[go: up one dir, main page]

JPS62226821A - glass manufacturing method - Google Patents

glass manufacturing method

Info

Publication number
JPS62226821A
JPS62226821A JP6898486A JP6898486A JPS62226821A JP S62226821 A JPS62226821 A JP S62226821A JP 6898486 A JP6898486 A JP 6898486A JP 6898486 A JP6898486 A JP 6898486A JP S62226821 A JPS62226821 A JP S62226821A
Authority
JP
Japan
Prior art keywords
hydrolysis
added
fine powder
glass
lumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6898486A
Other languages
Japanese (ja)
Inventor
Osamu Horibata
堀端 修
Seiji Sakai
清治 酒井
Akihiko Yajima
矢島 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP6898486A priority Critical patent/JPS62226821A/en
Publication of JPS62226821A publication Critical patent/JPS62226821A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラス製造法の一つであるゾル−ゲル法におけ
る塊状物組成の均−化及び塊状物形成を安定化させる為
のガラス製造法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a glass manufacturing method for equalizing the composition of lumps and stabilizing the formation of lumps in the sol-gel method, which is one of the glass manufacturing methods. Regarding.

〔従来の技術〕[Conventional technology]

従来、ゾル−ゲル法でのガラス製造は、小塊状物の形成
にとどまり、より大きな塊状wJ?!−得る為にゲル形
成時の組成と同一なる組成の金属酸化物微粉末又は故意
に他の金m*化物からなる微粉末を加水分解時一括混合
もしくは、加水分解後に添加する方式がとられている。
Conventionally, glass production using the sol-gel method has been limited to the formation of small lumps, and has been limited to the formation of larger lumps wJ? ! - In order to obtain this, metal oxide fine powder with the same composition as that at the time of gel formation, or fine powder consisting of other gold m* compounds, is either mixed together at the time of hydrolysis or added after hydrolysis. There is.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

しかし従来の方法では、微粉末の凝集によって偏在化が
おこり不均質な組成になり易く、大きな塊状物形成が安
定しない問題点を有しており、さらには、均一分散化の
為の方式が複雑化し工程の安定化がはかりにくい欠点が
めった。
However, in the conventional method, the fine powder tends to be unevenly distributed due to agglomeration, resulting in a non-uniform composition, and the formation of large lumps is unstable.Furthermore, the method for uniform dispersion is complicated. The drawback was that it was difficult to stabilize the process.

本発明は従来のこのような問題点全解決する為微粉末の
均一分散全容易にし、かつ安定して、大きな塊状物を得
る事を目的としている。さらには微粉末中の異物等の除
去上フィルタリング等によって容易にする事により純度
向上を目的とする〇〔問題点全解決する為の手段〕 上記問題点を解決する為に本発明のガラス製造法は、微
粉末をあらかじめ最も分散程関の向上する水溶液に混合
した後、PH値?!−五〇〜7.0に調益し分散させ、
金属アルコキシド、酸触媒全添加して加水分解させ、ゾ
ルからゲルを経て、焼結によシガラスを形成する事t−
特徴とする。
The present invention aims to solve all of these conventional problems by making it easier to uniformly disperse fine powder and to stably obtain large lumps. Furthermore, the purpose is to improve the purity by facilitating the removal of foreign substances in the fine powder by filtering, etc.〇 [Means for solving all problems] In order to solve the above problems, the glass manufacturing method of the present invention After mixing the fine powder in advance with an aqueous solution that improves the dispersion ratio the most, the pH value? ! -Adjust and diversify the profit from 50 to 7.0,
Metal alkoxide and acid catalyst are all added and hydrolyzed, and glass is formed by sintering from sol to gel.
Features.

〔作用〕[Effect]

上記のようにサブミクロンから数百ミクロンの金属・酸
化物微粉宋音あらかじめPH1O〜ZOの水溶液中で分
散する事によって、必要に応じて精製が容易となシ均貞
な組成での加水分解が可能となる。
As mentioned above, by dispersing submicron to several hundred micron metal/oxide fine powder in an aqueous solution of PH1O to ZO in advance, it can be easily purified and hydrolyzed with a homogeneous composition if necessary. It becomes possible.

〔実施例1〕 以下に、本発明について実施例に基づき詳細に説明する
[Example 1] The present invention will be described in detail below based on Examples.

一次粒子約400Aの微粒子状無水シリカを55%の割
合となるよう純水3tに混合した。この時点でPHが五
8を呈した。攪拌により平均粒径α30μを示し、超音
波分散(600W)2時間で平均粒径1(115μまで
低下した後、5μフイルターを介して不純物を除去した
。次にエチルシリケートを純水の1/6モル添加し、加
水分解を早め、粒成長tおさえる為に、11N−塩酸を
20 CO添加し、加水分解を行なった。約1時間後に
加水分解が終了し、平均粒径は、α16μを呈した。攪
拌下でゲル化促進の為、塩基のα1Nアンモニア水を徐
々に滴下し、PH4,0とした後20cM角のポリプロ
ピレン製の容器で30時間放置しゲル化させた後、内容
積の10%の穴をフタに開けて70℃まで5日かけて徐
々に加熱し、乾燥させた。一方比較の為に、あらかじめ
エチルシリケート1モルと純水6モルを加えて、0.I
N塩#l加えて、加水分解をし、PH2,5の下で、微
粒子状シリカを55%の割合となるように徐々に添加し
、前記、超音波分散全2時間行なった。この時平均粒径
は121μmと悪い。その後前記と同じプロセスにより
、乾燥させた。さらに別方法として、エチルシI)少−
トと純水及び塩酸と、微粒子状無水シリカt−55′A
となるように一括で混合し、加水分解した後粒径を測定
した結果、(120μmとなった。その後、同じように
、乾燥させた。
Fine particulate anhydrous silica having a primary particle size of approximately 400 A was mixed with 3 tons of pure water at a ratio of 55%. At this point, the pH was 58. The average particle size α was 30 μ by stirring, and after 2 hours of ultrasonic dispersion (600 W), the average particle size was reduced to 1 (115 μ), and then impurities were removed through a 5 μ filter. Next, the ethyl silicate was dissolved in 1/6 of pure water. In order to accelerate hydrolysis and suppress grain growth, 11N-hydrochloric acid was added at 20 CO and hydrolysis was carried out. Hydrolysis was completed after about 1 hour, and the average particle size was α16μ. To promote gelation while stirring, a basic α1N ammonia water was gradually added dropwise to adjust the pH to 4.0, and the mixture was left in a 20 cm square polypropylene container for 30 hours to gel, then 10% of the internal volume was added. A hole was made in the lid and the lid was gradually heated to 70°C over 5 days to dry.Meanwhile, for comparison, 1 mol of ethyl silicate and 6 mol of pure water were added in advance, and 0.I
N salt #1 was added for hydrolysis, and under pH 2.5, fine particulate silica was gradually added at a ratio of 55%, and the above-mentioned ultrasonic dispersion was carried out for a total of 2 hours. At this time, the average particle size was 121 μm, which was poor. It was then dried using the same process as above. Yet another method is to
t-55'A, pure water and hydrochloric acid, and fine particulate anhydrous silica t-55'A
They were mixed all at once so that the particles were hydrolyzed, and the particle size was measured to be 120 μm. Thereafter, they were dried in the same manner.

乾燥されたドライゲルの塊状の形態は、微粒子状シリカ
tあらかじめ純水分散後に加水分解したもの→塊状物の
ワレなし。
The dried dry gel is in the form of a lump of fine particulate silica that has been previously dispersed in pure water and then hydrolyzed -> no cracks in the lump.

加水分解後に、微粒子状シリカを添加したもの→塊状物
ワレ60%、加水分解と同時に微粒子状シリカ會添加し
たもの→塊状物ワレ40%。
After hydrolysis, fine particulate silica was added → 60% lumps cracked, and particulate silica was added at the same time as hydrolysis → lumps cracked 40%.

前記の結果からさらに、微粒子状無水シリカを純水に分
散させる時のPRに注目して、PI(値と分散粒径のチ
ェック2s 5Xシリカ量で確認した結果は次のとシシ
である。
Based on the above results, we further focused on the PR when fine particulate anhydrous silica was dispersed in pure water, and the results confirmed by PI (value and dispersion particle size check 2s 5X silica amount) are as follows.

乾燥後1200℃で焼結する事により、無色透明の石英
ガラスが得られ、焼結時のワレは発生しなかった。
By sintering at 1200° C. after drying, colorless and transparent quartz glass was obtained, and no cracking occurred during sintering.

〔実施例2〕 酸化ジルコニウムの微粉末keらかしめ純水に混合し、
超音波分散によシ平均粒径’1(118μmとし、純水
の176モル量のエチルシリケー)t−添加して1規定
塩酸下で攪拌をしながら加水分解をおこなった。加水分
解終了後ゲル化を促進させる為に、[lL1規定アンモ
ニア水でP H4,5にv4整し、ポリプロピレン製容
器にてゲル化及び90℃で乾燥を行なった。一方、前記
のエチルシリケー)k加水分解後に、該酸化ジルコニウ
ムの微粉末全添加し、強度の攪拌及び超音波法により分
散させた。
[Example 2] Fine powder of zirconium oxide is mixed with caulked pure water,
By ultrasonic dispersion, an average particle diameter of 1 (118 μm, 176 moles of ethyl silica) was added to pure water, and hydrolysis was carried out under 1N hydrochloric acid with stirring. After the hydrolysis was completed, in order to promote gelation, the pH was adjusted to 4.5 with 1 L normal ammonia water, gelled in a polypropylene container, and dried at 90°C. On the other hand, after the above-mentioned ethyl silicate)k hydrolysis, the entire fine powder of zirconium oxide was added and dispersed by intense stirring and ultrasonication.

この時平均粒径は121μmより低下しなかつ友。At this time, the average particle size did not decrease below 121 μm.

乾燥により、塊状物のワレは、後で酸化ジルコニウムを
添加した万が明らかに多く、偏析がめった為と考えられ
る。又、焼結をする事によって後者の万が部分的に発泡
を呈した。
This is thought to be due to the fact that the cracking of the lumps due to drying was clearly more likely to occur when zirconium oxide was added later, and segregation was rare. Moreover, the latter case partially exhibited foaming due to sintering.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、微粉末勿あらかじめ、水
分散させた後に金4アルコキシドと、加水分解させる事
により、均質な大型の塊状物上安定的に夷造するについ
て、特にPH値を粒径の最も下がる位+1に設定する事
及び、その状態での放直、等の操作で得られ、本発明は
極めて有効な手段である。
As explained above, the present invention involves dispersing fine powder in water and then hydrolyzing it with gold 4 alkoxide to stably produce particles on a homogeneous large lump. This can be achieved by setting the diameter to +1 at the lowest point and leaving it straight in that state, and the present invention is an extremely effective means.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] 金属アルコキシドを加水分解して製造するゾル−ゲル法
において、金属酸化物微粉末をあらかじめPH3.0〜
7.0の水に分散した後、金属アルコキシド、酸触媒を
添加し、加水分解により形成するガラス製造法。
In the sol-gel method in which metal alkoxides are produced by hydrolysis, metal oxide fine powder is preheated to a pH of 3.0 to
A glass manufacturing method in which glass is dispersed in 7.0 water, then a metal alkoxide and an acid catalyst are added, and the glass is formed by hydrolysis.
JP6898486A 1986-03-27 1986-03-27 glass manufacturing method Pending JPS62226821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6898486A JPS62226821A (en) 1986-03-27 1986-03-27 glass manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6898486A JPS62226821A (en) 1986-03-27 1986-03-27 glass manufacturing method

Publications (1)

Publication Number Publication Date
JPS62226821A true JPS62226821A (en) 1987-10-05

Family

ID=13389434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6898486A Pending JPS62226821A (en) 1986-03-27 1986-03-27 glass manufacturing method

Country Status (1)

Country Link
JP (1) JPS62226821A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053225A1 (en) * 2000-01-24 2001-07-26 Yazaki Corporation Sol-gel process for producing synthetic silica glass
EP1700830A1 (en) * 2005-03-09 2006-09-13 Novara Technology S.R.L. Process for the production of monoliths by means of the invert sol-gel process
US7780937B2 (en) 2005-03-09 2010-08-24 Evonik Degussa Gmbh Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053225A1 (en) * 2000-01-24 2001-07-26 Yazaki Corporation Sol-gel process for producing synthetic silica glass
EP1700830A1 (en) * 2005-03-09 2006-09-13 Novara Technology S.R.L. Process for the production of monoliths by means of the invert sol-gel process
WO2006094874A1 (en) * 2005-03-09 2006-09-14 Degussa Novara Technology S.P.A. Process for the production of monoliths by means of the invert sol-gel process
US7780937B2 (en) 2005-03-09 2010-08-24 Evonik Degussa Gmbh Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof

Similar Documents

Publication Publication Date Title
JP5035545B2 (en) Method for producing alkaline zirconia sol
US5466428A (en) Morphologically improved ceric oxide particulates
US5246624A (en) Aqueous colloidal dispersion of fumed silica, acid and stabilizer
US3492137A (en) Siliceous compositions
CA1186195A (en) Compounds
US4759879A (en) Glass former composition and method for immobilizing nuclear waste using the same
US3433593A (en) Process for producing finely-divided precipitated silica
JPS61158810A (en) Production of high-purity silica sol
JPH0920903A (en) Production of monodisperse gold grain powder
JPS62226821A (en) glass manufacturing method
JPS62138310A (en) Monodisperse metal oxide preparation method
US4774068A (en) Method for production of mullite of high purity
RU2108290C1 (en) Method of preparing sol silicon oxide modifications alloyed by iii group elements
JPS6291421A (en) Method for manufacturing zirconium oxide fine particles
JPH02141433A (en) Glass manufacturing method
JPH06287013A (en) Method for producing synthetic silica
JPS62230636A (en) Method for manufacturing porous glass body
JP2685687B2 (en) Method for producing rare earth element oxide particles
JPH07196325A (en) Method for producing synthetic quartz glass
JPS60171228A (en) Silica glass manufacturing method
JPH01126230A (en) Production of zirconium oxide fine particle
JPH0519494B2 (en)
JPS61174126A (en) Glass manufacturing method
JPS62113737A (en) Silica glass manufacturing method
JPS63277526A (en) Glass manufacturing method