JPS6222960Y2 - - Google Patents
Info
- Publication number
- JPS6222960Y2 JPS6222960Y2 JP1981141389U JP14138981U JPS6222960Y2 JP S6222960 Y2 JPS6222960 Y2 JP S6222960Y2 JP 1981141389 U JP1981141389 U JP 1981141389U JP 14138981 U JP14138981 U JP 14138981U JP S6222960 Y2 JPS6222960 Y2 JP S6222960Y2
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- conductor
- resistance value
- measuring device
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004020 conductor Substances 0.000 claims description 38
- 239000000615 nonconductor Substances 0.000 claims 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 7
- 239000002985 plastic film Substances 0.000 description 7
- 229920006255 plastic film Polymers 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
【考案の詳細な説明】
本考案は計測装置に関し、特に加圧される2点
間の距離を電気的に計測することにより道路を走
行する車輌の車種判別に適する計測装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring device, and more particularly to a measuring device suitable for identifying the type of vehicle traveling on a road by electrically measuring the distance between two pressurized points.
現在、有料道路における料金徴収は、道路管理
職員が通過する車輌の車種を自からの目で判別し
て徴収金額を運転者に提示する方法によつてい
る。 Currently, toll collection on toll roads relies on a method in which a road management staff member visually identifies the type of vehicle passing by and presents the collected amount to the driver.
このため、道路を走行する車輌の車種を機械的
に判別する装置の開発が望まれてきた、従来、車
輌の車種を機械的に判別する装置として、特開昭
48−3949号公報あるいは特開昭48−37157号公報
に開示されているような、車輌のトレツド即ち左
右タイヤ踏み面の接地面の中心間の距離(以下輪
距と称する)を計測する装置が考えられた。 For this reason, there has been a desire to develop a device that mechanically determines the type of vehicle traveling on the road.
There is a device that measures the tread of a vehicle, that is, the distance between the centers of the contact surfaces of the left and right tire treads (hereinafter referred to as wheel distance), as disclosed in Publication No. 48-3949 or Japanese Patent Application Laid-Open No. 48-37157. it was thought.
前記両公報に記載の装置は、いずれも道路の横
断方向に配列された多数のスイツチのうちタイヤ
の通過によつて動作される一対のスイツチからの
動作信号すなわちON,OFF信号を演算処理して
輪距を計測するという基本構想に立脚するもので
あり、これらの装置は感知手段として道路の横断
方向に多数のスイツチを直線状に設置することを
内容とするものである。しかし、車輌が道路の横
断方向における任意の位置を通過した時でも輪距
を計測するには、極めて多数のスイツチを必要と
し、この感知手段を構成する多数のスイツチのそ
れぞれから後述する電気回路にリード線が伸び
る。 The devices described in both of the above-mentioned publications process operation signals, that is, ON and OFF signals, from a pair of switches that are activated by the passage of a tire among a large number of switches arranged in the cross direction of the road. These devices are based on the basic concept of measuring wheel distance, and their sensing means are a number of switches installed in a straight line across the road. However, in order to measure the wheel distance even when the vehicle passes an arbitrary position in the cross direction of the road, an extremely large number of switches are required. The lead wire stretches.
これらの多数のリード線は、配線を複雑化する
と共に、これらのリード線を路面に露出させた場
合にはこれらの切断による故障が生じやすいこと
から、前記リード線を保護するためにこれらを埋
設あるいは管等に収容する必要が生じ、多数のリ
ード線のための保護装置が大型化して、設置作業
が煩雑化する。更に、このような多数のスイツチ
を用いた装置の場合、どのスイツチが付勢されて
いるかを判別するための複雑な電気回路を必要と
した。 These large numbers of lead wires complicate the wiring, and if these lead wires are exposed on the road surface, they are likely to break due to breakage, so it is recommended to bury them in order to protect them. Alternatively, it becomes necessary to accommodate the lead wires in a pipe or the like, which increases the size of the protective device for the large number of lead wires and complicates the installation work. Furthermore, devices using such a large number of switches require complex electrical circuitry to determine which switch is energized.
また、更に別の従来技術として、特公昭41年第
877号公報に開示された装置がある。この装置は
直線状の圧力検知器を2条平行して、道路の横断
方向に斜めに配置し、車輌の同一車輪がその2条
を踏む時間差から車速を求め、次いで左右の各車
輪が同一条を踏む時間差と前記車速との関係から
車輌の輪距を計算するものである。 In addition, as yet another conventional technology,
There is a device disclosed in Publication No. 877. This device uses two linear pressure detectors placed in parallel and diagonally across the road, and calculates vehicle speed from the time difference between when the same wheel of the vehicle steps on the two strips. The wheel distance of the vehicle is calculated from the relationship between the time difference between stepping on the wheel and the vehicle speed.
しかし、この装置は検知器を設置するのに比較
的広い面積を必要とすること、複雑な演算回路を
必要とすること、測定領域を通過中の車速が一定
でなければならないこと、更には停止している車
輌については全くその測定が不可能なことなど極
めて欠点が多い。 However, this device requires a relatively large area to install the detector, requires a complex arithmetic circuit, requires the vehicle speed to be constant while passing through the measurement area, and even stops. There are many drawbacks, such as the fact that it is impossible to measure the vehicles that use the method.
本考案の目的は、加圧された2点間の距離を電
気的に計測する構造の簡単な計測装置を提供する
ことにある。 An object of the present invention is to provide a measuring device with a simple structure that electrically measures the distance between two pressurized points.
本考案は、感知手段として、長尺の抵抗体と該
抵抗体上に配置された可撓性を有する長尺の導電
体と、前記抵抗体と導電体との間に配置され前記
導電体が加圧された際当該加圧部分と前記抵抗体
との接触を許すべく前記導電体の変形を許すため
の開口が形成された長尺の非導電性薄板とを備え
る単一の感知素子を用い、前記導電体に作用する
加圧点間の距離に比例して変化する前記導電体に
よるバイパス路の長さの変化に応じた前記抵抗体
の両端における見かけ上の抵抗値の変化量を測定
することにより、前記加圧点間の距離を計測する
ことを特徴とする。 The present invention includes a long resistor, a flexible long conductor disposed on the resistor, and a conductor arranged between the resistor and the conductor as a sensing means. using a single sensing element comprising an elongated non-conductive thin plate having an opening formed therein to allow deformation of the conductor to allow contact between the pressurized portion and the resistor when pressurized; , measuring the amount of change in the apparent resistance value at both ends of the resistor in response to a change in the length of the bypass path by the conductor, which changes in proportion to the distance between pressurizing points acting on the conductor; Accordingly, the distance between the pressurizing points is measured.
本考案の計測装置の他の特徴および利点は本考
案の好適な実施例を示す添付図面を参照して説明
する以下の記載から明らかになろう。 BRIEF DESCRIPTION OF THE DRAWINGS Other features and advantages of the measuring device of the invention will become apparent from the following description with reference to the accompanying drawings, which illustrate preferred embodiments of the invention.
第1図には、本考案の計測装置の一部が符号1
0で示されている。本実施例では、この計測装置
10が輪距を計測するのに用いられるものとして
説明する。 In FIG. 1, a part of the measuring device of the present invention is shown with reference numeral 1.
It is indicated by 0. In this embodiment, this measuring device 10 will be described as being used to measure wheel distance.
計測装置10は単一の感知素子を含み、該感知
素子は基板12の中央部に長手方向へ沿つて形成
された溝14に入れられたニクロム合金などの抵
抗性金属のリボンからなる長尺の抵抗体16と、
同様に長尺に形成されて該抵抗体の上に配置され
その長手方向に配列して設けられた多数の開口、
例えばスロツト18を有する非導電性すなわち絶
縁性の薄板、好ましくはプラスチツクフイルム2
0と、更にこのプラスチツクフイルムの上に配置
され、可撓性を有する長尺の導電体22とを含
み、これらの構成部材を保護する可撓性のカバー
(図示せず)を設けることが好ましい。 The measurement device 10 includes a single sensing element, which is an elongated ribbon of a resistive metal, such as a nichrome alloy, placed in a groove 14 formed longitudinally in the center of the substrate 12. a resistor 16;
A large number of openings similarly formed in a long length and disposed on the resistor and arranged in the longitudinal direction thereof;
For example, a non-conductive or insulating thin plate, preferably a plastic film 2, having a slot 18.
It is preferable to provide a flexible cover (not shown) that protects these components and includes a flexible elongated conductor 22 disposed on the plastic film. .
前記抵抗体16は絶縁物上に抵抗線を巻いたい
わゆる巻線抵抗器を用いてもよく、またカーボン
繊維、抵抗性導電塗料の塗膜などを用いてもよ
い。 The resistor 16 may be a so-called wire-wound resistor in which a resistance wire is wound around an insulating material, or may be made of carbon fiber, a coating of resistive conductive paint, or the like.
多数のスロツト18を有するプラスチツクフイ
ルム20は、導電体22が加圧されない時抵抗体
16に容易に接触しないために充分な厚さであつ
て、加圧時にはこのスロツト18を介して加圧点
における導電体22が変形して抵抗体16に接触
し得る厚さを備えている。このプラスチツクフイ
ルム20の厚さは20〜100μが好ましい。しか
し、この厚さは開口即ちスロツト18の寸法およ
び導電体22の厚さおよび硬度により決定されよ
う。 The plastic film 20, which has a number of slots 18, is of sufficient thickness so that the conductor 22 does not easily contact the resistor 16 when not pressurized, and when pressurized, the plastic film 20 can be inserted through the slots 18 at the point of pressure. The conductor 22 has a thickness that allows it to deform and come into contact with the resistor 16. The thickness of this plastic film 20 is preferably 20 to 100 microns. However, this thickness will be determined by the dimensions of the opening or slot 18 and the thickness and hardness of the conductor 22.
可撓性の導電体22は、天然ゴム、合成ゴム或
は可塑剤によつて軟かくされたポリ塩化ビニール
などのプラスチツク材料に、カーボンブラツクな
どの炭素質の粉体或は金属粉末を混入したものが
用いられる。例えば、英国特許第978606号明細書
に開示されたような銀メツキされた鋼粒子をシリ
コンゴムに混入したものは優れた特性を示す。ま
た、導電体22を金網などの可撓性を有する導電
部材から形成することができる。 The flexible conductor 22 is made of a plastic material such as natural rubber, synthetic rubber, or polyvinyl chloride softened with a plasticizer, mixed with carbonaceous powder such as carbon black or metal powder. things are used. For example, silicone rubber mixed with silver-plated steel particles as disclosed in British Patent No. 978,606 exhibits excellent properties. Further, the conductor 22 can be formed from a flexible conductive member such as a wire mesh.
前記抵抗体16、前記プラスチツクフイルム2
0および前記導電体22は、単一の感知素子を構
成する。 The resistor 16 and the plastic film 2
0 and the conductor 22 constitute a single sensing element.
第1図において、可撓性の導電体22の長手方
向に沿つた縁部に取付けられた金属帯24は前記
導電体の長手方向の導電性を助け、この両者が一
体となつて後述するバイパス路を構成するための
側導体を形成している。前記金属帯24は無くて
もよい。 In FIG. 1, a metal strip 24 attached to the longitudinal edge of a flexible electrical conductor 22 assists in the longitudinal conductivity of said electrical conductor, and together they form a bypass as described below. It forms a side conductor for configuring a path. The metal band 24 may be omitted.
また、前記抵抗体16の両端には適当な手段で
リード線26(第1図には一方のみを示す)が固
定される。この両リード線26は、図示しない
が、電源および検流計を備える従来よく知られた
抵抗測定装置が接続され、前記抵抗16の両端に
は電源電圧が印加されるように構成されている。 Furthermore, lead wires 26 (only one of which is shown in FIG. 1) are fixed to both ends of the resistor 16 by appropriate means. Although not shown, both lead wires 26 are connected to a conventionally well-known resistance measuring device including a power source and a galvanometer, and a power source voltage is applied to both ends of the resistor 16.
前述したような構成の計測装置の作用を説明す
れば、道路上に埋め込まれた本装置本体すなわち
前記感知素子上を車輌の左右の車輪が通過しない
状態では、導電体22と抵抗体16とは両者間に
介在するプラスチツクフイルム20により非接触
状態におかれることから、前記抵抗装置は抵抗体
16の両端間における固有の抵抗値R0を表示す
る。 To explain the operation of the measuring device configured as described above, when the left and right wheels of the vehicle do not pass over the main body of the device, that is, the sensing element embedded in the road, the conductor 22 and the resistor 16 are Due to the non-contact nature of the plastic film 20 interposed between the two, the resistor device displays a specific resistance value R 0 across the resistor 16.
前記感知素子上を車輌が通過すると、その際車
輌の左右両輪の接地部から、例えば第2図に示さ
れるような車輌の荷重P,P′が前記感知素子に作
用する。この加圧力により、前記導電体22は第
2図に示されているように、加圧力を受けた部分
が前記スロツト18内に向けて弾性的に変形を生
じ、その結果、対応するスロツト18を経て加圧
部分が抵抗体16に接触する。 When a vehicle passes over the sensing element, loads P and P' of the vehicle as shown in FIG. 2, for example, act on the sensing element from the ground contact portions of both left and right wheels of the vehicle. Due to this pressurizing force, the portion of the conductor 22 that receives the pressurizing force is elastically deformed toward the inside of the slot 18, as shown in FIG. Then, the pressurized portion comes into contact with the resistor 16.
この加圧部分における導電体22と抵抗体16
との接触の結果、リード線26からの電流は、端
子Aから加圧点Bまで抵抗体16を流れ、更にこ
の加圧点Bにおける導電体22の加圧変形を受け
た部分が導電状態にあることから加圧点BからC
までは極めて抵抗の低い導電体22を流れ、次い
で加圧点Cから端子Dまでは抵抗体16を流れて
他方のリード線26に至る。従つて、加圧点B−
C間における導電体22は抵抗体16のバイパス
路として作用し、この加圧点の間隔が異ることに
より、前記バイパス路の有効長が比較的に変化
し、これにより抵抗体16の見かけ上の抵抗値が
前記間隔の増減に応じて変化する。 The conductor 22 and the resistor 16 in this pressurized part
As a result of contact with the lead wire 26, the current from the lead wire 26 flows through the resistor 16 from the terminal A to the pressurizing point B, and furthermore, the portion of the conductor 22 at the pressurizing point B that has undergone pressurized deformation becomes conductive. From pressurization point B to C
The current flows through the conductor 22 with extremely low resistance until then, and then flows through the resistor 16 from the pressurizing point C to the terminal D and reaches the other lead wire 26. Therefore, pressurizing point B-
The conductor 22 between C acts as a bypass path for the resistor 16, and by varying the distance between the pressurizing points, the effective length of the bypass path changes relatively. The resistance value changes depending on the increase or decrease in the distance.
その結果、前記抵抗体16の両端における抵抗
値の変化を前記抵抗測定装置で促えることにより
輪距が容易に得られる。 As a result, the wheel distance can be easily obtained by using the resistance measuring device to measure the change in resistance value at both ends of the resistor 16.
これを更に詳細に説明すれば、本計測装置本体
すなわち前記感圧素子上に何等の加圧点がない場
合或は1点でのみ加圧されている場合には、リー
ド線26間には抵抗体16固有の抵抗値R0が表
われる。この場合R0は低抗体16の単位長さ当
りの抵抗値rと、その全長との積として表わされ
る。勿論、リード線の抵抗およびリード線と抵抗
体との接触抵抗とが微少であるが加わつているが
これらは無視できるものである。 To explain this in more detail, if there is no pressure point on the main body of the measuring device, that is, the pressure sensitive element, or if pressure is applied only at one point, there is a resistance between the lead wires 26. A resistance value R 0 specific to the body 16 appears. In this case, R 0 is expressed as the product of the resistance value r per unit length of the low antibody 16 and its total length. Of course, the resistance of the lead wires and the contact resistance between the lead wires and the resistor are added, but they can be ignored.
次いで、導電体22上の任意の2点B,Cを加
圧すると、第2図に沿つて説明したような回路が
構成され、端子間抵抗の変化量が加圧2点間の距
離を示すことになる。加圧点が仮に3点以上ある
場合には最も端子側にある2点間すなわち加圧点
のうち前記抵抗体の両端部のそれぞれに最も近い
2点の間の距離が示される。 Next, when arbitrary two points B and C on the conductor 22 are pressurized, a circuit as described in FIG. 2 is constructed, and the amount of change in resistance between the terminals indicates the distance between the two pressurized points. It turns out. If there are three or more pressurizing points, the distance between the two points closest to the terminal, that is, the distance between the two pressurizing points closest to each of the ends of the resistor is shown.
これまでの説明からは抵抗体16の単位長さ当
りの抵抗値rと導電体22の単位長さ当りの抵抗
値rbはr≫rbでなければならないように思える
が、必ずしもその必要はない。 From the above explanation, it seems that the resistance value r per unit length of the resistor 16 and the resistance value per unit length r b of the conductor 22 must be r≫r b , but this is not necessarily necessary. do not have.
加圧点B,Cでの導電体22と、抵抗体16と
の接触抵抗値をRcとすると、抵抗値変化ΔRは
加圧2点間の距離をlとして、
ΔR={r2/(r+rb+2Rc/l)}・l
で表わされる。従つて、接触抵抗Rcをrおよび
rbに比較して小さくするか、或は充分に大きな
lを測定の対象とすることにより、感度ΔR/l
は
ΔR/l≒r2/(r+rb)
となり、抵抗値の変化は加圧2点間の距離lに比
例する。 If the contact resistance between the conductor 22 and the resistor 16 at pressurizing points B and C is R c , the resistance change ΔR is calculated as follows, where l is the distance between the two pressurizing points, ΔR={r 2 /( r+r b +2Rc/l)}·l. Therefore, by making the contact resistance R c smaller than r and r b or by measuring a sufficiently large l, the sensitivity ΔR/l
is ΔR/l≒r 2 /(r+r b ), and the change in resistance value is proportional to the distance l between the two pressurizing points.
実際の場合には、各材料の抵抗値の関係から次
のように考慮すると良い結果が得られる。 In actual cases, good results can be obtained by considering the relationship between the resistance values of each material as follows.
抵抗体16は基板12などによつて保護されて
いるため変形などによる抵抗値変化を生じにくい
のに対して、可撓性の導電体22は多少とも塑性
変形しこれにより抵抗値変化を生ずる。そのた
め、抵抗体16の単位長さ当りの抵抗値rを導電
体22の抵抗値rbより大にすることが好まし
い。実験の結果ではrbをrの少なくとも1/5以下
にすると良い結果が得られることが判つた。 Since the resistor 16 is protected by the substrate 12 or the like, it is unlikely to change its resistance value due to deformation or the like, whereas the flexible conductor 22 is more or less plastically deformed, thereby causing a change in its resistance value. Therefore, it is preferable that the resistance value r per unit length of the resistor 16 be greater than the resistance value r b of the conductor 22 . Experiments have shown that good results can be obtained by setting r b to at least 1/5 of r.
次に、加圧された状態の時、導電体の接触抵抗
Rcが存在することにより、抵抗体16の単位長
さ当りの抵抗値rが大きいほど特に短い加圧点間
距離から感度の直線性が得られる。また、Rcは
加圧力に依存し、即ち加圧力が大きくなければ単
位長さ当りの接触抵抗Rcは減少する。しかし、
抵抗体16の単位長さ当りの抵抗値rが大きいほ
ど、大きな接触抵抗値Rcでも作動する、すなわ
ち大きな接触抵抗値で作動するとは小さな加圧力
で作動することを意味する。 Next, in a pressurized state, due to the presence of the contact resistance R c of the conductor, the larger the resistance value r per unit length of the resistor 16, the shorter the distance between the pressurizing points, so that the sensitivity straight line You can get sex. Further, R c depends on the pressing force, that is, if the pressing force is not large, the contact resistance R c per unit length decreases. but,
The larger the resistance value r per unit length of the resistor 16 is, the more it operates even with a large contact resistance value R c , that is, operating with a large contact resistance value means operating with a small pressing force.
測定対象物の最も短かいものの長さを単位長さ
とした時、抵抗体の単位長さ当りの抵抗値rを接
触抵抗値Rcの100倍程度か、さらに好ましくは
200倍以上にすると好結果が得られる。 When the shortest length of the object to be measured is taken as a unit length, the resistance value r per unit length of the resistor should be about 100 times the contact resistance value Rc , or more preferably
Good results can be obtained by multiplying by 200 times or more.
これまでに述べたr,rbおよびRcの相互の関
係におけるrの好ましい範囲は、抵抗変化が加圧
2点間距離の広い範囲に亘つて直線性を保ち、且
つ測定可能な加圧力の下限はあるが加圧力が種々
にばらつく場合にも適確に2点間距離を計測する
ために最も好ましい条件であつて、加圧2点間距
離がある一定のレベルより大きいか或は小さいか
を判定するような抵抗値変化の直線性が要求され
ない用途或は加圧力が常に一定しているような用
途のためには前述の条件を満たす必要のないこと
は理解されよう。従つて、これらr,rbおよび
Rcの関係および範囲は本考案の範囲を限定する
ものではない。 The preferred range of r in the mutual relationship of r, r b and R c described above is such that the resistance change maintains linearity over a wide range of the distance between two pressurizing points, and the measurable pressurizing force is Although there is a lower limit, it is the most preferable condition for accurately measuring the distance between two points even when the pressurizing force varies, and whether the distance between the two pressurizing points is greater or less than a certain level. It will be understood that it is not necessary to satisfy the above-mentioned conditions for applications where linearity of resistance change is not required, such as when determining the resistance value, or where the pressing force is always constant. Therefore, the relationships and ranges of r, r b and R c do not limit the scope of the present invention.
また、保護カバーの導電体に接する面に突起或
は横断方向の歯形を付することにより、更に感度
および距離分解能が改善されよう。 Further, by providing a protrusion or a transverse tooth profile on the surface of the protective cover that contacts the conductor, the sensitivity and distance resolution may be further improved.
実際の実験に用いられた前記感圧素子の一例を
次に示す。 An example of the pressure sensitive element used in the actual experiment is shown below.
厚さ3mm、幅20mm、長さ3mmのガラス布補強ポ
リエステル樹脂FRP板の長手方向中央部をほぼ
4mmの幅でサンドプラストし、そこに幅3mmでニ
ツケルクロム合金をスパツタリングしてリボン状
の抵抗体を形成した。この抵抗体の厚さは約30〜
40μの範囲にあり、且つ抵抗値は36.7Ωであつ
た。 The longitudinal center of a glass cloth-reinforced polyester resin FRP board with a thickness of 3 mm, width of 20 mm, and length of 3 mm is sandblasted to a width of approximately 4 mm, and nickel-chromium alloy is sputtered thereto to a width of 3 mm to form a ribbon-shaped resistor. was formed. The thickness of this resistor is approximately 30~
It was in the range of 40μ, and the resistance value was 36.7Ω.
他方、厚さ50μ、幅20mmのポリエチレンテレフ
タレートの帯状体の中心に径5mmの穴を7mmピツ
チであけた非導電性の薄板と、厚さ0.5mm、幅20
mmの帯状導電ゴムと、厚さ0.3mm、幅5mmの銅の
帯状材を2本とをそれぞれ297cmの長さで準備し
た。導電ゴムはシリコンゴム100重量部に対し粒
径約3μのニツケル粉末400重量部を加え過酸化
物で熱プレス加熱したものである。これらを、第
1図に示されるよう構成配置して、実験したとこ
ろ、第3図に示されるような結果(簡略化のため
に前記薄板における前記穴間の枠部に対応する部
分での変化量が無視して示されている)を得た。
更にこれを実際に使用した処、計測装置を通過す
る車輌の輪距が正確に測定できた。 On the other hand, a non-conductive thin plate with holes of 5 mm in diameter and 7 mm pitch in the center of a strip of polyethylene terephthalate with a thickness of 50 μ and a width of 20 mm, and a thin plate with a thickness of 0.5 mm and a width of 20
A 297 cm long conductive rubber strip and two copper strips each having a thickness of 0.3 mm and a width of 5 mm were prepared. The conductive rubber was prepared by adding 400 parts by weight of nickel powder with a particle size of about 3 μm to 100 parts by weight of silicone rubber and heating the mixture with a hot press using peroxide. When these were configured and arranged as shown in Figure 1 and tested, the results were as shown in Figure 3 (for simplification, the change in the portion of the thin plate corresponding to the frame between the holes) (quantities shown ignored) were obtained.
Furthermore, when we actually used this, we were able to accurately measure the wheel distance of a vehicle passing through the measuring device.
以上説明したように、本考案に係る計測装置に
よれば、長さを抵抗値変化として促えるのであ
り、従つてこれを電気的な信号として取り出すた
めの好ましい方法は、この計測装置本体すなわち
前記感知素子を従来よく知られた抵抗測定装置の
一つであるホイートストーンブリツジの一辺とし
て、ブリツジを平衡させておいて加圧が行なわれ
た時のブリツジの出力電圧を観察する。従つて、
抵抗体の雰囲気温度による抵抗値変化を補償する
ために計測装置本体内に同様な抵抗体を2個設け
ておき、一方を参照用の抵抗器として使用する工
夫は好ましいものである。更には、検査などの用
途に供するために側導体からのリード線を設ける
ことも好ましい。 As explained above, according to the measuring device according to the present invention, it is possible to measure the length as a change in resistance value. Therefore, the preferred method for extracting this as an electrical signal is to use the main body of the measuring device or the The sensing element is used as one side of a Wheatstone bridge, which is one of the well-known resistance measuring devices, and the output voltage of the bridge is observed when pressurization is performed with the bridge in equilibrium. Therefore,
In order to compensate for changes in the resistance value of the resistor due to ambient temperature, it is preferable to provide two similar resistors in the main body of the measuring device and use one as a reference resistor. Furthermore, it is also preferable to provide a lead wire from the side conductor for purposes such as inspection.
前述した如く、本考案の計測装置によれば、感
知手段を構成する感知素子は、従来の前記計測装
置におけるような多数のスイツチから成ることは
なく、また多数のリード線を必要とすることはな
く、前記感知素子と前記抵抗測定装置との間に一
対のリード線が伸びるのみである。従つて、従来
のようにリード線のための配線が複雑化すること
はなく、リード線の切断による故障の発生率を著
るしく低減することができる。また、このリード
線の保護装置を設けるにしても、その設置作業を
従来に比較して著るしく簡素化することができ
る。 As mentioned above, according to the measuring device of the present invention, the sensing element constituting the sensing means does not consist of a large number of switches as in the conventional measuring device, and does not require a large number of lead wires. Instead, only a pair of lead wires extends between the sensing element and the resistance measuring device. Therefore, the wiring for the lead wires does not become complicated as in the prior art, and the incidence of failures due to lead wire breakage can be significantly reduced. Further, even if this lead wire protection device is provided, the installation work can be significantly simplified compared to the conventional method.
さらに、本考案によれば、前記計測装置本体の
どの部分が圧迫されても加圧された2点の距離に
ほぼ比例した抵抗値変化を得られ、この抵抗値変
化を抵抗測定装置により測定することにより、従
来の前記装置におけるようなデジタル信号を演算
処理するための複雑な電気回路を必要とすること
なく、単純な構成で以つて、近接した2点間の距
離をも高い精度で計測することができる。 Furthermore, according to the present invention, no matter which part of the measuring device main body is pressed, a resistance value change can be obtained that is approximately proportional to the distance between the two pressurized points, and this resistance value change can be measured by the resistance measuring device. As a result, the distance between two nearby points can be measured with high accuracy with a simple configuration, without requiring a complicated electrical circuit for processing digital signals as in the conventional device described above. be able to.
また、本考案は自動零位調整式の電気的測長器
としての特徴を有するため、規準の位置が定めら
れていない物体の寸法測定などの用途に広く応用
できる。すなわち、加圧点が3点以上ある場合に
は前記したように、前記抵抗体の両端のそれぞれ
に最も近い2点の間の距離を計測できることから
明らかなように、例えば長尺状の物体を前記計測
装置上に載置し、これにより該計測装置における
前記物体の底部に当接する部分が前記物体の自重
によつて一様に加圧されると、この加圧部分のう
ち前記抵抗体の両端にそれぞれに最も近い2点の
間の距離に応じて、換言すれば前記計測装置の長
手方向に沿つた前記物体の底部の長さ寸法に応じ
て、前記抵抗体の両端における抵抗値が変化す
る。従つて、この抵抗値変化を前記抵抗測定装置
で検出することにより、前記物体の前記底部寸法
を計測することができる。 Furthermore, since the present invention has the feature of an automatic zero position adjustment type electric length measuring device, it can be widely applied to applications such as measuring the dimensions of objects for which the position of a reference is not determined. That is, when there are three or more pressurizing points, it is clear that the distance between the two points closest to each of the ends of the resistor can be measured as described above. When the measuring device is placed on the measuring device, and the portion of the measuring device that contacts the bottom of the object is uniformly pressurized by the object's own weight, the resistor is placed on the measuring device. The resistance value at both ends of the resistor changes depending on the distance between the two points closest to each end, in other words, depending on the length dimension of the bottom of the object along the longitudinal direction of the measuring device. do. Therefore, by detecting this resistance value change with the resistance measuring device, the bottom dimension of the object can be measured.
さらにまた、本考案では、抵抗体と導電体との
間に配置される部材として、複数の開口を有する
非導電性の薄板を用いるため、非加圧下では高抵
抗値を示し、加圧されるとその加圧された部位が
部分的に低抵抗値を示す感圧導電性弾性体を用い
る技術に比べ、測定値が薄板の抵抗値の影響を受
けず、高精度に測定することができ、しかも廉価
である。 Furthermore, in the present invention, since a non-conductive thin plate having a plurality of openings is used as a member disposed between the resistor and the conductor, it exhibits a high resistance value when not pressurized, but when pressurized. Compared to technology that uses a pressure-sensitive conductive elastic material whose pressurized parts have a partially low resistance value, the measured value is not affected by the resistance value of the thin plate and can be measured with high precision. Moreover, it is inexpensive.
第1図は本考案に係る計測装置の一部を示す部
分断面図であり、第2図は前記計測装置本体の動
作状態を概略的に示す縦断面図であり、第3図は
第1図に示された計測装置本体における加圧2点
間距離と抵抗値変化量との関係を示すグラフであ
る。
16:抵抗体、18:開口、20:薄板、2
2:導電体。
FIG. 1 is a partial cross-sectional view showing a part of the measuring device according to the present invention, FIG. 2 is a vertical cross-sectional view schematically showing the operating state of the measuring device body, and FIG. 2 is a graph showing the relationship between the distance between two pressurizing points and the amount of change in resistance value in the main body of the measuring device shown in FIG. 16: Resistor, 18: Opening, 20: Thin plate, 2
2: Electric conductor.
Claims (1)
れた可撓性を有する長尺の導電体22と、前記抵
抗体16と前記導電体22との間に配置され、前
記導電体22を部分的に加圧した際該加圧部分で
前記導電体22と前記抵抗体16との接触を許す
べく前記導電体22の変形を許すための複数の開
口18が形成された長尺の非導電性薄板20とを
備える長尺の単一の感知素子および前記抵抗体1
6の両端間における抵抗値の測定する装置を含
み、前記加圧部分のうち前記抵抗体16の両端に
最も近い2点P,P′の間の距離を前記抵抗値の変
化量として検出することを特徴とする計測装置。 a long resistor 16; a flexible long conductor 22 disposed on the resistor 16; and a conductor 22 disposed between the resistor 16 and the conductor 22. A long non-conductor having a plurality of openings 18 formed therein to allow deformation of the conductor 22 to allow contact between the conductor 22 and the resistor 16 at the pressurized portion when the conductor 22 is partially pressurized. a long single sensing element comprising a conductive thin plate 20 and the resistor 1;
6, and detects the distance between two points P and P' of the pressurized part closest to both ends of the resistor 16 as the amount of change in the resistance value. A measuring device featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981141389U JPS6222960Y2 (en) | 1981-09-25 | 1981-09-25 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981141389U JPS6222960Y2 (en) | 1981-09-25 | 1981-09-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57170497U JPS57170497U (en) | 1982-10-27 |
JPS6222960Y2 true JPS6222960Y2 (en) | 1987-06-11 |
Family
ID=29934489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981141389U Expired JPS6222960Y2 (en) | 1981-09-25 | 1981-09-25 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6222960Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH049757Y2 (en) * | 1985-05-30 | 1992-03-11 | ||
JP6445841B2 (en) * | 2014-10-30 | 2018-12-26 | 学校法人東京電機大学 | measuring device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5757281U (en) * | 1980-09-19 | 1982-04-03 |
-
1981
- 1981-09-25 JP JP1981141389U patent/JPS6222960Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5757281U (en) * | 1980-09-19 | 1982-04-03 |
Also Published As
Publication number | Publication date |
---|---|
JPS57170497U (en) | 1982-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4799381A (en) | Vehicle road sensor | |
US3958445A (en) | Proportional brake lining wear sensor | |
EP1020714A2 (en) | Fluid level detector using thermoresistive sensor | |
US4299130A (en) | Thin film strain gage apparatus with unstrained temperature compensation resistances | |
US4763534A (en) | Pressure sensing device | |
US5652395A (en) | Bending sensor | |
JP2806560B2 (en) | Tactile sensor | |
EP0405587B1 (en) | Planar interdigitated dielectric sensor | |
US6360612B1 (en) | Pressure sensor apparatus | |
JPH06193660A (en) | Sensor for simultaneously detecting thickness and temperature of brake lining | |
US6724195B2 (en) | Contact sensor | |
CN111090331B (en) | Pressure sensors and electronic equipment | |
CA1297140C (en) | Tape element and methods, for heating, pressure measurement and circuit fabrication | |
US7258483B2 (en) | Device for measuring the level and/or the temperature in a container | |
US7065861B2 (en) | Method of producing a strain-sensitive resistor arrangement | |
JPS6222960Y2 (en) | ||
JPH10500490A (en) | Flow sensor | |
US20040121509A1 (en) | Nanowire filament | |
US7779706B2 (en) | Cable-type load sensor | |
US20030006896A1 (en) | Brake wear sensor | |
US20090183579A1 (en) | Cable-type load sensor | |
US20230400368A1 (en) | Sensor | |
NL8602360A (en) | Apparatus for scanning accelerations or vibrations. | |
Arshak et al. | An analysis of polymeric thick-film resistors as pressure sensors | |
US20030184309A1 (en) | Sensor for measuring changes in ambient conditions |