[go: up one dir, main page]

JPS62230165A - Two-color original reader - Google Patents

Two-color original reader

Info

Publication number
JPS62230165A
JPS62230165A JP61071096A JP7109686A JPS62230165A JP S62230165 A JPS62230165 A JP S62230165A JP 61071096 A JP61071096 A JP 61071096A JP 7109686 A JP7109686 A JP 7109686A JP S62230165 A JPS62230165 A JP S62230165A
Authority
JP
Japan
Prior art keywords
signal
color
red
image
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61071096A
Other languages
Japanese (ja)
Inventor
Masatoshi Hosoi
細井 正敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP61071096A priority Critical patent/JPS62230165A/en
Publication of JPS62230165A publication Critical patent/JPS62230165A/en
Pending legal-status Critical Current

Links

Landscapes

  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

PURPOSE:To attain the distinction between two colors with simple circuit constitution by generating a density signal of an original image and a color signal representing whether or not the color is a specific color and applying logical operation to the signals by means of a logic circuit. CONSTITUTION:Red and blue/green signals S1, S2 outputted from photoelectric conversion elements 6, 8 are digitized, then the result is inputted to sum/ subtraction computing elements 13,14. The sum computing element 13 and a comaprator 15 generate a density signal S9 of an original image and the subtraction computing element 14 and a comaprator 16 output a color signal S10 representing whether or not the original image is red. A discrimination circuit comprising inverters 17,18 and AND circutis 19,20 outputs a red detection signal S11 when the density signal S9 represents ''deep'' and a color signal S10 represents a red signal and outputs a black detection signal S12 when the density S9 represents 'deep' and the color signal S10 is other than a red signal. Further, the circuit discriminates a signal as 'white' independently of the color signal S10 when the density signal S9 is 'light'.

Description

【発明の詳細な説明】[Detailed description of the invention]

[従来技術] 本発明は、ファクシミリ、複写機、電子黒板等に好適な
2色原稿読取装置に関する。
[Prior Art] The present invention relates to a two-color original reading device suitable for facsimile machines, copying machines, electronic blackboards, and the like.

【従来技術】[Prior art]

原稿画像の白黒の判別以外に赤色など特定の1色につい
て判別し、白黒信号と赤色信号を出力する2色原稿読取
装置が知られている。ところで。 実際の文書などは用紙に色付けされていたり、青や緑の
インクで記載されている場合があるので、このような2
色原稿読取装置においては、赤以外の色についても濃度
を適切に判別して白あるいは黒として読み取ることが望
ましい。 上記のような2色原稿読取装置としては、特開昭55−
166377号公報に見られるように、原稿画像より赤
色成分の画信号とその補色である青および緑(以下、青
緑と略す)色成分の画信号とを取り出し、上記赤色成分
の画信号から上記毎緑色成分の1ilii(ti号を引
いた差信号に基づいて赤色を判5111 L、赤色信号
を出力すると共に、上記赤色成分の画信号に基づいて白
黒を判別し、白黒信号を出力するものが提案されている
。白黒を判別する方法としては、このほかに青緑色成分
の画信号から判別したり、特定の色成分の画信号ではな
く金色成分を含む画信号から判別する方法が知られてい
る6しかしながら、上記赤色信号から白黒を判別する方
法では、赤色信号の低レベルを黒と判別するので、原稿
画像の比較的薄い(明るい)青や緑の部分でさえ、赤色
信号のレベルが低くなって黒と判別されてしまう。この
ため1例えば青色の原稿用紙に黒字で書いた文書などは
全面が黒になって読み取れなくなることがある。また、
上記青緑色信号から白黒を判別する方法では、その青緑
色信号が高レベルのときに白と判定するので、例えば白
い原稿用紙に青色で書いた文書などは全面が白になって
読み取れなくなることがある。 このように、上記の方法は、いずれも青や緑に対してそ
の濃度を適切に判別できなかったので。 実際の文書の読み取りが実用的に行なわれないという問
題があった。 このような問題を解決しうるちのとして、特開昭57−
44825号公報に見られるように、赤色成分の画信号
と青緑成分の画信号の和信号に基づいて白黒信号を出力
すると共に、上記2つの画信号を対数増幅した後1両者
の差をとって色相信号を作成し、上記白黒信号とこの色
相信号とにより白黒および赤緑青を正確に判別するよう
にしたものが提案されている。 しかしながら、この提案は多色読み取りを目的に構成さ
れたものであるため、対数増幅という特殊な回路や多く
の比較回路を必要とし回路構成が複雑になる問題がある
。また、対数増幅回路が2つ必要なので、高速な画信号
処理に対処するためにアナログ回路を用いると、温度変
化等による両者の特性差が生じて正確な信号処理ができ
ず、高品質の各色信号を取り出すのが難しいという問題
があった。 [目的コ 本発明は、以上の点に鑑み、簡単な回路構成で2色の色
判別が実用的に適切に行なえる2色原稿読取装置を提供
することを目的とする。 [構成コ このため本発明は、主として特定の色成分を有する画信
号とその補正成分を有する画信号とに基づいて、原稿画
像の濃淡を判別する′濃度信号と原稿画像の上記特定の
1色と黒を判別する色信号を作成し、上記濃度信号がパ
濃“を示すときだけ、上記色信号に基づいて上記特定の
1色あるいは黒検知信号を出力し、上記濃度信号が“淡
″″を示すときは上記2つの検知信号はオフして白検知
信号を出力するようにしたものである。 以下1本発明の実施例を図面に基づいて説明する。 第1図は本発明の一実施例に係る2色原稿読取装置の光
学系を示す概略構成図である。この2色原稿読取装置は
、1つの原稿から同時に2つの色成分の画信号を2個の
ラインセンサで読み取るものである。同図において、l
は画像読み取り線RL上を通過する原稿叶を照明する光
源、2は鏡3とレンズ4を介して受ける原稿DPからの
反射光を2方向に分岐させるハーフミラ−である。 分岐した一方の画像光は、赤色成分の光のみ透過する赤
フィルタ5を通り光電変換素子6の受光部に結像し、他
方の画像光は、赤色の補色である青色と緑色成分の光の
み透過する青緑フィルタ7を通り光電変換素子8の受光
部に結像する。 第2図は、本実施例の2色原稿読取装置の信号処理系の
ブロック構成図である。同図において、9゜10は光電
変換素子6,8より取り出した画信号を4ビツトのデジ
タル信号に変換するアナログデジタル変換回路(A/D
)、11.12は赤フィルタ5を通して取り出す画信号
と青緑フィルタ7を通して取り出す画信号の最大レベル
を一致させるレベル調整回路である。13は上記2つの
色成分の信号の和を算出する和演算器、14は上記2つ
の色成分の信号の差を算出する差演算器、 15.16
は上記和演算器13あるいは差演算器14の出力信号と
一定のスレッシコルドレベルとを比較し、その信号を2
値化する比較器である。また、 17.18はインバー
タ回路、19.20はアンド回路である。 この構成で、色や濃度の異なる種々の原稿DPが光学系
の読取位置にセットされたときの動作例を第3図に示す
。同図(a)はセットされる原稿DPの読取色を示した
もので、同色における数字は大きい方が濃度が濃いこと
を示す、原稿DPがセットされると、光電変換素子6,
8が出力する画信号SL、S2は、アナログデジタル変
換回路(A/D)9.10によりデジタル化した画信号
S s r 54に変換される。 ここで、いま赤フィルタ5と青緑フィルタフを光電変換
素子6,8の前に配置しない状態を考えると。 上記画信号S3と54は第3図(b)、(c)の破線に
示すように原稿DPが白のときに最大レベルとなり、以
下各色の濃度に応じたレベルの画信号が出力される0次
に、光電変換素子6の前に赤フィルタ5を。 また光電変換素子8の前に青緑フィルタフを配置する。 すると、赤フィルタ5では青や緑成分の光が抑制される
ことから1画信号の信号レベルは原稿DPが青や緑のと
きに大きく低下し、また白のときにも青や緑成分を含ん
でいるので一定量低下する画信号S3が変換回路(A/
D)9より出力される。レベル調整回路11は、この画
信号S3を入力して同図(b)の実線に示すように原稿
OPが白のとき最大レベルとなるように補正し、赤成分
の信号S5を出力する。また、上記と同様にレベル調整
回路12は、青緑フィルタ7を配設した場合において画
信号S4を入力じて同図(c)の実線に示すようにレベ
ル調整した青緑成分の信号S6を出力する。 和演算鼎13は、上記赤成分の信号Ssと青緑成分の信
号S6とを入力し、同図(d)に示すように両者の和を
示す和信号S7を出力する。この和信号Stは、赤成分
と青緑成分の和であるので、赤フィルタ5や青緑フィル
タ7を配設しないとき得られる画信号に相当する。 この和信号S7と一定のスレッショルドレベルDref
とを比較器15により比較し、同図(、)に示すように
2値化した濃度信号S9を取り出す。この濃度信号S9
により、第1表に示すように原稿DPの色の;農淡が判
別ができる。 I 一方、差演算器14は、上記赤成分の信号S5と青緑成
分の信号S6とを入力し、同図(f)に示すように上記
信号S5から信号S6を引いた値を示す差信号Saを出
力する。この差信%Saは従来より行なわれているよう
に赤色を検出する信号であり。 比較器16により一定のスレッショルドレベルCref
と比較し、同図(g)に示すように2値化した赤色信号
S+oを取り出す、この赤色信号Shoにより、第2表
に示すように原稿DPの色が赤がどうかが判別できる。 第1嚢 そこで、第3表(Q) 、 (b)に示すように上記濃
度信号S9と赤色信号S1oとにより、同表(e)に示
すような色判別が行なえる。ところが、この2色原稿読
取装置では、゛赤#l 、 #J黒“、“白″の3種の
色に判別すればよいので、同表(e)に示した各色は同
表(f)のように判別するようにする。 この表が示すように、濃度信号S9が“O″つまり濃”
と判別したとき、上記赤色信号51Gにより“赤″″黒
“かを判別し、濃度信号S3が゛l″つまりパ淡″のと
きは′白と判別する。つまり、赤色信号Shoによる゛
″赤″“黒“かの判別より濃度信号S9による″白″″
判定を優先するようにしている。 インバータ17.18とアンド回路19.20は、上記
条件に従って赤検知信号SL+と黒検知信号512を第
3表(C) 、 (d)に示すように出力する回路であ
る。 このように色判別を行なうようにすると、第3図(a)
に示した種々の原稿DPの色を読み取ったとき、第4表
(b) 、 (c)に示すように各信号が取り出され、
色の判別が行なえる。(以下余白)これにより、赤系統
の色では、濃度が高い(赤以外の成分が小さい)ときだ
け、″赤“と判別し。 濃度が低い(赤以外の成分が大きい)とき“白″と判別
して両者を判別できるようになる。また、赤系統以外の
色では、濃度が高いとき″黒″と判別し。 濃度が低いとき゛白″と判別できるようになる。このこ
とは、原稿OPに赤で濃く書かれた文字だけ赤として読
み取れると共に、薄い色の地肌の原稿用紙に濃い色で書
かれた文字などを正確に読み取れるということである。 参考までに、前記において“赤“の判別を“白″の判別
より優先させた場合の色判別の例を第4表(d)に示す
。これによれば、濃度の低い赤色も゛″赤″判別されて
しまう。これを防止するには、差信号S8を2値化する
際のスレッショルドレベルCrefの値を上げることが
考えられる。第4図(b)は、同図(a)に示すように
原稿DPの赤色濃度を徐々に高くして読み取ったときの
差信号S8の変化の実測値の一例を示している。差信号
Saは上記赤色の濃度に比例してないことがわかる。 いま、スレッショルドレベルがCrefである場合には
、同図(c)に示すように色判別がなされる。 ここで、上記の間層を防止するために高い濃度のみ赤と
判別しようとして、スレッショルドレベルCr e f
をC’ refまで上げたとすると、同図(d)に示す
ように最も高い濃度の赤が″白″と判別されてしまう不
都合が生じる。このように″赤“の判別を″白″の判別
に優先させて色判別を行なうと、正しい色判別が行なえ
ない。 以上のように、本実施例では、赤成分の信号S5と青緑
成分の信号S6との和信号Syより濃度信号S9を作成
して、これにより“濃″°と“淡“とを判別する一方、
上記2つの信号S5と56の差信号S8より赤色信号S
hoを作成して、これにより″赤″か“黒″かを判別す
ると共に、上記で“濃″と判定したときだけ、上記赤色
信号Shoに基づいて扉検知信号S++あるいは黒検知
信号S1=を出力するようにしている。これにより、濃
い赤色のみパ赤“、薄い色はパ白パ、濃い色は黒”とい
うように各々区別して読み取ることができる。また、従
来の多色読み取の場合の対数増幅回路は不要になり。 比較回路も少なくなり回路構成が簡単になる。 なお、本実施例では、光電変換素子と画信号回路を2組
配設したが、これを1組として、赤フィルタ5と青緑フ
ィルタ7とを時分割で切換えるようにし、その際の時間
的遅延を補正して和、差を求めて実施しても良い。また
、青緑フィルタ7を使用せずに、赤成分信号との差によ
る色判別、また濃度は和ではなくフィルタ無の信号その
ままで行なうようにしても可能である。更に、緑青系統
色の差信号が負の値になることを利用して、赤・黒・青
(緑)の3色読取装置も可能である。また、上記フィル
タ5,7の効果は差分値を強調するためのものであるか
ら、完全な補色関係である必要はない、更に、和演算i
L3.差演算器14、比較器15,16、インバータ1
7.18.アンド回路19.20の代りにROMを使用
してコード化しても良いし、またcPuを用いてソフト
的に行なっても良い。 [効果コ 以上のように、本発明によれば、原稿画像の濃淡を判別
する濃度信号と特定の色か″黒“かを判別する色信号を
作成し、上記濃度信号が″゛濃″示すときだけ、上記色
信号に基づいて特定の色検知信号あるいは黒検知(ご号
を出力するようにしたので僅かの比較回路と条件判定回
路を付加した簡単な回路で構成できると共に、各色の濃
淡が判別できるので、薄り色の地肌の原稿用紙に濃い色
で書いた原稿なども読み取れるようになり、2色の色判
別が実用的に適切に行なえるようになる。
2. Description of the Related Art A two-color document reading device is known that, in addition to determining whether a document image is black and white, determines one specific color such as red, and outputs a black and white signal and a red signal. by the way. Actual documents may be colored on paper or written in blue or green ink, so these two
In a color document reading device, it is desirable to appropriately determine the density of colors other than red and read them as white or black. As a two-color original reading device as mentioned above, there is a
As seen in Publication No. 166377, an image signal of a red component and image signals of blue and green (hereinafter abbreviated as blue-green) color components, which are complementary colors thereof, are extracted from the original image, and the image signal of the red component is extracted from the image signal of the red component. 5111 L determines red based on the difference signal obtained by subtracting 1ilii (ti) of each green component and outputs a red signal, and also discriminates black and white based on the image signal of the red component and outputs a black and white signal. Other known methods for determining black and white include determining from an image signal of a blue-green component, and determining from an image signal containing a gold component rather than an image signal of a specific color component. However, in the above method of determining black and white from the red signal, the low level of the red signal is determined as black, so even in relatively pale (bright) blue or green parts of the original image, the level of the red signal is low. Therefore, for example, a document written in black on blue manuscript paper may become completely black and become unreadable.Also,
In the above method of determining black and white from the blue-green signal, it is determined to be white when the blue-green signal is at a high level, so for example, a document written in blue on white manuscript paper may become completely white and become unreadable. be. In this way, none of the above methods could properly determine the density of blue or green. There was a problem in that actual document reading was not carried out practically. As a solution to such problems, Japanese Patent Application Laid-Open No. 1987-
As seen in Publication No. 44825, a black and white signal is output based on the sum signal of a red component image signal and a blue-green component image signal, and the two image signals are logarithmically amplified and then the difference between the two is calculated. A system has been proposed in which a hue signal is created using the above-mentioned black and white signal and this hue signal to accurately discriminate between black and white and red, green and blue. However, since this proposal is constructed for the purpose of multicolor reading, it requires a special circuit called logarithmic amplification and many comparison circuits, resulting in a complicated circuit configuration. In addition, since two logarithmic amplifier circuits are required, if an analog circuit is used to handle high-speed image signal processing, there will be differences in characteristics between the two due to temperature changes, etc., making it impossible to perform accurate signal processing. There was a problem that it was difficult to extract the signal. [Objective] In view of the above points, it is an object of the present invention to provide a two-color original reading device that can perform two-color discrimination practically and appropriately with a simple circuit configuration. [Configuration] Therefore, the present invention distinguishes the darkness of an original image mainly based on an image signal having a specific color component and an image signal having a correction component thereof. A color signal for discriminating between black and black is generated, and only when the density signal indicates "dark", the specific one color or black detection signal is output based on the color signal, and when the density signal indicates "light" , the above two detection signals are turned off and a white detection signal is output. An embodiment of the present invention will be described below based on the drawings. FIG. 1 is a schematic configuration diagram showing an optical system of a two-color document reading device according to an embodiment of the present invention. This two-color document reading device uses two line sensors to simultaneously read image signals of two color components from one document. In the same figure, l
2 is a light source that illuminates the document leaf passing on the image reading line RL, and 2 is a half mirror that branches the reflected light from the document DP received via the mirror 3 and lens 4 into two directions. One of the branched image lights passes through a red filter 5 that transmits only red component light, and forms an image on the light-receiving part of the photoelectric conversion element 6, and the other image light contains only blue and green component lights, which are complementary colors of red. The light passes through the blue-green filter 7 and forms an image on the light receiving portion of the photoelectric conversion element 8 . FIG. 2 is a block diagram of the signal processing system of the two-color original reading apparatus of this embodiment. In the figure, reference numerals 9 and 10 indicate an analog-to-digital conversion circuit (A/D) that converts the image signals extracted from the photoelectric conversion elements 6 and 8 into 4-bit digital signals.
), 11 and 12 are level adjustment circuits that match the maximum levels of the image signal taken out through the red filter 5 and the image signal taken out through the blue-green filter 7. 13 is a sum calculator that calculates the sum of the signals of the two color components; 14 is a difference calculator that calculates the difference between the signals of the two color components; 15.16
compares the output signal of the sum calculator 13 or difference calculator 14 with a certain threshold level, and converts the signal into 2
It is a comparator that converts into values. Further, 17.18 is an inverter circuit, and 19.20 is an AND circuit. FIG. 3 shows an example of the operation of this configuration when various documents DP of different colors and densities are set at the reading position of the optical system. FIG. 6(a) shows the reading color of the set document DP. The larger the number in the same color, the higher the density. When the document DP is set, the photoelectric conversion element 6,
The image signals SL and S2 outputted by the 8 are converted into a digitized image signal S s r 54 by an analog-to-digital conversion circuit (A/D) 9.10. Now, let us consider a situation in which the red filter 5 and the blue-green filter are not arranged in front of the photoelectric conversion elements 6 and 8. The image signals S3 and 54 have the maximum level when the document DP is white, as shown by the broken lines in FIG. Next, place the red filter 5 in front of the photoelectric conversion element 6. Further, a blue-green filter is arranged in front of the photoelectric conversion element 8. Then, since the red filter 5 suppresses light with blue and green components, the signal level of the single image signal decreases greatly when the document DP is blue or green, and even when the document DP is white, it contains blue and green components. Therefore, the image signal S3, which decreases by a certain amount, is transferred to the conversion circuit (A/
D) Output from 9. The level adjustment circuit 11 inputs this image signal S3, corrects it so that it reaches the maximum level when the original OP is white, as shown by the solid line in FIG. 3B, and outputs a red component signal S5. Similarly to the above, when the blue-green filter 7 is provided, the level adjustment circuit 12 inputs the image signal S4 and outputs a blue-green component signal S6 whose level is adjusted as shown by the solid line in FIG. Output. The sum calculation unit 13 inputs the red component signal Ss and the blue-green component signal S6, and outputs a sum signal S7 indicating the sum of the two, as shown in FIG. 4(d). Since this sum signal St is the sum of the red component and the blue-green component, it corresponds to the image signal obtained when the red filter 5 and the blue-green filter 7 are not provided. This sum signal S7 and a constant threshold level Dref
A comparator 15 compares the two values, and extracts a binarized density signal S9 as shown in FIG. This concentration signal S9
As shown in Table 1, the color density of the original DP can be determined. I On the other hand, the difference calculator 14 inputs the red component signal S5 and the blue-green component signal S6, and generates a difference signal indicating the value obtained by subtracting the signal S6 from the signal S5, as shown in FIG. Output Sa. This difference %Sa is a signal for detecting red color as has been conventionally done. Comparator 16 sets a constant threshold level Cref
The red signal S+o is extracted as a binarized red signal S+o as shown in FIG. 1st bladder Therefore, as shown in Table 3 (Q) and (b), color discrimination as shown in Table 3 (e) can be performed using the density signal S9 and red signal S1o. However, with this two-color document reading device, it is only necessary to distinguish between three colors: "red #l, #J black", and "white," so each color shown in table (e) is compared to table (f). As shown in this table, when the density signal S9 is "O", that is, dark
When it is determined, it is determined whether it is "red" or "black" based on the red signal 51G, and when the density signal S3 is "1", that is, "pale", it is determined that it is "white". In other words, the density signal S9 determines "white" rather than "red" or "black" based on the red signal Sho.
I try to prioritize judgment. The inverters 17.18 and the AND circuits 19.20 are circuits that output the red detection signal SL+ and the black detection signal 512 as shown in Table 3 (C) and (d) according to the above conditions. If color discrimination is performed in this way, Fig. 3(a)
When reading the colors of the various documents DP shown in Table 4, each signal is extracted as shown in Table 4 (b) and (c),
Can distinguish colors. (Margin below) As a result, for red-based colors, only when the concentration is high (components other than red are small) are they judged as "red". When the density is low (components other than red are large), it is determined as "white" and it becomes possible to distinguish between the two. Also, for colors other than red, when the density is high, it is judged as "black". When the density is low, it becomes possible to distinguish it as "white."This means that only characters written in dark red on the manuscript OP can be read as red, and characters written in dark color on manuscript paper with a light background can be read as red. For reference, Table 4 (d) shows an example of color discrimination when the discrimination of "red" is given priority over the discrimination of "white" in the above. According to this, A red color with a low density is also discriminated as "red". To prevent this, it is possible to increase the value of the threshold level Cref when binarizing the difference signal S8. FIG. 4(b) shows , shows an example of the actual measured value of the change in the difference signal S8 when the red density of the document DP is gradually increased and read as shown in (a) of the figure.The difference signal Sa is proportional to the red density. Now, when the threshold level is Cref, color discrimination is performed as shown in the same figure (c).Here, in order to prevent the above-mentioned interlayer, only the high concentration is red. The threshold level C e f
If it were to be increased to C' ref, there would be an inconvenience that the highest density red would be determined as "white", as shown in FIG. 2(d). If color discrimination is performed by giving priority to discrimination of "red" over discrimination of "white" in this way, correct color discrimination cannot be performed. As described above, in this embodiment, the density signal S9 is created from the sum signal Sy of the red component signal S5 and the blue-green component signal S6, and is used to discriminate between "dark" and "light". on the other hand,
From the difference signal S8 between the above two signals S5 and 56, the red signal S
ho is created, and this is used to determine whether it is "red" or "black", and only when it is determined to be "dark" above, the door detection signal S++ or black detection signal S1= is generated based on the red signal Sho. I am trying to output it. As a result, it is possible to read each color separately, such as only a dark red is read as "pa-red", a light color as "pa-white", and a dark color as "black". Additionally, the logarithmic amplification circuit required for conventional multicolor reading is no longer required. The number of comparison circuits is reduced and the circuit configuration is simplified. In this embodiment, two sets of photoelectric conversion elements and image signal circuits are arranged, but these are set as one set, and the red filter 5 and the blue-green filter 7 are switched in a time-division manner, and the time It may also be implemented by correcting the delay and calculating the sum and difference. Further, it is also possible to perform color discrimination based on the difference from the red component signal without using the blue-green filter 7, or to perform the density using the unfiltered signal as it is rather than the sum. Furthermore, a three-color reading device of red, black, and blue (green) is also possible by utilizing the fact that the difference signal of the green-blue color system has a negative value. Furthermore, since the effect of the filters 5 and 7 is to emphasize the difference value, it is not necessary to have a completely complementary color relationship.
L3. Difference calculator 14, comparators 15, 16, inverter 1
7.18. Instead of the AND circuits 19 and 19, 20, a ROM may be used for encoding, or a cPu may be used for software. [Effects] As described above, according to the present invention, a density signal for determining the density of an original image and a color signal for determining whether a specific color or "black" are created, and the density signal indicates "dark". Since only a specific color detection signal or a black detection signal is output based on the above color signal, it can be configured with a simple circuit with a few comparison circuits and condition judgment circuits, and it is possible to Since it can be distinguished, it becomes possible to read documents written in dark colors on manuscript paper with a pale background, and it becomes possible to practically and appropriately discriminate between two colors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る2色原稿読取装置の光
学系の概ms構成図、第2図は上記2色原稿読取装置の
信号処理系のブロック構成図、第3図は色判別の説明図
、第4図は赤色判別の説明図である。 l・・・光源、2・・・ハーフミラ−13・・・鏡、4
・・・ レンズ、5・・・赤フィルタ、6,8・・・光
電変換素子、7・・・青緑フィルタ、9・・・アナログ
デジタル変換回路(A/D)、11.12・・・ レベ
ル調整回路、13・・・和演算器、14・・・差演算器
、15.16・・・比較器、 17.18・・・インバ
ータ、 19.20・・・アンド回路。 代理人 弁理士  紋 1) 誠  )−−,7 吊 1 図 L 第3図 第4図 イヘ、い−麩−Jn・ 1  i  j  I  l  l  i  1 .1
 1(c)Cref IcJう賜金   11iNll
lil亦e(!’S  S+o    OO11111
111色チ°j別    白白亦亦亦亦赤亦/frX/
frX(f )C’ref IcJ bjTo合亦色イ
g!  S++o     OOO○111110きP
I別    白白自白亦亦亦亦亦臼手続ネ113正書(
自発) 昭和61年6月25日
FIG. 1 is a schematic block diagram of the optical system of a two-color original reading device according to an embodiment of the present invention, FIG. 2 is a block diagram of the signal processing system of the two-color original reading device, and FIG. 3 is a color FIG. 4 is an explanatory diagram of red color discrimination. l...Light source, 2...Half mirror-13...Mirror, 4
... Lens, 5... Red filter, 6, 8... Photoelectric conversion element, 7... Blue-green filter, 9... Analog-to-digital conversion circuit (A/D), 11.12... Level adjustment circuit, 13... Sum calculator, 14... Difference calculator, 15.16... Comparator, 17.18... Inverter, 19.20... AND circuit. Agent Patent attorney Crest 1) Makoto) --,7 Hanging 1 Figure L Figure 3 Figure 4 Ihe, I-Fu-Jn・1 ij I l l i 1 . 1
1(c)Cref IcJ donation 11iNll
lil亦e(!'S S+o OO11111
111 colors by °j white and white and red and white/frX/
frX(f)C'ref IcJ bjTocombined with color Ig! S++o OOO○111110kiP
Part I White Confession 亦亦亦亦亦度度Proceedings Ne 113 Official Book (
(Voluntary) June 25, 1986

Claims (1)

【特許請求の範囲】[Claims] 原稿の同一読取線上の画像を分光感度特性を異ならせた
光検出手段により検出して2種類の画信号を取り出し、
上記画信号に基づいて原稿画像の黒検知信号と特定色検
知信号とを弁別して出力する2色原稿読取装置において
、上記2種類の画信号に基づいて、上記画像の濃淡を判
別し2値化した濃度信号を取り出す濃度検知手段と、上
記画像の“特定色”と“黒”とを判別し2値化した色信
号を取り出す色検知手段と、上記濃度信号が“濃”を示
すとき上記色信号に基づいて上記特定色検知信号と上記
黒検知信号を弁別出力すると共に、上記濃度信号が“淡
”を示すとき上記特定色検知信号と上記黒検知信号をオ
フする白優先出力手段とを備えることを特徴とする2色
原稿読取装置。
The image on the same reading line of the original is detected by light detection means with different spectral sensitivity characteristics, and two types of image signals are extracted.
In a two-color document reading device that discriminates and outputs a black detection signal and a specific color detection signal of a document image based on the image signal, the shading of the image is determined and binarized based on the two types of image signals. a color detection means for discriminating between a "specific color" and "black" in the image and extracting a binarized color signal; White priority output means is provided which outputs the specific color detection signal and the black detection signal separately based on the signal, and turns off the specific color detection signal and the black detection signal when the density signal indicates "light". A two-color document reading device characterized by:
JP61071096A 1986-03-31 1986-03-31 Two-color original reader Pending JPS62230165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071096A JPS62230165A (en) 1986-03-31 1986-03-31 Two-color original reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071096A JPS62230165A (en) 1986-03-31 1986-03-31 Two-color original reader

Publications (1)

Publication Number Publication Date
JPS62230165A true JPS62230165A (en) 1987-10-08

Family

ID=13450662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071096A Pending JPS62230165A (en) 1986-03-31 1986-03-31 Two-color original reader

Country Status (1)

Country Link
JP (1) JPS62230165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145292A (en) * 2012-01-13 2013-07-25 Nikon Corp Solid-state imaging device and electronic camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145292A (en) * 2012-01-13 2013-07-25 Nikon Corp Solid-state imaging device and electronic camera

Similar Documents

Publication Publication Date Title
EP0800123B1 (en) Image recognition method and device and copier and scanner employing same
JPH0389778A (en) Method and device for abstracting information from paper
US6201616B1 (en) Method and apparatus for determining a predetermined pattern on an original based on visible and invisible information on the original
JPS6363149B2 (en)
CA1315588C (en) Exposure control process and photographic color copying apparatus
JPS62230165A (en) Two-color original reader
JPH0454681A (en) Color picture processor
JPS5840977A (en) Reading system of color image
JPH03230683A (en) Copying machine
JPS62101179A (en) Picture information processor
JP2637498B2 (en) Image signal processing device
JPH02204879A (en) Color identification method and device
JPH0918709A (en) Image recognition method and its device, copying machine, scanner and printer mounting the device
JPS62230166A (en) Two-color original reader
JPH06217130A (en) Image processing device
JPH02137079A (en) color identification circuit
JP2000324338A (en) Original kind recognition device
JPS60138682A (en) Color discriminating method
JPS61269570A (en) Color discriminator
JPH0670152A (en) Image processor
JPH08102842A (en) Marker detection device
JPH084313B2 (en) Color original reading device
JPS59158481A (en) Method and apparatus for reading optically diagram
JPH05110777A (en) Original recognition device
JPS62200485A (en) Optical character reader