JPS62229412A - Positioning device - Google Patents
Positioning deviceInfo
- Publication number
- JPS62229412A JPS62229412A JP7127886A JP7127886A JPS62229412A JP S62229412 A JPS62229412 A JP S62229412A JP 7127886 A JP7127886 A JP 7127886A JP 7127886 A JP7127886 A JP 7127886A JP S62229412 A JPS62229412 A JP S62229412A
- Authority
- JP
- Japan
- Prior art keywords
- speed pattern
- motor
- pattern
- deceleration
- deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Position Or Direction (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、目標位置に対応した速度パターンを指令パル
スとして出力し、この指令パルスとフィードバックパル
スとの偏差を用いて閉ループ制御を行うサーボモータに
適用される位置決め装置に俣4するものである。Detailed Description of the Invention (Industrial Application Field) The present invention is directed to a servo motor that outputs a speed pattern corresponding to a target position as a command pulse and performs closed loop control using the deviation between this command pulse and a feedback pulse. This is similar to the positioning device applied to
(発明の背景)
サーボモータの位置決め制御を行う方法として、指令パ
ルスとモータに取付けた位置検出器からのフィードバッ
クパルス(以下F/Bパルスという)との偏差を求め、
この偏差を零とするように制御するいわゆる閉ループ制
御が広く知られている。この場合、目標位置までの移動
量に対応した最適な速度パターンを予め記憶しておき、
目標位置に対する速度パターンを指令値に対応して読出
し、この速度パターンに従って指令パルスを求める方式
が提案されている。(Background of the Invention) As a method for controlling the positioning of a servo motor, the deviation between a command pulse and a feedback pulse (hereinafter referred to as F/B pulse) from a position detector attached to the motor is determined.
So-called closed-loop control, which controls the deviation to zero, is widely known. In this case, the optimal speed pattern corresponding to the amount of movement to the target position is stored in advance,
A method has been proposed in which a speed pattern for a target position is read in correspondence with a command value, and a command pulse is determined according to this speed pattern.
しかしモータの回転部の慣性や負荷の大小によって、指
令パルスに対するモータの追従遅れ量は必ず変化する。However, depending on the inertia of the rotating part of the motor and the magnitude of the load, the amount of delay in following the command pulse by the motor always changes.
このため目標位置に対する速度パターンを一義的に決め
たのでは、モータを正確に「1標位置に位置決めするこ
とができない。For this reason, if the speed pattern for the target position is uniquely determined, the motor cannot be accurately positioned at one mark position.
第3図はこの追従遅れを示す速度プロフィール図であり
、この図でAは予め記憶された台形の速度パターン、B
は実際の速度パターンを示す。このように加速時には斜
線で示す領域S1に相当する加速遅れが発生し、また減
速時には領域S2に相当する減速遅れが発生する。この
ため正確な位置決めができないという問題があった。FIG. 3 is a speed profile diagram showing this follow-up delay, in which A is a pre-stored trapezoidal speed pattern, B is a trapezoidal speed pattern stored in advance,
shows the actual speed pattern. As described above, during acceleration, an acceleration delay corresponding to the shaded region S1 occurs, and during deceleration, a deceleration delay corresponding to the region S2 occurs. Therefore, there was a problem that accurate positioning could not be performed.
(発明の目的)
本発明はこのような1バ情に鑑みなされたものであり、
予め記憶された速度パターンに対するモータの追従性能
を向上させると共に、負荷の変化に対しても常に最適な
速度パターンで減速して位置決め時間を短縮し高精度に
目標位置に位置決めすることができる位置決め装置を提
供することを目的とする。(Object of the invention) The present invention was made in view of such circumstances,
A positioning device that not only improves the motor's ability to follow pre-stored speed patterns, but also reduces positioning time by decelerating the motor at an optimal speed pattern even when the load changes, and enables high-precision positioning at the target position. The purpose is to provide
(発明の構成)
未発明によればこの目的は、モータの目標位置を示す指
令値に基づき運転速度パターンを指令値パルスとして出
力する速度パターン設定部を備え、前記モータの移動量
を示すフィードバックパルスと前記指令値パルスとの偏
差に基づいて前記モータを制御する位置決め装とにおい
て、前記速度パターンに対する前記モータの加速追従遅
れ量を演算して最適減速開始点を無段階に決定し前記速
度パターンを修正する減速パターン演算部と、前記速度
パターンを微分する微分演算部と、この微分値と前記偏
差との和を求める加算部とを備え、前記和を零とするよ
うにモータを制御することを特徴とする位置決め装置に
より達成される。(Structure of the Invention) According to the invention, the object is to include a speed pattern setting section that outputs an operating speed pattern as a command value pulse based on a command value indicating a target position of the motor, and a feedback pulse indicating the amount of movement of the motor. and a positioning device that controls the motor based on a deviation between the command value pulse and the command value pulse, and calculates an acceleration follow-up delay amount of the motor with respect to the speed pattern to steplessly determine an optimal deceleration start point, and adjusts the speed pattern. The motor is provided with a deceleration pattern calculating section for correcting, a differential calculating section for differentiating the speed pattern, and an adding section for calculating the sum of the differential value and the deviation, and controlling the motor so that the sum becomes zero. This is achieved by a unique positioning device.
(実施例)
第1図は本発明の一実施例の制御系統図、第2図はその
速度プロフィール図である。(Embodiment) FIG. 1 is a control system diagram of an embodiment of the present invention, and FIG. 2 is a speed profile diagram thereof.
第1図で符号10は目標位置を示す指令値を入力するた
めの11標位置指令部、12は速度パターン設定部であ
り例えば第2図に示す台形の速度パターンAを記憶する
。この速度パターンAは、指令値が示す移動量に対応し
て複数のパターンがマツプの形や関数の形で記憶されて
いる。従ってこの速度パターン設定部12は指令値に対
応する1つの速度パターンAを選択し、これを指令パル
スとして出力する。14は指令値パルスカウンタであり
、速度パターン設定部12が出力する指令値パルスの積
算値Nを求める。In FIG. 1, reference numeral 10 is an 11-mark position command section for inputting a command value indicating a target position, and 12 is a speed pattern setting section which stores, for example, a trapezoidal speed pattern A shown in FIG. 2. In this speed pattern A, a plurality of patterns are stored in the form of a map or function in correspondence to the amount of movement indicated by the command value. Therefore, this speed pattern setting section 12 selects one speed pattern A corresponding to the command value and outputs it as a command pulse. Reference numeral 14 denotes a command value pulse counter, which calculates an integrated value N of command value pulses output by the speed pattern setting section 12.
16はモータであり、このモータ16の回転量あるいは
移動量は回転エンコーダなどの位置検出器18で検出さ
れ、F/Bパルスとして出力される。このF/Bパルス
はF/Bパルスカウンタ20において積算され、このF
/Bパルスの縫算値nが逐次求められる。前記指令値パ
ルスカウンタ14の積算値NとこのF/Bパルスカウン
タ20の積算値nとの偏差(N −n )が偏差演算部
22で求められる。Reference numeral 16 denotes a motor, and the amount of rotation or movement of this motor 16 is detected by a position detector 18 such as a rotary encoder and output as an F/B pulse. This F/B pulse is integrated in the F/B pulse counter 20, and this F/B pulse is
The stitching value n of the /B pulse is sequentially determined. A deviation (N-n) between the integrated value N of the command value pulse counter 14 and the integrated value n of the F/B pulse counter 20 is determined by the deviation calculating section 22.
一方前記速度パターンAはまた微分演算部24に入力さ
れ、ここで速度パターンAの変化速度が微分値Bとして
求められる。この微分値Bと前記偏差(N −n )と
の和(N−n)+Bが出力演算部26で求められ、この
和はD/A変換器28でアナログ信号に変換され、サー
ボドライバ30はこのアナログ信号に基づいてモータ1
6を駆動する。On the other hand, the speed pattern A is also input to the differential calculation section 24, where the rate of change of the speed pattern A is determined as a differential value B. The sum (N-n)+B of this differential value B and the deviation (N-n) is obtained by the output calculation section 26, this sum is converted into an analog signal by the D/A converter 28, and the servo driver 30 Based on this analog signal, motor 1
Drive 6.
32は減速パターン演算部であり、前記:52図に示す
実際の速度パターンBの追従遅れlxを演算して最適減
速開始点aを無段階に決定し前記指令値に従った速度パ
ターンAを修正する。この演算部32は、例えばクロッ
クパルス等により決まる非常に短い時間間隔で追従遅れ
量Xを時間の関数x (t)として順次求めて記憶し、
減速時の追従遅れ量をx(L+−t)として速度パター
ンAからこの追従遅れ量x(tl−t)を減算すること
により減速パターンCを求めることができる。32 is a deceleration pattern calculation unit, which calculates the follow-up delay lx of the actual speed pattern B shown in Fig. 52, steplessly determines the optimum deceleration starting point a, and corrects the speed pattern A according to the command value. do. This calculation unit 32 sequentially calculates and stores the follow-up delay amount X as a function of time x (t) at very short time intervals determined by, for example, clock pulses,
The deceleration pattern C can be obtained by subtracting the follow-up delay amount x(tl-t) from the speed pattern A, assuming that the follow-up delay amount during deceleration is x(L+-t).
ここにtlは速度パターンAにより目標位置に達する点
(第2図のb点)の時間である。このように減速時にお
いては速度パターンAは追従遅れ量Xにより修正される
。この速度パターンAを修正するアルゴリズムは種々可
能であり、目的に応じて最適なアルゴリズムを適宜採用
すればよい。Here, tl is the time at which the target position is reached by speed pattern A (point b in FIG. 2). In this way, during deceleration, the speed pattern A is corrected by the follow-up delay amount X. Various algorithms are possible for modifying this speed pattern A, and the optimal algorithm may be appropriately adopted depending on the purpose.
従って指令値に基づく速度パターンAの微分値Bが偏差
(N −n )に加算されるので、いわゆるフィードフ
ォワード制御が行われることになり、加速時には加速遅
れが改善され第2図りに示すようにほぼ直線的に加速さ
れる。またこの時負荷の慣性が大きく追従性が悪くなれ
ば、この追従遅れ量Xが減算パターン演算部32で求め
られて記憶される。そして減速時における速度パターン
Aに先行する減速開始点aを求め、この点aからこの追
従遅れ量Xに対応して所定の減速パターンCとなるよう
に速度パターンAを修正する。従って速度制御の追従性
が改善され、位置決め精度が格段に向上する。Therefore, the differential value B of the speed pattern A based on the command value is added to the deviation (N - n ), so so-called feedforward control is performed, and the acceleration delay is improved during acceleration, as shown in the second figure. Accelerates almost linearly. At this time, if the inertia of the load is large and the followability becomes poor, the follow-up delay amount X is determined by the subtraction pattern calculation section 32 and stored. Then, a deceleration start point a that precedes the speed pattern A during deceleration is determined, and the speed pattern A is corrected from this point a so that it becomes a predetermined deceleration pattern C in accordance with the follow-up delay amount X. Therefore, the followability of speed control is improved, and positioning accuracy is significantly improved.
本実施例では速度パターン設定部12は台形の速度パタ
ーンAを記憶しているので記憶する速度パターンの数を
少なくできる。しかし、本発明はこれに限られるもので
はなく、指数関数など種々のパターンの設定が可能であ
り、所定の移動位置への移動を最短時間で最も安定して
行える速度パターンとするのが望ましい、また移動量が
少なく一定回転速度領域まで達しないうちに減速する場
合にも本発明は適用でき、本発明はこれを含むのは勿論
である。In this embodiment, since the speed pattern setting section 12 stores the trapezoidal speed pattern A, the number of speed patterns to be stored can be reduced. However, the present invention is not limited to this, and various patterns such as an exponential function can be set, and it is desirable to set a speed pattern that allows movement to a predetermined movement position in the shortest time and most stably. The present invention can also be applied to a case where the amount of movement is small and the speed is decelerated before reaching a constant rotational speed range, and the present invention naturally includes this.
本発明は速度パターン設定部12を始め、各演算部22
.24.26およびカウンタ14.2゜笠をCPU(デ
ジタル演算器)で構成できるのは勿論であり、この場合
速度パターンAはFROM等に予め記憶する。The present invention includes the speed pattern setting section 12 and each calculation section 22.
.. 24.26 and the counter 14.2° can of course be constructed by a CPU (digital arithmetic unit), and in this case, the speed pattern A is stored in advance in a FROM or the like.
(発明の効果)
本発明は以北のように、指令値に対応して設定される速
度パターンの微分値を求め、これを偏差(N−n)に加
算してモータをドライブするので、いわゆるフィードフ
ォワード制御を行うことになリモータの追従性が向1−
.する。また負荷の大小による加速時の追従遅れ量を記
憶し、これを用いて減速時における速度パターンを修正
するから、モータを最短時間で目標位置に制御でき、モ
ータの位置決め精度が向トする。(Effects of the Invention) As described above, the present invention calculates the differential value of the speed pattern set corresponding to the command value and adds this to the deviation (N-n) to drive the motor. Feedforward control improves the followability of the remoter.
.. do. Furthermore, since the amount of follow-up delay during acceleration due to the magnitude of the load is stored and this is used to correct the speed pattern during deceleration, the motor can be controlled to the target position in the shortest possible time, improving motor positioning accuracy.
第1図は本発明の一実施例の制御系統図、第2図はその
速度プロフィール図、第3図は従来装置の速度プロフィ
ール図である。
10・・・目標位置指令部、
12・・・速度パターン設定部、
16・・・モータ、
18・・・位置検出器、
24・・・微分演算部、
26・・・出力演算部、
32・・・減算パターン演算部。FIG. 1 is a control system diagram of an embodiment of the present invention, FIG. 2 is a speed profile diagram thereof, and FIG. 3 is a speed profile diagram of a conventional device. DESCRIPTION OF SYMBOLS 10... Target position command part, 12... Speed pattern setting part, 16... Motor, 18... Position detector, 24... Differential calculation part, 26... Output calculation part, 32. ...Subtraction pattern calculation section.
Claims (1)
ンを指令値パルスとして出力する速度パターン設定部を
備え、前記モータの移動量を示すフィードバックパルス
と前記指令値パルスとの偏差に基づいて前記モータを制
御する位置決め装置において、 前記速度パターンに対する前記モータの加速追従遅れ量
を演算して最適減速開始点を無段階に決定し前記速度パ
ターンを修正する減速パターン演算部と、前記速度パタ
ーンを微分する微分演算部と、この微分値と前記偏差と
の和を求める出力演算部とを備え、前記和を零とするよ
うにモータを制御することを特徴とする位置決め装置。[Scope of Claims] A speed pattern setting unit that outputs an operating speed pattern as a command value pulse based on a command value indicating a target position of the motor, the deviation between a feedback pulse indicating the amount of movement of the motor and the command value pulse. a positioning device that controls the motor based on the speed pattern, comprising: a deceleration pattern calculation unit that calculates an acceleration follow-up delay amount of the motor with respect to the speed pattern, steplessly determines an optimal deceleration start point, and corrects the speed pattern; A positioning device comprising: a differential calculation unit that differentiates a speed pattern; and an output calculation unit that calculates the sum of the differential value and the deviation; and controls a motor so that the sum becomes zero.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7127886A JPS62229412A (en) | 1986-03-31 | 1986-03-31 | Positioning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7127886A JPS62229412A (en) | 1986-03-31 | 1986-03-31 | Positioning device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62229412A true JPS62229412A (en) | 1987-10-08 |
Family
ID=13456083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7127886A Pending JPS62229412A (en) | 1986-03-31 | 1986-03-31 | Positioning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62229412A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0199485A (en) * | 1987-10-09 | 1989-04-18 | Toshiba Corp | Controlling device for servo motor |
JPH01204112A (en) * | 1988-02-09 | 1989-08-16 | Nec Corp | Speed controller |
JPH02219113A (en) * | 1989-02-20 | 1990-08-31 | Tohoku Ricoh Co Ltd | Method for controlling movement of movable body |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54132086A (en) * | 1978-04-04 | 1979-10-13 | Toshiba Corp | Position control method |
JPS58201113A (en) * | 1982-05-20 | 1983-11-22 | Fujitsu Ltd | Positioning servo system of moving body |
JPS5945515A (en) * | 1982-09-09 | 1984-03-14 | Hitachi Ltd | Method for controlling position of motor |
JPS60116004A (en) * | 1983-11-29 | 1985-06-22 | Fanuc Ltd | Numerical controller of full-closed-loop control system |
-
1986
- 1986-03-31 JP JP7127886A patent/JPS62229412A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54132086A (en) * | 1978-04-04 | 1979-10-13 | Toshiba Corp | Position control method |
JPS58201113A (en) * | 1982-05-20 | 1983-11-22 | Fujitsu Ltd | Positioning servo system of moving body |
JPS5945515A (en) * | 1982-09-09 | 1984-03-14 | Hitachi Ltd | Method for controlling position of motor |
JPS60116004A (en) * | 1983-11-29 | 1985-06-22 | Fanuc Ltd | Numerical controller of full-closed-loop control system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0199485A (en) * | 1987-10-09 | 1989-04-18 | Toshiba Corp | Controlling device for servo motor |
JPH01204112A (en) * | 1988-02-09 | 1989-08-16 | Nec Corp | Speed controller |
JPH02219113A (en) * | 1989-02-20 | 1990-08-31 | Tohoku Ricoh Co Ltd | Method for controlling movement of movable body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4617502A (en) | Method and apparatus for controlling a robot hand along a predetermined path | |
KR970002258B1 (en) | Method of servomotor control | |
KR930007775B1 (en) | Linear interpolating method of robot | |
KR950007104B1 (en) | Servo motor control device | |
JP2542538B2 (en) | Robot position control method | |
JPS62229412A (en) | Positioning device | |
KR970003827B1 (en) | Zeroing Method Using Disturbance Estimation Absorber | |
JPS61190604A (en) | Position control method for feedback control | |
JPH0623928B2 (en) | Robot hand trajectory correction method | |
JPH0623932B2 (en) | Servo control method | |
JP2703099B2 (en) | Conveyor tracking method for industrial robots | |
KR930007781B1 (en) | How to control the position of the robot | |
JP2754910B2 (en) | Satellite attitude control device | |
JP2728260B2 (en) | Servo control device | |
JP3435828B2 (en) | Automatic lead angle determination method for phase controlled servo system | |
JPH11184530A (en) | Motion controller | |
KR930007779B1 (en) | Position control method of robot | |
JP2816045B2 (en) | Positioning control device | |
JPS6170616A (en) | Course run guidance system of automatic running body | |
JPH02126307A (en) | Motor speed control system | |
JPH02108107A (en) | Numerical controller | |
JPH05324085A (en) | Head positioning controller | |
RU1819832C (en) | Method of determination of relative angular velocity at oscillating process of control of orientation of object to movable reference point | |
JPH07175521A (en) | Controller for servomotor | |
JPH06195118A (en) | Fixed position stop controller |