JPS62231669A - Method for producing biomaterial coated with hydroxyapatite - Google Patents
Method for producing biomaterial coated with hydroxyapatiteInfo
- Publication number
- JPS62231669A JPS62231669A JP61075269A JP7526986A JPS62231669A JP S62231669 A JPS62231669 A JP S62231669A JP 61075269 A JP61075269 A JP 61075269A JP 7526986 A JP7526986 A JP 7526986A JP S62231669 A JPS62231669 A JP S62231669A
- Authority
- JP
- Japan
- Prior art keywords
- hydroxyapatite
- coating
- phosphoric acid
- solvent
- materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052588 hydroxylapatite Inorganic materials 0.000 title claims description 34
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000012620 biological material Substances 0.000 title claims description 7
- 239000000463 material Substances 0.000 claims description 33
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 21
- 239000002904 solvent Substances 0.000 claims description 21
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 18
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 18
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 12
- 238000010304 firing Methods 0.000 claims description 11
- 235000011187 glycerol Nutrition 0.000 claims description 6
- 238000000576 coating method Methods 0.000 description 35
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 34
- 239000011248 coating agent Substances 0.000 description 29
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 28
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 17
- 239000007943 implant Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 229910052586 apatite Inorganic materials 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- -1 alumina Chemical compound 0.000 description 2
- 239000005312 bioglass Substances 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 150000004685 tetrahydrates Chemical class 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 208000006386 Bone Resorption Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 230000024279 bone resorption Effects 0.000 description 1
- 229960005069 calcium Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- ICSSIKVYVJQJND-UHFFFAOYSA-N calcium nitrate tetrahydrate Chemical compound O.O.O.O.[Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ICSSIKVYVJQJND-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
Landscapes
- Dental Prosthetics (AREA)
- Materials For Medical Uses (AREA)
- Dental Preparations (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はヒドロキシアパタイトにより被覆された生体材
料の製造方法に関し、殊にヒドロキシアパタイトにより
被覆された生体親和性に優れたインブラント材の製造方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a biomaterial coated with hydroxyapatite, and in particular a method for producing an implant material coated with hydroxyapatite and having excellent biocompatibility. It is related to.
近年、人工骨、人工関節、人工歯根などのインブラント
材の使用が一般化しており、その材料としてチタン、ス
テンレスなどの金属材料やアルミナ、ジルコニア等のセ
ラミック材料が用いられている。In recent years, the use of implant materials such as artificial bones, artificial joints, and artificial tooth roots has become common, and the materials used include metal materials such as titanium and stainless steel, and ceramic materials such as alumina and zirconia.
しかし、これらの材料はその機械的強度、耐久性などに
優れる一方で生体との親和性に乏しく、骨組織との固着
等に於て問題がある。However, while these materials have excellent mechanical strength and durability, they have poor compatibility with living organisms and have problems in adhesion to bone tissue.
この欠点を改良するものとして1合成アパタイトを90
0〜1200℃で焼成させた材料や、ヒドロキシアパタ
イトにSingを加え焼結させたもの、更にはヒドロキ
シアパタイトとバイオガラスからなる材料等が近年開発
された。To improve this drawback, 1 synthetic apatite was added to 90%
In recent years, materials such as materials fired at 0 to 1200°C, materials made by adding Sing to hydroxyapatite and sintering them, and materials made of hydroxyapatite and bioglass have been developed.
しかしながらこれらヒドロキシアパタイト、バイオガラ
スは、生体親和性の点に於いて、従来のものより優れる
一方で、機械的強度が金属、アルミナ、ジルコニア等の
セラミック材料に比べて劣り、長期間の使用ではクラッ
クの発生や材料成分の遊離などの問題があり、インブラ
ント材料として満足できるものではない。However, while these hydroxyapatite and bioglass are superior to conventional ones in terms of biocompatibility, their mechanical strength is inferior to ceramic materials such as metals, alumina, and zirconia, and they crack when used for long periods of time. There are problems such as generation of carbon dioxide and release of material components, and it is not satisfactory as an implant material.
また、これらのものは成型後に強度を増すため、高温で
焼結させる必要があり、ヒドロキシアパタイトの組成変
化を生じ、アパタイトが本来有する生体親和性を劣化さ
せ、好ましいものではない。Moreover, these materials need to be sintered at a high temperature to increase their strength after molding, which causes a change in the composition of hydroxyapatite and deteriorates the biocompatibility inherent in apatite, which is not preferable.
最近、特にこのようなヒドロキシアパタイトの機械的強
度を補強するため、金属製インブラントの芯材にヒドロ
キシアパタイト粉末で溶射する被覆方法(例えば、特公
昭52−82893)やスパッタリングによる被覆方法
(例えば特公昭58−109049)が提案されている
。しかしながら、これらの方法とても理想的な被覆方法
とは言い難い。すなわち、溶射方法の場合、分解が生じ
、その結果、ヒドロキシアパタイトの組成や結晶構造の
変質をもたらすことや溶射ガンの構成物質であるーやC
uの溶射層中への混入およびNiAl等のボンディング
剤の介在など生体親和性にとって好ましくない金属原子
の存在の問題がある。Recently, in order to particularly strengthen the mechanical strength of such hydroxyapatite, methods of coating the core material of metal implants with hydroxyapatite powder by thermal spraying (for example, Japanese Patent Publication No. 52-82893) and coating methods by sputtering (for example, Publication No. 58-109049) has been proposed. However, these methods cannot be called ideal coating methods. In other words, in the case of thermal spraying, decomposition occurs, resulting in changes in the composition and crystal structure of hydroxyapatite, and in the case of thermal spray gun components.
There are problems with the presence of metal atoms, which are unfavorable for biocompatibility, such as the mixing of u into the sprayed layer and the presence of bonding agents such as NiAl.
他方、スパッタリング方においては、まずターゲット材
料としての特殊なヒドロキシアパタイトの調製が必要で
あることや蒸着速度が他の方法に比較して遅いので生成
効率が良好くないこと、そして複雑な立体形状への均質
な被覆が難しいことなどの欠点を有している。On the other hand, the sputtering method requires the preparation of a special hydroxyapatite as a target material, the deposition rate is slower than other methods, so the production efficiency is not good, and it is difficult to produce complex three-dimensional shapes. It has disadvantages such as difficulty in uniform coating.
以上のようにこれらの被覆方法は種々の欠点を有する上
に特別な装置を必要とするので、製造コストの面におい
て高価なものにならざるを得なかった。As described above, these coating methods have various drawbacks and require special equipment, so that they are inevitably expensive in terms of manufacturing costs.
そこで、本発明者らはこのような状況の中でインブラン
ト材として必要とされる機械的強度、耐久性、生体親和
等の特性に優れる材料を開発すべく、セラミック材料に
安価で簡便な方法による純度の高いヒドロキシアパタイ
トを被覆する方法について、鋭意研究を行った。Therefore, in order to develop a material with excellent properties such as mechanical strength, durability, and biocompatibility required for an implant material under such circumstances, the present inventors developed an inexpensive and simple method for applying ceramic materials. We have conducted intensive research on a method of coating highly pure hydroxyapatite.
その結果、金属、セラミックス等の強度特性に優れる材
料表面に特殊な製造装置によらず、従来まで不可能と考
えられていた生体親和性に冨むヒドロキシアパタイト被
覆を、接着剤、バインダー等の他成分を使用することな
く、高純度で、かつ容易にしかも堅固に形成することが
可能なることを見出し、本発明を完成させるに至ったも
のである。As a result, we have been able to coat the surfaces of materials with excellent strength properties, such as metals and ceramics, with adhesives, binders, etc. without using special manufacturing equipment. The present invention was completed based on the discovery that it is possible to easily and firmly form a high-purity product without using any other ingredients.
本発明は、りん酸及び硝酸カルシウムCa/PO,モル
比1.5〜1.75の範囲にになるように、メタノール
、エチレングリコール、プロピレングリコール、グリセ
リンから選ばれた溶媒に溶解した溶液を基材に塗布し、
焼成することを特徴とするヒドロキシアパタイトを被覆
した生体材料の製造方法である。The present invention is based on a solution of phosphoric acid and calcium nitrate, Ca/PO, dissolved in a solvent selected from methanol, ethylene glycol, propylene glycol, and glycerin so that the molar ratio is in the range of 1.5 to 1.75. Apply it to the material,
This is a method for producing a biomaterial coated with hydroxyapatite, which involves firing.
本発明のヒドロキシアパタイト被覆材料の製造方法につ
いて詳述すると、先ず、ヒドロキシアパタイトの原料と
してりん酸及び硝酸カルシウムを使用する。To explain in detail the method for manufacturing the hydroxyapatite coating material of the present invention, first, phosphoric acid and calcium nitrate are used as raw materials for hydroxyapatite.
ヒドロキシアパタイトは、一般にカルシウム塩とりん酸
又はその塩との反応、焼成により得ることができるが、
本発明ではりん酸及び硝酸カルシウムとの組合せのみに
於いて本発明の効果を奏する。Hydroxyapatite can generally be obtained by reacting calcium salt with phosphoric acid or its salt and firing,
In the present invention, the effects of the present invention are exhibited only in combination with phosphoric acid and calcium nitrate.
即ち、これら以外のものとして、乳酸カルシウム、酢酸
カルシウム等の使用では、被覆時の成分組成が不均一と
なり、よって、本発明の均質な被覆材料を得ることが困
難となる。That is, if calcium lactate, calcium acetate, or the like is used as a material other than these, the component composition at the time of coating becomes non-uniform, and therefore it becomes difficult to obtain a homogeneous coating material of the present invention.
りん酸及び硝酸カルシウムはメタノール、エチレングリ
コール、プロピレングリコール、グリセリンから選ばれ
た溶媒に溶解し使用するが、これらは、使用する溶媒の
種類によっても異なり、通常別々に用い、基材への塗布
時に両者を混合することが好ましい。Phosphoric acid and calcium nitrate are used after being dissolved in a solvent selected from methanol, ethylene glycol, propylene glycol, and glycerin, but these vary depending on the type of solvent used, and are usually used separately when applying to the substrate. It is preferable to mix both.
即ち、溶媒の種類によっても異なるが、両者を同一の溶
媒に溶解して使用する場合には、時間の経過と共に、り
ん酸カルシウムの沈澱を生起し、不均一な溶液となるの
で、できるだけ早く基材への塗布を行う必要がある。In other words, although it depends on the type of solvent, if both are dissolved in the same solvent, calcium phosphate will precipitate over time, resulting in a non-uniform solution, so remove the base as soon as possible. It is necessary to apply it to the material.
また溶媒に使用するメタノール、エチレングリコール、
プロピレングリコール、グリセリンからら選ばれた溶媒
の濃度は、後述するりん酸及び硝酸力ルウシムの使用割
合、基材の種類、乾燥、焼成工程の違いにより異なるが
、通常りん酸及びセi酸カルシウムの溶解時に於いて、
50%以上、好ましくは70%以上となるように使用す
る。In addition, methanol, ethylene glycol, and
The concentration of the solvent selected from propylene glycol and glycerin varies depending on the proportion of phosphoric acid and nitrate used, the type of base material, and the drying and baking process, which will be described later. During dissolution,
It is used so that it is 50% or more, preferably 70% or more.
−iにこれらの溶媒の濃度は低くなる程、即ち水分量が
多くなるほど、りん酸及び硝酸カルシウムを同一溶媒に
溶解した際の液安定性は良好となるが、基材への塗布乾
燥時に乾燥性が悪くなり、また被膜は不均一となる。-i: The lower the concentration of these solvents, that is, the higher the water content, the better the stability of the solution when phosphoric acid and calcium nitrate are dissolved in the same solvent; The properties will be poor and the coating will be non-uniform.
従って、溶媒の溶質溶解時の濃度は出来るだけ高い領域
での使用が好ましい。また他の溶媒としてエタノール、
プロパツール、ブタノール、アセトン等の使用は均質な
りん酸及び硝酸カルシウムの溶液が得られず、基材に塗
布された被膜は不均一なものとなる。Therefore, it is preferable that the concentration of the solvent used when dissolving the solute is as high as possible. Other solvents include ethanol,
The use of propatool, butanol, acetone, etc. does not result in a homogeneous solution of phosphoric acid and calcium nitrate, and the coating applied to the substrate is non-uniform.
りん酸及び硝酸カルシウムの使用割合に関して云えば、
基材への塗布時に於いて、Ca/PO4モル比1.5〜
1.75の範囲となるように使用する。この場合、りん
酸と硝酸カルシウムを別々に上述の溶媒に溶解して使用
する方法では、塗布を行う際に、上記のモル比の範囲と
なるように両者を混合し、使用すればよい。Regarding the usage ratio of phosphoric acid and calcium nitrate,
When applying to the base material, the Ca/PO4 molar ratio is 1.5~
Use it so that it is within the range of 1.75. In this case, in the method of using phosphoric acid and calcium nitrate separately dissolved in the above-mentioned solvent, when coating, it is sufficient to mix the two so that the molar ratio falls within the above-mentioned range.
また、Ca/PO4モル比の範囲が前述の範囲を逸脱し
、1.50を下回る場合には、結晶性の良いヒドロキシ
アパタイトかえられず、非晶質成分が多くなり、膜強度
が低下する。Furthermore, if the Ca/PO4 molar ratio deviates from the above-mentioned range and is less than 1.50, hydroxyapatite with good crystallinity cannot be converted, the amorphous component increases, and the film strength decreases.
さらに1.75を超える場合には、同様にヒドロキシア
パタイトの結晶性が低下すると共に、アルカリ成分が過
剰となり、生体との親和性が低下する。Furthermore, when it exceeds 1.75, the crystallinity of hydroxyapatite similarly decreases, and the alkali component becomes excessive, resulting in a decrease in affinity with living organisms.
従って、Ca/PO4モル比は本発明に於いて殊に重要
である。Therefore, the Ca/PO4 molar ratio is particularly important in the present invention.
なお、りん酸及びカルシウムの基材への塗布時の濃度は
、生成するヒドロキシアパタイト(Ca5(PO4)i
o旧として、通常5〜20重量%の範囲となるように設
定することが望ましい。Note that the concentration of phosphoric acid and calcium when applied to the base material is based on the hydroxyapatite (Ca5(PO4)i) produced.
o As a general rule, it is desirable to set the content within the range of 5 to 20% by weight.
即ち、5重量%を下回ると、生成アパタイト被膜が薄く
なり、被覆工程を繰り返す必要が生じ、また、20重量
%を上回ると塗布時の液組成が不安定化し、不均一とな
り、本発明の均質な被覆膜を得ることが困難となる。That is, if it is less than 5% by weight, the resulting apatite film will become thinner and it will be necessary to repeat the coating process, and if it exceeds 20% by weight, the liquid composition during coating will become unstable and non-uniform, resulting in the inhomogeneous coating of the present invention. It becomes difficult to obtain a suitable coating film.
この様にエチレングリコール、プロピレングリコール、
グリセリンから選ばれた溶媒に溶解したりん酸及び硝酸
カルシウムは、塗布時にCa/PO4モル1.5〜1.
75の範囲となるように調製し、次に基材に塗布を行う
。In this way, ethylene glycol, propylene glycol,
Phosphoric acid and calcium nitrate dissolved in a solvent selected from glycerin can be applied at a concentration of 1.5-1.
75, and then applied to the substrate.
尚、本発明ではこの基材の材質は特に限定されず・一般
にインブラント材として使用可能な材料、例えばチタン
、ステンレス等の金属、アルミナ、ジルコニア、ムライ
ト等セラミックスが使用できる。In the present invention, the material of this base material is not particularly limited; materials that can generally be used as implant materials, such as metals such as titanium and stainless steel, and ceramics such as alumina, zirconia, and mullite, can be used.
またそのアパタイト被覆の被着方法としては、浸漬方、
ロールコータ−、スプレー法、へヶ塗又はドクターブレ
ード法等の通常の手段により行うことができる。In addition, methods for applying the apatite coating include dipping,
It can be carried out by conventional means such as a roll coater, a spray method, a spacing method, or a doctor blade method.
コーティング層の厚さは製品の使用目的によって異なる
が生体材料として使用するには0.1〜100μmのも
のが最適であることが、動物実験より確認された。Although the thickness of the coating layer varies depending on the intended use of the product, it has been confirmed through animal experiments that a thickness of 0.1 to 100 μm is optimal for use as a biomaterial.
りん酸及び硝酸カルシウムを塗布した基材は、次いで乾
燥を行い、使用した溶媒を揮散させる。The substrate coated with phosphoric acid and calcium nitrate is then dried to volatilize the used solvent.
乾燥方法についても、室温乾燥、加熱静置乾燥、熱風乾
燥等の通常の乾燥手段を用いればよいが、過激な加熱を
行うと、溶媒が急増に揮散し、被覆膜が不均一化し好ま
しくな(、使用する溶媒の種類によっても異なるが、通
常、乾燥は200 ’C以下程度でゆっくり溶媒が揮散
するまで行う。As for the drying method, normal drying methods such as room temperature drying, heating and standing drying, and hot air drying may be used, but if extreme heating is performed, the solvent will rapidly volatilize and the coating film will become non-uniform, which is undesirable. (Although it varies depending on the type of solvent used, drying is usually carried out at about 200'C or less until the solvent evaporates slowly.)
乾燥後の被覆基材は次に焼成を行い、塗膜中の′f1離
水分、結合水、残存溶媒及び硝酸根を除去すると共に、
ヒドロキシアパタイトの強固な被膜を基材に形成させる
。The coated substrate after drying is then fired to remove 'f1 separated water, bound water, residual solvent and nitrate groups in the coating film,
A strong film of hydroxyapatite is formed on the base material.
焼成は450〜800℃の範囲で行いこの範囲以外では
本発明の優れたインブラント材を得ることができない。Firing is carried out at a temperature of 450 to 800°C, and the excellent implant material of the present invention cannot be obtained outside this range.
即ち、焼成温度が450℃を下回ると硝酸カルシウムに
由来する硝酸根の放出除去効果が充分でなく、生体中で
の硝酸イオンの溶出、被覆膜の脆化等の原因となる。ま
た800 ’Cを上回る場合には、生成するヒドロキシ
アパタイトの組成を変化せしめ生体との親和性を劣化さ
せるもので好ましくない。That is, if the firing temperature is lower than 450° C., the release and removal effect of nitrate radicals derived from calcium nitrate will not be sufficient, leading to elution of nitrate ions in the living body, embrittlement of the coating film, etc. Moreover, if it exceeds 800'C, it is not preferable because it changes the composition of the hydroxyapatite produced and deteriorates its affinity with living organisms.
焼成時の雰囲気は大気下、又は減圧下で行うが、ヒドロ
キシアパタイトの被膜の生体親和性をより強めるために
、低温での焼成が望ましく、通常、減圧下での焼成が推
奨される。The atmosphere during firing is air or reduced pressure, but in order to further strengthen the biocompatibility of the hydroxyapatite coating, firing at a low temperature is desirable, and firing under reduced pressure is usually recommended.
焼成時間に関しては、通常、10分以上が必要であるが
、焼成時間と温度は一般に相反する関係にあり、大気下
では500℃で120分以上、550℃で30分以上、
800℃で10分以上が必要である。Regarding the firing time, 10 minutes or more is usually required, but firing time and temperature are generally in a contradictory relationship.
10 minutes or more is required at 800°C.
このようにして基材に被着されたヒドロキシアパタイト
の被膜は、均一、且つ緻密な被覆層を有し、基材との強
固な結合により機械的強度、耐衝撃性を基材と同様に保
持しつつ、しかもヒドロキシアパタイト組成であるから
、生体親和性に富む性質を有する。The hydroxyapatite film deposited on the base material in this way has a uniform and dense coating layer, and maintains the same mechanical strength and impact resistance as the base material due to strong bonding with the base material. Moreover, since it has a hydroxyapatite composition, it has a property of being highly biocompatible.
従って、インブラント材として、人工骨、人工関節、人
工歯根等への適用に際して優れた特性を発揮するもので
ある。Therefore, it exhibits excellent properties when applied as an implant material to artificial bones, artificial joints, artificial tooth roots, etc.
〔実施例1〕
硝酸カルシウム(4水塩、特級試薬)及びりん酸液(8
5z特級試薬)を夫々別々に99.5X(は特にことわ
らない限り全て重量%を示す。以下同じ)、メタノール
(特級試薬)に第1表に示す割合で溶解した。これを室
温で一週間放置し、その後各法を所定量混合し、塗布液
を調製した。(第1表)また別に、前記の硝酸カルシウ
ム(4水塩)495gとりん酸液145gをメタノール
760gに同時に溶解したが、このものは調製後24時
間経過すると、徐々に沈澱を生じ、塗布液として使用で
きなかった。[Example 1] Calcium nitrate (tetrahydrate, special grade reagent) and phosphoric acid solution (8
5z special grade reagent) was separately dissolved in 99.5X (all values indicate weight % unless otherwise specified; the same applies hereinafter) and methanol (special grade reagent) in the proportions shown in Table 1. This was left at room temperature for one week, and then predetermined amounts of each method were mixed to prepare a coating solution. (Table 1) Separately, 495 g of the above-mentioned calcium nitrate (tetrahydrate) and 145 g of phosphoric acid solution were simultaneously dissolved in 760 g of methanol, but this solution gradually precipitated 24 hours after preparation, and the coating solution could not be used as
〔実施例2〕
硝酸カルシウム(4水塩、特級試薬)及びりん酸液(特
級試薬)を各々第2表に示す割合でメタノール、エチレ
ングリコール、プロピレングリコール、グリセリン(各
々試薬使用)の溶媒に溶解した。[Example 2] Calcium nitrate (tetrahydrate, special grade reagent) and phosphoric acid solution (special grade reagent) were dissolved in the solvents of methanol, ethylene glycol, propylene glycol, and glycerin (each used as a reagent) in the proportions shown in Table 2. did.
この液を室温で一週間放置し、その後各法を所定量混合
し、塗布液を調製した。(第2表)また比較のために、
硝酸カルシウムに代えて他のカルシウム塩、りん酸に代
えて他の各種りん酸塩、更に他の溶媒について各々同様
に塗布液を調製した。This solution was allowed to stand at room temperature for one week, and then predetermined amounts of each method were mixed to prepare a coating solution. (Table 2) Also, for comparison,
Coating solutions were similarly prepared using other calcium salts instead of calcium nitrate, various other phosphates instead of phosphoric acid, and other solvents.
〔実施例3〕
地下基板として15 X 40 X 1mmの多結晶ア
ルミナ板を用い、浸漬法により2〜3μmの厚さにヒド
ロキシ7バタイト(サンプル!1h7 )を塗布し、3
00℃、400℃、550°C、600℃1650℃、
700℃、 800℃、l000℃の各温度で、大気中
で30分間焼付けし、その決着性を引掻き強度で評価し
た。引掻強度の測定には新来科学al製の表面測定4i
TYPI!−11HIDON−14型を使用し、その結
果を第3表に示した。[Example 3] A polycrystalline alumina plate of 15 x 40 x 1 mm was used as an underground substrate, and hydroxy7 batite (sample! 1h7) was applied to a thickness of 2 to 3 μm by the dipping method.
00℃, 400℃, 550℃, 600℃1650℃,
It was baked for 30 minutes in the air at temperatures of 700°C, 800°C, and 1000°C, and its fixability was evaluated by scratch strength. To measure the scratch strength, Shinraikagaku Al Surface Measurement 4i was used.
TYPI! -11HIDON-14 type was used, and the results are shown in Table 3.
この結果から多結晶アルミナ板上へのヒドロキシアパタ
イトの均−且つ緻密で強固な被膜のための焼付は温度は
少なくとも400℃以上が必要で最適焼付は温度は70
0〜800℃が望ましいことが判った。一方、約900
℃以上での焼付けは強固な付着力を有するもののヒドロ
キシアパタイトの水酸基の離脱により、ムラができ均一
な被覆という点ではやや難があった。From this result, baking temperature of at least 400℃ is required to form a uniform, dense, and strong coating of hydroxyapatite on polycrystalline alumina plates, and the optimum baking temperature is 70℃.
It has been found that 0 to 800°C is desirable. On the other hand, about 900
Although baking at temperatures above 0.degree. C. has strong adhesion, the hydroxyl groups of hydroxyapatite are removed, resulting in uneven coating, making it somewhat difficult to obtain a uniform coating.
実施例3と同様な結果はサンプル阻1〜患4ならびにサ
ンプル隘8〜12でも得られた。Results similar to those in Example 3 were obtained for samples 1 to 4 and samples 8 to 12.
しかし、サンプルN15〜寛6についてはいずれもこれ
により低い数値を示した。これは混合液のCa/PO4
モル比が前者が化学量論比であるのに対して後者が非化
学量論比であり、結晶性が低下していることに起因して
いると考えられる。However, samples N15 to Kan6 all showed lower values due to this. This is the mixed solution Ca/PO4
This is thought to be due to the fact that the former has a stoichiometric molar ratio, while the latter has a non-stoichiometric molar ratio, resulting in decreased crystallinity.
〔実施例4〕
実施例3で示したような最適な焼付は温度で焼付けたア
パタイトコーティングした多結晶インブラントを制作し
、(サイズ: 5 xlOx 1mm、ヒドロキシアパ
タイト被覆液:患9、焼付は条件=700”CX30m
1n大気中)健康なピーグル大の大腿骨にインブラント
を行った。そして3ケ月経過後、放血列せしめた後、組
織標本を作製し、顕微鏡および螢光による組織反応観察
を行った。[Example 4] An apatite-coated polycrystalline implant baked at the optimal baking temperature as shown in Example 3 was produced (size: 5 x lOx 1 mm, hydroxyapatite coating liquid: 9, baking was performed under the following conditions). =700”CX30m
Implants were performed in healthy peagle-sized femurs (1n in air). After 3 months, the animals were exsanguinated, tissue specimens were prepared, and tissue reactions were observed using a microscope and fluorescence.
その結果、インブラントと接している組織には炎症反応
は認められず、また異常な骨吸収も起こっていなかった
。そして、インブラント表面には新生骨および繊維組織
が直接接触しているのが観察された。As a result, no inflammatory reaction was observed in the tissues in contact with the implant, and no abnormal bone resorption occurred. New bone and fibrous tissue were observed to be in direct contact with the implant surface.
〔比較例1〕
実施例4と同様にヒドロキシアパタイト被覆液Na12
を用いて大気中1000℃で30分間多結晶アルミナイ
ンブラントに焼付けを行い、動物実験を行った。組織標
本の観察の結果、インブラントに接する組織には顕著な
炎症反応が認められた。一方新生骨の形成はわずかに観
察されるにとどまった。[Comparative Example 1] Hydroxyapatite coating liquid Na12 as in Example 4
An animal experiment was conducted by baking a polycrystalline alumina implant blunt for 30 minutes at 1000° C. in the air. As a result of observation of the tissue specimen, a significant inflammatory reaction was observed in the tissue in contact with the implant. On the other hand, only a slight amount of new bone formation was observed.
以上のように、本発明によれは、生体親和性に富み、か
つ骨組織と強固に固着するヒドロキシアパタイト被覆液
を長時間安定的に保持できることそして溶媒の種類や混
合比率を変ることにより、アパタイトコロイド粒子の形
状や粒径をも自由にコントロールできることから被覆時
の成分組成を均一にすることができ、コーティングの操
作性において非常に優れた特性を有している。また、本
発明によるヒドロキシアパタイトは溶媒中で均質で安定
なコロイド分散状態として存在することから通常のヒド
ロキシアパタイトの焼付は温度よりも200〜300℃
低い温度での焼付けが可能であり、生成するヒドロキシ
アパタイトの組成を変化させたり、生体親和性を低下せ
しめる恐れが少ない。As described above, the present invention has the ability to stably retain a hydroxyapatite coating liquid for a long time, which is highly biocompatible and firmly adheres to bone tissue, and by changing the type and mixing ratio of the solvent, Since the shape and particle size of the colloidal particles can be freely controlled, the component composition during coating can be made uniform, and the coating has extremely excellent properties in terms of operability. In addition, since the hydroxyapatite according to the present invention exists in a homogeneous and stable colloidal dispersion state in a solvent, the baking temperature of hydroxyapatite is 200 to 300°C higher than the normal temperature.
It is possible to bake at low temperatures, and there is little risk of changing the composition of the hydroxyapatite produced or reducing its biocompatibility.
さらに、本発明による被覆方法は何ら特別な装置や被覆
方法を必要としないので、極めて経済的であり、しかも
ほとんど全ての形状に適用できるという大きな特長を有
する。Furthermore, since the coating method according to the present invention does not require any special equipment or coating method, it has the great advantage of being extremely economical and being applicable to almost all shapes.
従って、本発明による製造方法によりヒドロキシアパタ
イトを被覆した生体材料はアパタイトとして変性がほと
んどなく、高純度であるから歯科、医療用インブラント
部材の構成に極めて有益である。Therefore, the biomaterial coated with hydroxyapatite by the production method according to the present invention has almost no denaturation as apatite and has high purity, so it is extremely useful for constructing dental and medical implant members.
Claims (2)
比1.5〜1.75の範囲になるように、メタノール、
エチレングリコール、プロピレングリコール、グリセリ
ンから選ばれた溶媒に溶解した溶液を基材に塗布し、焼
成することを特徴とするヒドロキシアパタイトを被覆し
た生体材料の製造方法。(1) Methanol,
A method for producing a biomaterial coated with hydroxyapatite, which comprises applying a solution dissolved in a solvent selected from ethylene glycol, propylene glycol, and glycerin to a base material and firing the solution.
る特許請求の範囲第1項記載のヒドロキシアパタイトを
被覆した生体材料の製造方法。(2) The method for producing a biomaterial coated with hydroxyapatite according to claim 1, wherein the firing temperature is in the range of 450 to 800°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61075269A JPH072181B2 (en) | 1986-03-31 | 1986-03-31 | Method for producing biomaterial coated with hydroxyapatite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61075269A JPH072181B2 (en) | 1986-03-31 | 1986-03-31 | Method for producing biomaterial coated with hydroxyapatite |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62231669A true JPS62231669A (en) | 1987-10-12 |
JPH072181B2 JPH072181B2 (en) | 1995-01-18 |
Family
ID=13571335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61075269A Expired - Lifetime JPH072181B2 (en) | 1986-03-31 | 1986-03-31 | Method for producing biomaterial coated with hydroxyapatite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH072181B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153266A (en) * | 1997-12-08 | 2000-11-28 | Japan As Represented By Director General Agency Of Industrial Science And Technology | Method for producing calcium phosphate coating film |
JP2003513879A (en) * | 1999-11-15 | 2003-04-15 | フィリップス−オーリジェン・セラミック・テクノロジー・リミテッド・ライアビリティ・カンパニー | Manufacturing process of rigid net-like articles |
-
1986
- 1986-03-31 JP JP61075269A patent/JPH072181B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153266A (en) * | 1997-12-08 | 2000-11-28 | Japan As Represented By Director General Agency Of Industrial Science And Technology | Method for producing calcium phosphate coating film |
JP2003513879A (en) * | 1999-11-15 | 2003-04-15 | フィリップス−オーリジェン・セラミック・テクノロジー・リミテッド・ライアビリティ・カンパニー | Manufacturing process of rigid net-like articles |
Also Published As
Publication number | Publication date |
---|---|
JPH072181B2 (en) | 1995-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Water-based sol–gel synthesis of hydroxyapatite: process development | |
US6426114B1 (en) | Sol-gel calcium phosphate ceramic coatings and method of making same | |
US4223412A (en) | Implants for bones, joints or tooth roots | |
Sato et al. | Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly (lactide-co-glycolide) sol–gel titanium coatings | |
JPH0360502B2 (en) | ||
Li et al. | Synthesis and characterization of a phytic acid/mesoporous 45S5 bioglass composite coating on a magnesium alloy and degradation behavior | |
KR100583849B1 (en) | Method for preparing polymer sol of calcium phosphate compound | |
JPS6324952A (en) | Production of composite material coated with calcium phosphate compound | |
Singh et al. | A sol-gel based bioactive glass coating on laser textured 316L stainless steel substrate for enhanced biocompatability and anti-corrosion properties | |
JP4888930B2 (en) | Method for producing calcium phosphate bone filling material | |
CA2318085A1 (en) | A synthetic stabilized calcium phosphate biomaterial | |
JPH0763503B2 (en) | Calcium phosphate coating forming method and bioimplant | |
KR100424910B1 (en) | Coating process of bioactive ceramics | |
JPS62231669A (en) | Method for producing biomaterial coated with hydroxyapatite | |
Asmawi et al. | Development of bioactive ceramic coating on titanium alloy substrate for biomedical application using dip coating method | |
JPS5945384B2 (en) | Manufacturing method for high-strength biological components | |
RU2456253C2 (en) | Method of preparing mixture for producing ceramic biodegradable material | |
CN101417147A (en) | Gelatin/calcium phosphate asymmetry medicine releasing coating layer and preparation method thereof | |
Hsu et al. | Hydrothermally-grown monetite (CaHPO4) on hydroxyapatite | |
JP4332654B2 (en) | Method for producing hydroxyapatite film | |
JP3773301B2 (en) | Calcium phosphate porous composite and method for producing the same | |
JP4282799B2 (en) | Process for producing β-tricalcium phosphate coating | |
JP2623315B2 (en) | Calcium phosphate coated ceramics and method for producing the same | |
JPH0139787B2 (en) | ||
Hakimimehr | The effect of organic solvents on sol-gel hydroxyapatite and its application as biocoating |