[go: up one dir, main page]

JPS62223722A - Light modulation element material - Google Patents

Light modulation element material

Info

Publication number
JPS62223722A
JPS62223722A JP6698386A JP6698386A JPS62223722A JP S62223722 A JPS62223722 A JP S62223722A JP 6698386 A JP6698386 A JP 6698386A JP 6698386 A JP6698386 A JP 6698386A JP S62223722 A JPS62223722 A JP S62223722A
Authority
JP
Japan
Prior art keywords
polysiloxane
light modulation
modulation element
fine particles
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6698386A
Other languages
Japanese (ja)
Inventor
Masahiro Okuda
昌宏 奥田
Nobuo Kushibiki
信男 櫛引
Takeshi Baba
健 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6698386A priority Critical patent/JPS62223722A/en
Publication of JPS62223722A publication Critical patent/JPS62223722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the titled material capable of changing the transmission strength of light due to a temp. change by mixing transparent fine particles to polysiloxane. CONSTITUTION:The titled material is composed of a composite material mixed with the transparent fine particles to the polysiloxane. A polymer shown by the formula or a copolymer composed of >=2 kinds of constituting units shown by the formula is preferably used as the polysiloxane. In the formula, R1 and R2 are each phenyl or methyl group or hydrogen atom, (n) is an integer of >=40. The transparent fine particle is preferably exemplified with SiO2, glass, alumina or a fine particle of a polymer. Thus, the titled element capable of changing the transmission strength of the light due to the temp. change and usable for the inexpensive light modulation element having a large area is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光変調素子用材料に関し、特に温度変化により
光の透過強度を変えることのてきる光変調素子用光学材
料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a material for a light modulator, and more particularly to an optical material for a light modulator that can change the transmitted intensity of light depending on temperature changes.

[従来の技術] 従来、光変調素子として音響光学効果、電気光学効果及
び磁気光学効果を利用した各種の素子か知られている。
[Prior Art] Conventionally, various types of elements using acousto-optic effects, electro-optic effects, and magneto-optic effects have been known as light modulation elements.

しかし、これらの素子はいずれも材料として結晶材料を
用いているために、素子の製造方法が複雑で、かつ得ら
れた素子は高価であった。また、これらの素子は、長尺
化およびアレー化に適さないという欠点を有するため、
応用面でも限界があり実用上好ましくないという問題が
あった。
However, since all of these devices use crystalline materials, the manufacturing method for the devices is complicated and the resulting devices are expensive. In addition, these elements have the disadvantage that they are not suitable for lengthening and array formation.
There is also a problem in that it has limitations in terms of application and is not practical.

[発明か解決しようとする問題点] 本発明は、上記の様な従来の欠点を解決するために鋭意
研究した結果完成されたものであり、温度変化により光
の透過強度を変調することができ、製造方法が簡単で、
安価で、かつ大面積化、アレー化に適しているためにデ
ィスプレー、シャッター等に幅広く利用することができ
る光変調素子用材料を提供することを目的とするもので
ある。
[Problems to be solved by the invention] The present invention was completed as a result of intensive research in order to solve the above-mentioned drawbacks of the conventional technology. , the manufacturing method is simple,
The object of the present invention is to provide a material for a light modulation element that is inexpensive and suitable for large-area and array formation, and thus can be widely used in displays, shutters, etc.

[問題点を解決するための手段]および[作用]即ち、
本発明はポリシロキサンに透明微粒子を混合した複合材
からなることを特徴とする光変調素子用材料である。
[Means for solving the problem] and [effect], that is,
The present invention is a material for a light modulation element characterized by being made of a composite material in which transparent fine particles are mixed with polysiloxane.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いられるポリシロキサンは 一般式(I) 一+S、−〇)−(I) n (式中、R1及びR2は同種又は異種のフェニル基、メ
チル基又は水素原子、nは40以上の整数を示す)で表
わされる化合物及び該化合物の少なくとも2種以上を構
成単位とする共重合体から選ばれた1種又は2種以上か
らなるものである。
The polysiloxane used in the present invention has the general formula (I) 1+S, -〇)-(I)n (wherein R1 and R2 are the same or different phenyl groups, methyl groups, or hydrogen atoms, and n is 40 or more. It consists of one or more selected from compounds represented by (integer) and copolymers having at least two or more of these compounds as constituent units.

その具体例を示すと、ポリジメチルシロキサン(20℃
における屈折率n=1.409 ) 、ポリ(ジメチル
シロキサン−ポリジフェニルシロキサン)共重合体(n
=1.409〜1.52) 、ポリメチルフェニルシロ
キサン(n=1.550 ) 、ポリ(ジメチル−、ジ
フェニル−、メチルフェニル)シロキサン共重合体(n
=1.409〜1.550 )の1種又は2種以上が挙
げられる。また、上記ポリシロキサンはハロゲン化アル
キル又はアリール基、カルボキシル、アミン等の有機官
能基で変性されたものてもよい。
A specific example is polydimethylsiloxane (20℃
refractive index n = 1.409), poly(dimethylsiloxane-polydiphenylsiloxane) copolymer (n
= 1.409 to 1.52), polymethylphenylsiloxane (n = 1.550), poly(dimethyl-, diphenyl-, methylphenyl) siloxane copolymer (n
= 1.409 to 1.550) or two or more thereof. Further, the polysiloxane may be modified with an organic functional group such as a halogenated alkyl or aryl group, carboxyl, or amine.

本発明に用いられる透明微粒子は屈折率nかポリシロキ
サンに近く、温度による屈折率変化がポリシロキサンよ
り小さいものであれば、いずれも好適に用いることがで
き、その具体例を示すとSing (シリカゲル) (
n−1,460) 、ガラス(n−1,463〜1.9
22)、アルミナ(n−1,760)などの無機物或い
はポリメチルメタアクリレート、ポリスチレン、ポリカ
ーボネート等のポリマー微粒子などの有機物が挙げられ
る。SiO□は、その中にアルカリ金属、アルカリ土類
金属、遷移金属、希土類金属等が化学結合の有無を問わ
ず存在しているものであっても一向に差し支えない。
The transparent fine particles used in the present invention can be suitably used as long as the refractive index n is close to that of polysiloxane and the change in refractive index due to temperature is smaller than that of polysiloxane.A specific example is Sing (silica gel). ) (
n-1,460), glass (n-1,463 to 1.9
22), inorganic substances such as alumina (n-1,760), or organic substances such as polymer fine particles such as polymethyl methacrylate, polystyrene, and polycarbonate. SiO□ may contain an alkali metal, an alkaline earth metal, a transition metal, a rare earth metal, etc., regardless of the presence or absence of chemical bonds.

また透明微粒子の粒径は100 p、ra以下、特に0
.1〜571mが好ましいが、該範囲内であれば特定の
粒径のみ集めたものでも、粒径に分布をもったものの集
合体でもよい。
In addition, the particle size of the transparent fine particles is 100 p, ra or less, especially 0
.. 1 to 571 m is preferable, but within this range, it may be a collection of only a specific particle size or an aggregate of particles with a distribution of particle sizes.

本発明の光変調素子用材料の複合材に含有されているポ
リシロキサンと透明微粒子の配合割合は、ポリシロキサ
ン100重量部に対して透明微粒子0.01〜10重量
部、好ましくは0.05〜5重量部が望ましく、0.0
1重量部未満では光強度の差が小さくなり、10重量部
をこえると不透明になり変調効果が著しく減少又は発現
されなくなる。
The blending ratio of the polysiloxane and transparent fine particles contained in the composite material of the light modulation element material of the present invention is 0.01 to 10 parts by weight, preferably 0.05 to 10 parts by weight of the transparent fine particles to 100 parts by weight of the polysiloxane. 5 parts by weight is desirable, and 0.0 parts by weight.
If it is less than 1 part by weight, the difference in light intensity will be small, and if it exceeds 10 parts by weight, it will become opaque and the modulation effect will be significantly reduced or not expressed.

本発明の光変調素子用材料を用いた光変調素子は、ポリ
シロキサンに透明微粒子を混合した複合材をセルに収容
し、ポリシロキサンは、予めポリシロキサン鎖末端、あ
るいは側鎖にビニル基を導入した、いわゆるビニルポリ
シロキサン、ポリシロキサン末端あるいは側鎖にシリル
ハイドライドを導入したポリシリコンとの付加反応、あ
るいはビニルポリシロキサンを過酸化物、光、放射線等
の電磁波等による架橋反応によって硬化せしめることに
より容易に得ることができる。
A light modulation device using the light modulation device material of the present invention contains a composite material in which transparent fine particles are mixed with polysiloxane in a cell, and the polysiloxane has a vinyl group introduced into the end or side chain of the polysiloxane chain in advance. So-called vinyl polysiloxane, by addition reaction with polysilicon with silyl hydride introduced into the terminal or side chain of polysiloxane, or by curing vinyl polysiloxane by crosslinking reaction with peroxide, light, electromagnetic waves such as radiation, etc. can be obtained easily.

本発明の光変調素子用材料は、温度に対する屈折率の変
化量がポリシロキサンの方が透明微粒子より、大きいこ
とを利用して光変調素子を構成する材料として使用する
ものである。
The material for a light modulation element of the present invention is used as a material constituting a light modulation element by taking advantage of the fact that polysiloxane has a larger change in refractive index with respect to temperature than transparent fine particles.

具体的に説明すると、ポリシロキサンの屈折率は温度が
l ’C上昇するとs x io−’程度下がる。これ
に対してシリカゲル、ガラスなどの透明微粒子は、温度
か1 ’C上昇しても10−5程度しか屈折率が下がら
ない。したがって、成る特定の温度で両者の屈折率を合
わせておくと光は殆んど透過するが、温度が変化すると
ポリシロキサンと透明微粒子の間に屈折率の差が生じ、
境界面での散乱のため、透過光は減衰する。
Specifically, the refractive index of polysiloxane decreases by about s x io-' as the temperature increases by l'C. On the other hand, the refractive index of transparent fine particles such as silica gel and glass decreases by only about 10-5 even if the temperature increases by 1'C. Therefore, if the refractive indexes of both are matched at a specific temperature, most of the light will pass through, but as the temperature changes, a difference in refractive index will occur between the polysiloxane and the transparent fine particles.
The transmitted light is attenuated due to scattering at the interface.

この減衰の度合は透明微粒子の粒径、濃度、両者の屈折
率差等によって決定される。
The degree of this attenuation is determined by the particle size and concentration of the transparent fine particles, the difference in refractive index between the two, and the like.

したがって、本発明においては、ポリシロキサンと透明
微粒子の屈折率は特定の温度においてほぼ等しく、温度
変化による両者の屈折率の変化率は異なることか必要で
あり、この要件を満足する様にポリシロキサンと透明微
粒子を組合せて使用することを要する。
Therefore, in the present invention, it is necessary that the refractive index of the polysiloxane and the transparent fine particles be approximately equal at a specific temperature, and that the rate of change in the refractive index of the two due to temperature change be different. It is necessary to use a combination of and transparent fine particles.

光か透過する温度範囲は透明微粒子の粒径、濃度を変え
ることによって調節することができ、粒径を大きくすれ
ば透過する温度範囲は狭くなり、また、濃度を大きくす
ることによっても同様の効果を達成させることができる
。この観点より透明微粒子の粒径は1100JLをこえ
ないことか望ましい。
The temperature range through which light passes can be adjusted by changing the particle size and concentration of the transparent fine particles; increasing the particle size narrows the temperature range through which light passes, and increasing the concentration also produces the same effect. can be achieved. From this point of view, it is desirable that the particle size of the transparent fine particles does not exceed 1100 JL.

また、本発明において用いられるポリシロキサンの成分
を変えて屈折率をずらすと、光の透過する中心温度を適
当にずらすことができる。
Furthermore, by changing the refractive index by changing the components of the polysiloxane used in the present invention, the center temperature through which light passes can be appropriately changed.

次に、本発明の光変調素子用材料を使用した空間光変調
器について説明する。第2図、は空間光変調器の1例を
示す説明図であり、基板4と透明保護板lとを、その間
に本発明の光変調素子用材料2を介在せしめて対向して
設け、その対向面に各々透明抵抗発熱体3.3a、3b
を配設してなるものである。透明抵抗発熱体3,3aに
電圧な印加して加熱し、3bには電圧を印加しない状態
において、入射光5a、5bを照射すると、透明抵抗発
熱体3aの位置では、あらかじめ合わせておいたポリシ
ロキサンと透明微粒子の屈折率か変化し、透明抵抗発熱
体3bの位置ては屈折率が変化しないために、入射光5
aは散乱し、入射光5bは透過する。
Next, a spatial light modulator using the material for a light modulation element of the present invention will be described. FIG. 2 is an explanatory diagram showing one example of a spatial light modulator, in which a substrate 4 and a transparent protection plate l are provided facing each other with the light modulation element material 2 of the present invention interposed therebetween. Transparent resistance heating elements 3.3a and 3b on opposite surfaces, respectively
It is made by arranging. When the transparent resistance heating elements 3, 3a are heated by applying a voltage, and the incident light 5a, 5b is irradiated with no voltage applied to 3b, at the position of the transparent resistance heating element 3a, the previously aligned polygon The refractive index of the siloxane and the transparent fine particles changes, but the refractive index does not change at the position of the transparent resistance heating element 3b, so the incident light 5
The light a is scattered, and the incident light 5b is transmitted.

また1本発明の光変調素子用材料はこの様な空間光変調
器を利用したディスプレー装置にも利用することができ
る。
Furthermore, the material for a light modulation element of the present invention can also be used in a display device using such a spatial light modulator.

[実施例] 以下、実施例を示し本発明をさらに具体的に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 ポリシロキサンとしてポリ(ジメチルシロキサン−ポリ
ジフェニルシロキサン)共重合体を用い、透明微粒子と
してサイワイド(物質名シリカゲル、富士ディヴイソン
化学■)を用いた光変調素子用材料を使用して光変調素
子を得た。
Example 1 A light modulation element was produced using a material for a light modulation element using poly(dimethylsiloxane-polydiphenylsiloxane) copolymer as polysiloxane and Cywide (substance name: silica gel, Fuji Davison Chemical ■) as transparent fine particles. I got it.

三ツロフラスコにオクタメチルシクロテトラシロキサン
10moleに対し、オクタフェニルシクロテトラシロ
キサン1.4++ole加えて、無水の水酸化カリウム
を溶解したイソプロピルアルコール溶液を加えて、減圧
下でイソプロピルアルコールを除去し、170°Cで3
時間加熱した後末端をジメチルビニルシランを加えてと
めるため更に加熱してA液を得た。
Add 1.4++ ole of octaphenylcyclotetrasiloxane to 10 mole of octamethylcyclotetrasiloxane to a Mitsuro flask, add an isopropyl alcohol solution in which anhydrous potassium hydroxide is dissolved, remove the isopropyl alcohol under reduced pressure, and heat at 170°C. So 3
After heating for a period of time, dimethylvinylsilane was added to the end and further heating was performed to obtain Solution A.

上記反応系に反応液に予めヘプタメチルシクロテトラシ
ロキサンを0.05mole加えておき、A液と同様に
反応させ、末端をヘキサジメチルシロキサンを加えてと
めて更に加熱してB液とした。
0.05 mole of heptamethylcyclotetrasiloxane was added to the reaction solution in advance in the above reaction system, and the reaction was carried out in the same manner as Solution A. The terminal was stopped by adding hexadimethylsiloxane and further heated to obtain Solution B.

A液とB液を等量になるように混合し、白金触媒のトル
エン溶液(東芝シリコン■製) toopp■を加えた
反応混合液50gに対し、サイロイド5gを混合、攪拌
した後、厚さ方向の2面がガラスて覆われた厚さ10m
mのセルに入れ、これを恒温槽で50’C,12時間保
持して、硬化させて試料を得た。
Mix A and B in equal amounts, add 50 g of a reaction mixture containing a toluene solution of platinum catalyst (manufactured by Toshiba Silicon) toopp, add 5 g of siloid, stir, and then mix in the thickness direction. 2 sides covered with glass 10m thick
The sample was placed in a cell with a temperature of 50° C. and kept in a constant temperature bath at 50'C for 12 hours to harden it and obtain a sample.

この試料の温度なO℃〜40°Cまで変化させながら波
長632.8nmの1ie−Neレーザー光をあて、透
過光の強度を測定し、1cm当りの透過率を算出した。
A 1ie-Ne laser beam having a wavelength of 632.8 nm was applied while changing the temperature of this sample from 0° C. to 40° C., the intensity of the transmitted light was measured, and the transmittance per 1 cm was calculated.

第1図に温度に対する光の透過率特性を示す。温度20
9Cにおいては透過率94%を示し、これから20°C
以上温度が変化すると、試料は白濁し、透過率はほぼ0
%となることが認められる。
Figure 1 shows the light transmittance characteristics with respect to temperature. temperature 20
At 9C, the transmittance is 94%, and from now on at 20C
If the temperature changes more than that, the sample becomes cloudy and the transmittance is almost 0.
%.

[発明の効果] 本発明の光変調素子用材料は温度による屈折率変化を利
用した光変調素子に利用でき、特にアレー状の発熱体を
配して第2図に示すような大面積空間光変調器に極めて
有利である。さらに、それを利用したディスプレー装置
などにも応用できる。また、ある温度範囲でのみ光を透
過する自動調光ガラスにも応用できる。
[Effects of the Invention] The material for a light modulation element of the present invention can be used for a light modulation element that utilizes a change in refractive index due to temperature. In particular, the material for a light modulation element of the present invention can be used for a light modulation element that utilizes a change in refractive index due to temperature. Very advantageous for modulators. Furthermore, it can also be applied to display devices that utilize it. It can also be applied to automatic light-adjusting glass that only transmits light within a certain temperature range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光変調素子用材料の温度に対する光の
透過率の特性の一例を示すグラフ、第2図は本発明の光
変調素子用材料を使用した空間光変調器の説明図である
。 1・・・透過保護板 2・・・光変調素子用材料 3.3a、3b”・透明発熱抵抗体 4・・・基板 5a、5b・・・入射光
FIG. 1 is a graph showing an example of the light transmittance characteristics with respect to temperature of the material for a light modulation element of the present invention, and FIG. 2 is an explanatory diagram of a spatial light modulator using the material for a light modulation element of the present invention. be. 1...Transmission protection plate 2...Light modulation element material 3.3a, 3b''/Transparent heating resistor 4...Substrate 5a, 5b...Incoming light

Claims (3)

【特許請求の範囲】[Claims] (1)ポリシロキサンに透明徴粒子を混合した複合材か
らなることを特徴とする光変調素子用材料。
(1) A material for a light modulation element, characterized by being made of a composite material in which transparent particles are mixed with polysiloxane.
(2)ポリシロキサンが 一般式 ▲数式、化学式、表等があります▼ (式中、R_1及びR_2は同種又は異種のフェニル基
、メチル基又は水素原子、nは40以上の整数を示す)
で表わされる化合物及び該化合物の少なくとも2種以上
を構成単位とする共重合体から選ばれた1種又は2種以
上からなる特許請求の範囲第1項記載の光変調素子用材
料。
(2) Polysiloxane has a general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, R_1 and R_2 are the same or different phenyl groups, methyl groups, or hydrogen atoms, and n represents an integer of 40 or more.)
The material for a light modulation element according to claim 1, which comprises one or more selected from compounds represented by the following and copolymers having at least two or more of these compounds as constituent units.
(3)透明徴粒子がSiO_2、ガラス、アルミナ又は
ポリマー微粒子である特許請求の範囲第1項記載の光変
調素子用材料。
(3) The material for a light modulation element according to claim 1, wherein the transparent particles are SiO_2, glass, alumina, or polymer fine particles.
JP6698386A 1986-03-25 1986-03-25 Light modulation element material Pending JPS62223722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6698386A JPS62223722A (en) 1986-03-25 1986-03-25 Light modulation element material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6698386A JPS62223722A (en) 1986-03-25 1986-03-25 Light modulation element material

Publications (1)

Publication Number Publication Date
JPS62223722A true JPS62223722A (en) 1987-10-01

Family

ID=13331760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6698386A Pending JPS62223722A (en) 1986-03-25 1986-03-25 Light modulation element material

Country Status (1)

Country Link
JP (1) JPS62223722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059719A1 (en) * 2004-12-03 2006-06-08 Kaneka Corporation Silicone polymer particle and silicone composition containing same
JP2018180551A (en) * 2010-03-23 2018-11-15 株式会社朝日ラバー Flexible reflective substrate, method for producing the same, and raw material composition used for the reflective substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059719A1 (en) * 2004-12-03 2006-06-08 Kaneka Corporation Silicone polymer particle and silicone composition containing same
JPWO2006059719A1 (en) * 2004-12-03 2008-06-05 株式会社カネカ Silicone polymer particles and silicone composition containing the same
US8541103B2 (en) 2004-12-03 2013-09-24 Kaneka Corporation Silicone polymer particle and silicone composition containing same
JP2018180551A (en) * 2010-03-23 2018-11-15 株式会社朝日ラバー Flexible reflective substrate, method for producing the same, and raw material composition used for the reflective substrate
JP2020013142A (en) * 2010-03-23 2020-01-23 株式会社朝日ラバー Flexible reflective substrate, manufacturing method thereof, and base material composition for use in reflective substrate

Similar Documents

Publication Publication Date Title
Lee et al. High-refractive-index thin films prepared from trialkoxysilane-capped poly (methyl methacrylate)− titania materials
Jackson et al. Synthesis of hybrid organic− inorganic materials from interpenetrating polymer network chemistry
Yoshida et al. Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/SiO2 composite materials
Yano et al. Structure and properties of poly (vinyl alcohol)/tungsten trioxide hybrids
Kaddami et al. Silica‐filled poly (HEMA) from hema/grafted SiO2 nanoparticles: Polymerization kinetics and rheological changes
Gautam et al. Molecular structure of hydrophobic alkyl side chains at comb polymer-air interface
El-Nahhal et al. Encapsulation of phenolphthalein pH-indicator into a sol-gel matrix
Adolf et al. Ultraslow relaxations in networks: evidence for remnant fractal structures
EP0768554B1 (en) Polysiloxane thermo-optic modulator
EP0287093A2 (en) Inorganic-organic composite compositons exhibiting nonlinear optical response
JPS62223722A (en) Light modulation element material
US5217811A (en) Devices featuring silicone elastomers
US4861129A (en) Inorganic-organic composite compositions exhibiting nonlinear optical response
van der Laan et al. Charge Carrier Mobilities in Substituted Polysilylenes: Influence of Backbone Conformation
JPH0678490B2 (en) Products containing crosslinked siloxane copolymers
Houde-Walter et al. Delta-n control in GRIN glass by additives in AgCl diffusion baths
De et al. Gold-Nanocluster-Doped Inorganic− Organic Hybrid Coatings on Polycarbonate and Isolation of Shaped Gold Microcrystals from the Coating Sol
Barley et al. Photoinduced reversible refractive-index changes in tailored siloxane-based polymers
Hendrickx et al. Photorefractive polysilanes functionalized with a nonlinear optical chromophore
Mizuno et al. Organic− Inorganic Hybrid Material of Phenyl-Modified Polysilicophosphate Prepared through Nonaqueous Acid− Base Reaction
Kodaira et al. Third‐order nonlinear optical properties of thin films of organogermane homopolymers and organogermane‐organosilane copolymers
van Walree et al. Structural, Photophysical, and Conductive Properties of n-Hexyl Substituted Hybrid Polysilylene− Polysilyne Networks
Chauhan et al. A catalytic route to grafted silicones
JP3110814B2 (en) Siloxane polymer and optical material
Xiong et al. Trialkoxysilane‐capped acrylic resin/titania organic–inorganic hybrid optical films prepared by the sol–gel process