corporation | Polyimide oligomers |
US5478915A (en) * | 1993-04-09 | 1995-12-26 | Ciba-Geigy Corporation | Polyimide oligomers |
JP2011138104A (en) * | 2009-12-03 | 2011-07-14 | Jsr Corp | Liquid crystal aligner and liquid crystal display element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0629893B1 (en) | Liquid crystal device | |
EP0400635B1 (en) | Liquid crystal device | |
US5325219A (en) | Chiral smectic liquid crystal device having polyimide alignment layer with fluoroalkyl side chain | |
US5330803A (en) | Liquid crystal device | |
US5510159A (en) | Liquid crystal device | |
US5400159A (en) | Liquid crystal device having alignment film with particular surface energy difference before and after rubbing | |
JPS63191129A (en) | Ferroelectric liquid crystal element | |
JP2556590B2 (en) | Liquid crystal element | |
JPS62231936A (en) | Liquid crystal element | |
JPH0466488B2 (en) | ||
EP0397153B1 (en) | Chiral smectic liquid crystal device | |
JP2556604B2 (en) | Liquid crystal element | |
JPS62231935A (en) | Liquid crystal element | |
JPS63311231A (en) | Liquid crystal element | |
JPS62159123A (en) | Liquid crystal element | |
JPH0468605B2 (en) | ||
JPS62170938A (en) | Liquid crystal element | |
JPS62237431A (en) | Liquid crystal element | |
JP2567128B2 (en) | Liquid crystal element | |
JPS61186932A (en) | Liquid crystal element | |
JP2556586B2 (en) | Liquid crystal element | |
JPS6352119A (en) | Liquid crystal element | |
JPS62291621A (en) | Liquid crystal element | |
JP2556581B2 (en) | Liquid crystal element | |
JP2556585B2 (en) | Liquid crystal element |