[go: up one dir, main page]

JPS62224571A - Device for reciprocally moving rotary shaft - Google Patents

Device for reciprocally moving rotary shaft

Info

Publication number
JPS62224571A
JPS62224571A JP6803386A JP6803386A JPS62224571A JP S62224571 A JPS62224571 A JP S62224571A JP 6803386 A JP6803386 A JP 6803386A JP 6803386 A JP6803386 A JP 6803386A JP S62224571 A JPS62224571 A JP S62224571A
Authority
JP
Japan
Prior art keywords
rotating shaft
hydraulic
rotary shaft
journal
reciprocating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6803386A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sugita
和彦 杉田
Kazuhisa Sugizai
杉材 和久
Norio Sakakibara
榊原 則夫
Toshihiko Shima
稔彦 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP6803386A priority Critical patent/JPS62224571A/en
Publication of JPS62224571A publication Critical patent/JPS62224571A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To increase bending rigidity of a rotary shaft in a vibration grinder by forming a cylindrical part adjacent to a central side of a journal part of each of both end parts of a rotary shaft, with the cylindrical part having a larger diameter than the journal part, and by fitting a pair of hydraulic cylinders for reciprocal moment to the cylindrical part. CONSTITUTION:A rotary shaft 20 to which a grindstone 27 is fixed is supported via journal parts 21 of both end parts by means of bearing main bodies 10 with some extent of freedom of reciprocal movement. A pair of hydraulic cylinders 15 are fitted freely rotatably to cylindrical parts 22 having a larger diameter than the journal parts 21. Drive signals from a reciprocal signal generator 40 make via a servo-amplifier 41 an electric-hydraulic servo-valve 30 reciprocate to feed working oil from a hydraulic unit 31 alternately to hydraulic cylinders 15 and 15, and make a rotary shaft 20 reciprocate while feeding back signals of a displacement detector 45 via an amplifier 42. Thus, bending rigidity of the rotary shaft can be increased, both stroke and frequency of the reciprocal movement can be easily changed, and the stroke can be set with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、振動研削を行う研削盤の砥石軸のような、同
期的な往復動を必要とする回転軸の往復動装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reciprocating device for a rotary shaft that requires synchronous reciprocating motion, such as a grindstone shaft of a grinding machine that performs vibration grinding.

〔従来技術〕[Prior art]

この種の回転軸の往復動装置としては、機械式あるいは
オシレーションバルブ方式のものがある。
This type of reciprocating device for a rotating shaft includes a mechanical type or an oscillation valve type.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、機械式のものは偏心軸あるいはカム等を
用いているので往復動のストロークの変更には偏心軸等
の交換を要し、手間を要するという問題がある。これに
対し、例えば特公昭45−39962号公報に開示され
たオシレーションバルブ方式のものは、ダイヤルにより
ストロークを調整することが可能ではあるがストローク
及び往復速度の設定の精度は充分ではなく、また複雑で
特殊なバルブ装置を必要とすると共に可動部が多いので
製造コストが上昇するという問題がある。
However, since the mechanical type uses an eccentric shaft or a cam, changing the reciprocating stroke requires replacing the eccentric shaft, etc., which is a problem. On the other hand, the oscillation valve type disclosed in Japanese Patent Publication No. 45-39962, for example, allows the stroke to be adjusted with a dial, but the accuracy of setting the stroke and reciprocating speed is not sufficient, and There are problems in that a complicated and special valve device is required and the manufacturing cost increases because there are many moving parts.

また、往復動を与えるために回転軸の中央部にフランジ
状の大径部を突出して設けているので、その他の部分の
回転軸の太さが相対的に細くなり、回転軸の剛性が低下
するという問題がある。本発明は回転軸を往復動させる
シリンダ部を改良すると共に電気−油圧サーボ弁を用い
て上記各問題を解決したものである。
In addition, since a flange-like large diameter part is provided protruding from the center of the rotating shaft to provide reciprocating motion, the thickness of the other parts of the rotating shaft becomes relatively thin, reducing the rigidity of the rotating shaft. There is a problem with doing so. The present invention solves the above problems by improving the cylinder section that reciprocates the rotating shaft and by using an electro-hydraulic servo valve.

〔問題点を解決するための手段〕[Means for solving problems]

このために、本発明による回転軸の往復動装置は、添付
図面に例示する如く、両端部に形成したジャーナル部2
1の中央側に隣接して同ジャーナル部よりも大径の円筒
部22を同軸に形成してなる回転軸20と、前記両ジャ
ーナル部21を介して前記回転軸20を軸方向に多少往
復動可能に軸承する軸受本体10と、この軸受本体に固
定され前記各円筒部22にそれぞれ回転自在に嵌合する
一対の油圧シリンダ15と、油圧ユニッ1−31からの
加圧された作動油を前記両油圧シリンダ15に交互に切
換供給して前記回転軸20を軸方向に往復動させる電気
−油圧サーボ弁30と、往復信号発生器40と、前記軸
受本体lOに対する前記回転軸20の移動量を検出する
変位検出器45と、前記往復信号発生器40からの駆動
信号及び前記変位検出g345からのフィードバンク信
号を入力して前記回転軸20のストロークが前記駆動信
号により与え°られる値と一致するよう前記電気−油圧
サーボ弁30の作動を制御するサーボ増幅器41を備え
てなるものである。
For this purpose, the rotating shaft reciprocating device according to the present invention has journal parts 2 formed at both ends, as illustrated in the attached drawings.
The rotating shaft 20 is formed by coaxially forming a cylindrical portion 22 with a larger diameter than the journal portion adjacent to the center side of the rotating shaft 20, and the rotating shaft 20 is reciprocated to some extent in the axial direction via both the journal portions 21. A bearing body 10 is rotatably supported, a pair of hydraulic cylinders 15 are fixed to the bearing body and rotatably fitted in each of the cylindrical parts 22, and pressurized hydraulic oil from a hydraulic unit 1-31 is connected to the bearing body 10. An electro-hydraulic servo valve 30 that alternately switches supply to both hydraulic cylinders 15 to reciprocate the rotary shaft 20 in the axial direction, a reciprocating signal generator 40, and a reciprocating signal generator 40 that controls the amount of movement of the rotary shaft 20 with respect to the bearing body lO. By inputting the displacement detector 45 for detection, the drive signal from the reciprocating signal generator 40, and the feedbank signal from the displacement detection g345, the stroke of the rotating shaft 20 matches the value given by the drive signal. Thus, a servo amplifier 41 is provided to control the operation of the electro-hydraulic servo valve 30.

〔作用〕[Effect]

往復信号発生器40からの駆動信号はサーボ増幅器41
を介して電気−油圧サーボ弁30を往復作動させ、電気
−油圧サーボ弁30は油圧ユニット31からの加圧され
た作動油を一対の油圧シリンダ15に交互に切換供給し
て回転軸20を往復動させる。サーボ増幅器41は変位
検出器45からのフィードバック信号を入力し、回転軸
20の往復動のストロークが往復信号発生器40からの
駆動信号により与えられるストロークと一致するよう電
気−油圧サーボ弁30の作動を制御する。
The drive signal from the reciprocating signal generator 40 is sent to the servo amplifier 41
The electro-hydraulic servo valve 30 reciprocates by switching between supplying pressurized hydraulic oil from the hydraulic unit 31 to the pair of hydraulic cylinders 15 to reciprocate the rotating shaft 20. make it move. The servo amplifier 41 inputs the feedback signal from the displacement detector 45 and operates the electro-hydraulic servo valve 30 so that the reciprocating stroke of the rotating shaft 20 matches the stroke given by the drive signal from the reciprocating signal generator 40. control.

往復信号発生器40からの駆動信号の周波数を変更すれ
ば、それに応じて回転軸20の往復動の周波数も変化す
る。
If the frequency of the drive signal from the reciprocating signal generator 40 is changed, the frequency of the reciprocating motion of the rotating shaft 20 will also change accordingly.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、回転軸の両端部に形成したジャーナル
部の中央側に隣接してジャーナル部より大径の円筒部を
形成し、回転軸を往復動させる一対の油圧シリンダをこ
の円筒部に嵌合したので、軸受本体に軸承される回転軸
のジャーナル部より中央側の部分を直ちに大径として回
転軸の曲げ剛性を増大させることができる。また、往復
信号発生器からの駆動信号を調整するのみで回転軸の往
復動のストローク及び周波数を容易に変えることができ
ると共に、変位検出器からのフィードバック信号により
電気−油圧サーボ弁の作動を制御しているのでストロー
クを高精度に設定することができる。更に、往復動を与
えるために軸受本体内に組み込まれるのは一対のシリン
ダのみであり、可動部は回転軸それ自体のみであるので
構造が簡略化され、一方、電気−油圧サーボ弁、サーボ
増幅器、往復信号発生器、変位検出器等は通常の規格品
をそのままあるいは多少の部分的変更を加えるのみで使
用できるので製造コストを低下させることができる。
According to the present invention, a cylindrical portion having a larger diameter than the journal portion is formed adjacent to the center side of the journal portion formed at both ends of the rotating shaft, and a pair of hydraulic cylinders for reciprocating the rotating shaft are attached to this cylindrical portion. Since they are fitted, it is possible to immediately increase the diameter of the central portion of the rotary shaft supported by the bearing body relative to the journal portion, thereby increasing the bending rigidity of the rotary shaft. In addition, the stroke and frequency of the reciprocating motion of the rotary shaft can be easily changed by simply adjusting the drive signal from the reciprocating signal generator, and the operation of the electro-hydraulic servo valve is controlled by the feedback signal from the displacement detector. This allows the stroke to be set with high precision. Furthermore, only a pair of cylinders are incorporated into the bearing body to provide reciprocating motion, and the only moving part is the rotating shaft itself, simplifying the structure. , the reciprocating signal generator, the displacement detector, etc., can be used as standard products as they are or with only some partial changes, so manufacturing costs can be reduced.

〔実施例〕〔Example〕

添付図面に示すものは、本発明による回転軸の往復動装
置を、振動研削を行う研削盤の砥石軸に通用した場合の
実施例である。第1図に示す如く、軸受本体10の左右
両側には、対称形状の一対の軸受金11が同軸に固定さ
れ、この軸受金11には回転軸20がその両端に形成さ
れたジャーナル部21を介して回転自在に、かつ軸方向
に多少往復動可能に軸承されている。各軸受金11の内
周面にはジャーナル部21を支持する静圧軸受が形成さ
れ、連通路35.35a、35bを介して油圧ユニソl
−31からの加圧された作動油が供給されている。
What is shown in the accompanying drawings is an embodiment in which a reciprocating device for a rotating shaft according to the present invention is applied to a grindstone shaft of a grinding machine that performs vibration grinding. As shown in FIG. 1, a pair of symmetrical bearing metals 11 are coaxially fixed on both the left and right sides of the bearing body 10, and a rotating shaft 20 is attached to the bearing metal 11 with a journal portion 21 formed at both ends thereof. It is rotatably supported through the shaft, and is supported so as to be able to reciprocate to some extent in the axial direction. A hydrostatic bearing supporting the journal portion 21 is formed on the inner circumferential surface of each bearing metal 11, and a hydraulic unisol
-31 is supplied with pressurized hydraulic oil.

回転軸20には、各ジャーナル部21の中央側に隣接し
てそれぞれ、ジャーナル部21より大径の円筒部22が
形成され、更にその中央側には更に大径の中央部23が
一体に形成されている。回転軸20の図示左端のテーバ
部には取付フランジ25が固定され、この取付フランジ
25には固定板26を介して砥石車27が螺着固定され
ている。
A cylindrical portion 22 having a larger diameter than the journal portion 21 is formed adjacent to the center side of each journal portion 21 on the rotating shaft 20, and a central portion 23 having an even larger diameter is integrally formed on the center side thereof. has been done. A mounting flange 25 is fixed to a tapered portion of the rotating shaft 20 at the left end in the figure, and a grinding wheel 27 is screwed and fixed to this mounting flange 25 via a fixing plate 26.

回転軸20の右端のテーパ部には■プーリ28が固定さ
れ、回転軸20は■ベルト29を介して駆動モータ(図
示せず)により回転駆動される。
A pulley 28 is fixed to the tapered portion at the right end of the rotating shaft 20, and the rotating shaft 20 is rotationally driven by a drive motor (not shown) via a belt 29.

各軸受金11の軸方向内端には、回転軸20の各円筒部
22の外周面にそれぞれ回転自在に嵌合する内周面15
aを有する一対の油圧シリンダ15が、一体に設けられ
ている。各シリンダ15内には、油圧ユニット31から
の加圧された作動油が、連通路32.電気−油圧サーボ
弁30.連通路33a、33b及び各軸受金11内に形
成された油路34を介して、交互に切替供給され、これ
により回転軸20を軸方向に往復動させるようになって
いる。電気−油圧サーボ弁30は、油圧ユニット31か
ら各油圧シリンダ15内に流入する作動油の流量及び切
換をソレノイド30aに入力される電気信号に応じて制
御するのである。
At the axially inner end of each bearing metal 11, there is an inner peripheral surface 15 that rotatably fits into the outer peripheral surface of each cylindrical portion 22 of the rotating shaft 20.
A pair of hydraulic cylinders 15 are integrally provided. Pressurized hydraulic oil from the hydraulic unit 31 is supplied to each cylinder 15 through a communication passage 32 . Electro-hydraulic servo valve 30. The oil is alternately supplied via the communication passages 33a, 33b and the oil passages 34 formed in each bearing metal 11, thereby causing the rotary shaft 20 to reciprocate in the axial direction. The electro-hydraulic servo valve 30 controls the flow rate and switching of the hydraulic oil flowing into each hydraulic cylinder 15 from the hydraulic unit 31 in accordance with an electric signal input to the solenoid 30a.

第2図及び第3図に示す如く、各油圧シリンダ15の底
面15bには、段部16a、16bを有する4個の動圧
バッド16が一体に形成され、これにより軸受隙間が極
めて大なる一種の動圧スラスト軸受を形成している。第
3図に示す如(、各動圧バッド16の段部16a、16
bは円筒部22の回転方向に沿って低い段部16a、高
い段部16bの順となるように配置され、回転軸26が
回転しながら軸方向に移動して一方の円筒部22が段部
16a、16bに接近した場合に、段部16a、16b
に生ずる動圧Pが増大して円筒部22と段部16bが直
接接触するのを防止するようになっている。油圧シリン
ダ15内に作動油を供給する油路34は動圧バッド16
の間の底面15bに開口している。なお、第3図におい
ては、両段部16a、16bの段差は拡大した状態にて
図示されている。
As shown in FIGS. 2 and 3, four dynamic pressure pads 16 having stepped portions 16a and 16b are integrally formed on the bottom surface 15b of each hydraulic cylinder 15, and this results in an extremely large bearing clearance. It forms a hydrodynamic thrust bearing. As shown in FIG.
b is arranged so that the lower step part 16a and the higher step part 16b are arranged in this order along the rotational direction of the cylindrical part 22, and as the rotating shaft 26 rotates, it moves in the axial direction so that one of the cylindrical parts 22 becomes the step part. When approaching steps 16a, 16b, step portions 16a, 16b
The dynamic pressure P generated in the cylindrical portion 22 and the step portion 16b is prevented from coming into direct contact with each other. The oil passage 34 that supplies hydraulic oil into the hydraulic cylinder 15 is connected to the dynamic pressure pad 16.
It opens at the bottom surface 15b between the two. In addition, in FIG. 3, the step difference between both step portions 16a and 16b is shown in an enlarged state.

第1図に示す如(、回転軸20の右端にはターゲット4
6が固定されると共にこれに対向して軸受本体10には
ブラケット13を介してセンサ47が固定され、このタ
ーゲット46とセンサ47により軸受本体10に対する
回転軸20の移動量を検出する非接触型の変位検出器4
5が構成される。この変位検出器は差動トランス型等そ
の他の形式のものとしてもよい。
As shown in FIG.
6 is fixed, and a sensor 47 is fixed to the bearing body 10 opposite to this via a bracket 13, and the target 46 and sensor 47 detect the amount of movement of the rotating shaft 20 with respect to the bearing body 10. displacement detector 4
5 is composed. This displacement detector may be of other types, such as a differential transformer type.

電気サーボ弁30は、往復信号発生器40からの駆動信
号をサーボ増幅器41を介して入力して作動し、油圧ユ
Qット31からの加圧された作動油を各油圧シリンダに
切替供給している。往復信号発生器40はストローク及
び周波数の開塾つまみ40a、40bを有し、ストロー
ク及び周波数が指定された駆動信号(例えば正弦波信号
)をサーボ増幅器41に出力する。サーボ増幅器41は
この駆動信号を入力すると同時に変位検出器45からの
フィードバック信号を増幅器42を経て入力し、この両
信号の偏差が零となるように電気サーボ弁30を作動さ
せるものであり、これにより回転軸20は往復信号発生
器40により指定されたストローク及び周波数で往復動
する。往復信号発生器40により指定されるストローク
は、油圧シリンダ15により定められる最大ストローク
以下とするが、制御系に異常が生じてストロークが増大
し、円筒部22の端面が段部16bに接近すれば、前述
の如く動圧Pが増大するので円筒部22と段部16bの
直接接触は防止される。
The electric servo valve 30 is operated by inputting a drive signal from a reciprocating signal generator 40 via a servo amplifier 41, and selectively supplies pressurized hydraulic oil from a hydraulic unit 31 to each hydraulic cylinder. ing. The reciprocating signal generator 40 has stroke and frequency opening knobs 40a and 40b, and outputs a drive signal (for example, a sine wave signal) with a designated stroke and frequency to the servo amplifier 41. The servo amplifier 41 inputs this drive signal and at the same time inputs the feedback signal from the displacement detector 45 via the amplifier 42, and operates the electric servo valve 30 so that the deviation between these two signals becomes zero. As a result, the rotating shaft 20 reciprocates with the stroke and frequency specified by the reciprocating signal generator 40. The stroke specified by the reciprocating signal generator 40 is equal to or less than the maximum stroke determined by the hydraulic cylinder 15, but if an abnormality occurs in the control system and the stroke increases and the end surface of the cylindrical portion 22 approaches the stepped portion 16b, As described above, since the dynamic pressure P increases, direct contact between the cylindrical portion 22 and the stepped portion 16b is prevented.

上述の如く、本実施例によれば、軸受金11を介して軸
受本体10に軸承される回転軸20両端部のジャーナル
部21より中央側を直ちに大径として回転軸の曲げ剛性
を増加させることができるので、砥石車27の振れを減
少させて研削面の精度を向上させることができる。また
、回転軸20の往復動のストローク及び周波数を容易に
かつ高精度で設定することができ、更に、構造簡単であ
ると共に電気サーボ弁30等の構成部材は通常の規格品
をそのままあるいは多少の部分的変更を加えるのみで使
用できるので製造コストを低下させることができる。
As described above, according to this embodiment, the diameter of the center side of the journal portions 21 at both ends of the rotating shaft 20, which is supported by the bearing body 10 via the bearing metal 11, is immediately increased to increase the bending rigidity of the rotating shaft. Therefore, the vibration of the grinding wheel 27 can be reduced and the precision of the grinding surface can be improved. In addition, the stroke and frequency of the reciprocating motion of the rotary shaft 20 can be set easily and with high precision.Furthermore, the structure is simple, and the components such as the electric servo valve 30 can be used as standard products or with some modifications. Since it can be used with only partial changes, manufacturing costs can be reduced.

なお、本実施例の如く、油圧シリンダ15を軸受金11
と一体に構成し、あるいは作動油を供給する油圧ユニッ
ト31を油圧シリンダ15と静圧軸受の両者に共通に使
用すれば一層構造が簡略化されるが、本発明は此等に限
らず独立した油圧シリンダを軸受本体10に固定し、あ
るいは別個の油圧ユニットを設けて実施してもよい。
Note that, as in this embodiment, the hydraulic cylinder 15 is connected to the bearing metal 11.
The structure can be further simplified if the hydraulic unit 31 that supplies hydraulic oil is used in common with both the hydraulic cylinder 15 and the hydrostatic bearing, but the present invention is not limited to this. The hydraulic cylinder may be fixed to the bearing body 10, or a separate hydraulic unit may be provided.

なお、往復信号発生器40を数値制御装置により制御す
るようにすれば、単振動以外に複雑な波形の往復動を回
転軸20に与えることも可能である。
Note that if the reciprocating signal generator 40 is controlled by a numerical control device, it is also possible to give the rotary shaft 20 reciprocating motion with a complicated waveform in addition to simple harmonic motion.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明による回転軸の往復動装置の一実施例
を示し、第1図は主要部の縦断面図を含む全体構成図、
第2図は第1図の■−■線に沿った拡大断面図、第3図
は第2図のm−m断面図である。 符号の説明 10・・・軸受本体、15・・・油圧シリンダ、20・
・・回転軸、21・・・ジャーナル部、22・・・円筒
部、30・・・電気−油圧サーボ弁、31・・・油圧ユ
ニット、40・・・往復信号発生器、41・・・サーボ
増幅器、45・・・変位検出器。 第2図 第3図 I 15・・・油圧シリンダ 21・・・ジャーナル部 22・・・円筒部
The accompanying drawings show an embodiment of a reciprocating device for a rotating shaft according to the present invention, and FIG. 1 is an overall configuration diagram including a vertical sectional view of the main parts;
2 is an enlarged cross-sectional view taken along the line ■--■ in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line m--m in FIG. Explanation of symbols 10...Bearing body, 15...Hydraulic cylinder, 20...
...Rotating shaft, 21... Journal part, 22... Cylindrical part, 30... Electric-hydraulic servo valve, 31... Hydraulic unit, 40... Reciprocating signal generator, 41... Servo Amplifier, 45...Displacement detector. Figure 2 Figure 3 I 15...Hydraulic cylinder 21...Journal part 22...Cylindrical part

Claims (1)

【特許請求の範囲】[Claims] 両端部に形成したジャーナル部の中央側に隣接して同ジ
ャーナル部よりも大径の円筒部を同軸に形成してなる回
転軸と、前記両ジャーナル部を介して前記回転軸を軸方
向に多少往復動可能に軸承する軸受本体と、この軸受本
体に固定され前記各円筒部にそれぞれ回転自在に嵌合す
る一対の油圧シリンダと、油圧ユニットからの加圧され
た作動油を前記油圧シリンダに交互に切換供給して前記
回転軸を軸方向に往復動させる電気−油圧サーボ弁と、
往復信号発生器と、前記軸受本体に対する前記回転軸の
移動量を検出する変位検出器と、前記往復信号発生器か
らの駆動信号及び前記変位検出器からのフィードバック
信号を入力して前記回転軸のストロークが前記駆動信号
により与えられる値と一致するよう前記電気−油圧サー
ボ弁の作動を制御するサーボ増幅器を備えてなる回転軸
の往復動装置。
A rotating shaft formed by coaxially forming a cylindrical portion with a larger diameter than the journal portion adjacent to the center side of the journal portion formed at both ends, and a rotating shaft that is slightly axially moved through the both journal portions. A bearing body is supported for reciprocating movement, a pair of hydraulic cylinders are fixed to the bearing body and rotatably fit into each of the cylindrical parts, and pressurized hydraulic oil from a hydraulic unit is alternately supplied to the hydraulic cylinders. an electro-hydraulic servo valve that reciprocates the rotating shaft in the axial direction by switching supply to the rotating shaft;
a reciprocating signal generator, a displacement detector for detecting the amount of movement of the rotating shaft with respect to the bearing body; A reciprocating device for a rotating shaft, comprising a servo amplifier for controlling the operation of the electro-hydraulic servo valve so that the stroke corresponds to the value given by the drive signal.
JP6803386A 1986-03-26 1986-03-26 Device for reciprocally moving rotary shaft Pending JPS62224571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6803386A JPS62224571A (en) 1986-03-26 1986-03-26 Device for reciprocally moving rotary shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6803386A JPS62224571A (en) 1986-03-26 1986-03-26 Device for reciprocally moving rotary shaft

Publications (1)

Publication Number Publication Date
JPS62224571A true JPS62224571A (en) 1987-10-02

Family

ID=13362080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6803386A Pending JPS62224571A (en) 1986-03-26 1986-03-26 Device for reciprocally moving rotary shaft

Country Status (1)

Country Link
JP (1) JPS62224571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420472A (en) * 1992-06-11 1995-05-30 Motorola, Inc. Method and apparatus for thermal coefficient of expansion matched substrate attachment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260492A (en) * 1975-10-02 1977-05-18 Europ Propulsion Tool holding spindle device for use in grinding machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260492A (en) * 1975-10-02 1977-05-18 Europ Propulsion Tool holding spindle device for use in grinding machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420472A (en) * 1992-06-11 1995-05-30 Motorola, Inc. Method and apparatus for thermal coefficient of expansion matched substrate attachment

Similar Documents

Publication Publication Date Title
US4899628A (en) Dynamically compensating counterbalance
JPS61288952A (en) Method and device for manufacturing cutting chip on rotary machining of work
CN101155654A (en) Hybrid orbiting spindle for shaping non-circular holes
KR100382129B1 (en) Adjustable fluid pressure pump
KR20030059074A (en) Lens lathe with vibration cancelling arrangement
JPS5813282B2 (en) boring head
EP2013475B1 (en) Hydraulic motor having radial cylinders and continuous variable displacement
JPS62224571A (en) Device for reciprocally moving rotary shaft
US6220159B1 (en) Crank mechanism for distribution cylinder in a rotary press
US20160243668A1 (en) Advancing device for generating a secondary advancing movement of a tool
US6089065A (en) Process and arrangement for the cold forming of hollow workpieces
CA1158050A (en) Grinding machine and method
CA1096661A (en) Tube swaging machine
JP4078909B2 (en) Super finishing equipment
US3227049A (en) Means for axially reciprocating a revolving shaft
JPH01317650A (en) Oscillation forging machine
JPH11179605A (en) Non-circular boring device
CN102490023A (en) Two-shaft linked rotating workbench for numerical control machine tool
RU2384391C1 (en) Vibration cutter spindle
JPS5981055A (en) Honing device
JPH05253836A (en) Automatic balancing device of main spindle
JPS60221240A (en) Feed device
JPS63256242A (en) Method for driving mold oscillation device
SU246350A1 (en) DEVICE FOR Oscillation of the CARRIAGE GRINDING ROUND
SU880703A1 (en) Device for superfinishing spherical surfaces