JPS62222616A - Heat-resistant electrode thin film - Google Patents
Heat-resistant electrode thin filmInfo
- Publication number
- JPS62222616A JPS62222616A JP6487886A JP6487886A JPS62222616A JP S62222616 A JPS62222616 A JP S62222616A JP 6487886 A JP6487886 A JP 6487886A JP 6487886 A JP6487886 A JP 6487886A JP S62222616 A JPS62222616 A JP S62222616A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- electrode
- film
- iridium
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電気、電子部品及びデバイスにとりつけられる
耐熱性1!極薄膜、とくに高温でかつ酸化性雰囲気ある
いは減圧下の苛酷な条件下でも耐久性金有する耐熱性電
極薄膜にかんする。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides heat-resistant 1! The present invention relates to ultra-thin films, especially heat-resistant electrode thin films that are durable even under severe conditions such as high temperatures, oxidizing atmospheres, or reduced pressure.
電気、電子部品及びデバイスが高温で使われたり、また
その製造過程で電極を取付けた状態で熱処理される工程
が含まれる場合、かかる電極として耐熱性の材料を使用
することが必袂でらる。たとえば強誘電体セラミクスで
槓1−コンデンサーを製造するプロセスの中には電極を
つけた後、高温焼成するという工程が含まれている。こ
の場合安価な卑金属では耐熱性がないため通常、貴金属
を電極材料として用いる。電極は印刷法で代表される厚
膜として形成される。しかしながら高価な貴金鵡を多く
用いることからコストを引上げる1つの原因になってい
る。このような経済的なデメリットを克服する方策とし
て電極を薄膜化してその使用量を減少させることが提案
される。しかし乍ら薄膜化されたIE極は耐熱性の面で
櫨々の問題を生じる。When electrical and electronic parts and devices are used at high temperatures, or when the manufacturing process includes heat treatment with electrodes attached, it is necessary to use heat-resistant materials for such electrodes. . For example, the process of manufacturing a capacitor using ferroelectric ceramics includes a step of attaching electrodes and then firing at a high temperature. In this case, since inexpensive base metals do not have heat resistance, noble metals are usually used as the electrode material. The electrode is formed as a thick film typically by a printing method. However, since a large amount of expensive precious gold is used, this is one of the causes of increasing costs. As a measure to overcome such economical disadvantages, it has been proposed to reduce the amount of electrodes used by making them thinner. However, the thinned IE electrode has many problems in terms of heat resistance.
941に電極薄膜とそれがついている基板・基材の熱膨
張率のちがいにより高温に昇温する過程で、あるいは昇
温後冷却する過程でひび割れ、剥離といった現象が起る
。第2に電極薄膜を高温処理するとある棟の金属ではそ
の蒸気圧により揮発し薄膜がさらに薄くなり抵抗が大き
くなり電極としての用を足さなくなる場合がある。第3
に電極薄膜を形成している金属材料がそれと面で接して
いる他の材料の中に熱拡散する場合があるということで
ある。これは厚膜中の粒子が比較的大きいのに対し、薄
膜ではその形成が原子状に近い状態で行われるからであ
る。Due to the difference in thermal expansion coefficient between the electrode thin film and the substrate/base material on which it is attached, phenomena such as cracking and peeling occur during the process of raising the temperature to a high temperature or during the process of cooling after raising the temperature. Second, when an electrode thin film is subjected to high temperature treatment, some metals may evaporate due to their vapor pressure, making the thin film even thinner and increasing its resistance, making it useless as an electrode. Third
This means that the metal material that forms the electrode thin film may diffuse heat into other materials that are in surface contact with it. This is because the particles in a thick film are relatively large, whereas in a thin film, the particles are formed in an almost atomic state.
以上のような電啄′4膜の耐熱性の問題点はバルクセラ
ミクスの電気、電子部品、デバイスにみられるのみなら
ず、薄膜型の電気、電子部品、デバイスを高温で使った
り、高温熱処理で作成する場合にもみられる。The above-mentioned problems with the heat resistance of Dentaku'4 films are not only seen in bulk ceramic electrical and electronic parts and devices, but also when thin film electrical and electronic parts and devices are used at high temperatures or subjected to high-temperature heat treatment. This can also be seen when creating.
以下、具体的な事例を示す。Specific examples are shown below.
耐熱性の絶縁基板上に電極薄膜を形成した後、強誘電体
のような酸化物薄膜を形成する場合、スパッター法では
基板を500℃以上の高温で10−3〜10−2Tor
r程度の減圧下におく必要がある。その場合、TI、A
tといった電極薄膜では揮発したり、熱拡散したりして
電極の電導性をそこなうという問題へを生じる。また他
の例として81基板上に電極薄膜をつけた状■で、水蒸
気酸化してsi基板にStO□層を形成する場合、約1
0000に加熱する。When forming an oxide thin film such as a ferroelectric material after forming an electrode thin film on a heat-resistant insulating substrate, the sputtering method involves heating the substrate at a temperature of 10-3 to 10-2 Torr at a high temperature of 500°C or higher.
It is necessary to keep it under reduced pressure of about r. In that case, TI, A
In the case of a thin electrode film such as T, a problem arises in that it volatilizes or thermally diffuses, impairing the conductivity of the electrode. As another example, when a StO□ layer is formed on a Si substrate by steam oxidation with an electrode thin film attached on an 81 substrate, approximately 1
Heat to 0000.
この二う々苛酷な条件下でAuの如き電極薄膜では揮発
する。ましてや多くの卑金属では酸化されて導電性を失
う。Under these two harsher conditions, electrode thin films such as Au will volatilize. Furthermore, many base metals are oxidized and lose their conductivity.
本発明は、約500℃以上、好ましくは550〜160
0℃の高温でしかも酸化性雰囲気あるいは減圧下の苛酷
な条件で耐久性を有し電気伝導性を損わない耐熱性電極
薄膜を提供することにある。In the present invention, the temperature is about 500°C or higher, preferably 550 to 160°C.
The object of the present invention is to provide a heat-resistant electrode thin film that has durability at a high temperature of 0° C. and under severe conditions such as an oxidizing atmosphere or reduced pressure, and does not impair electrical conductivity.
本発明に従って基板上にイリジウム、白金、ノ平ラジウ
ム、ルテニウム、ロジウムちるいはこれら2撞以上の薄
膜をスパッター法、蒸着法、CVD法などの4@形成法
により形成せしめてなる電極薄膜が提供される。According to the present invention, there is provided an electrode thin film formed by forming a thin film of iridium, platinum, flat radium, ruthenium, rhodium, or two or more of these on a substrate by a 4@ formation method such as sputtering, vapor deposition, or CVD. be done.
本発明で薄膜の厚さは電気伝導性、経渦性、デバイスに
おける電極の位置づけなどから決定されるが、一般に0
,01〜5μm、好ましくは0.05〜1μmの範囲で
ある。厚さが博すぎると導電性が悪くなシ抵抗が大きく
なったりし、−刃厚すぎると経済的でない。In the present invention, the thickness of the thin film is determined based on electrical conductivity, vorticity, positioning of electrodes in the device, etc., but is generally 0.
, 01 to 5 μm, preferably 0.05 to 1 μm. If the blade is too thick, the conductivity will be poor and the resistance will be high; if the blade is too thick, it will be uneconomical.
本発明の電極薄膜を設ける基板としては通常使用さnる
セラミックス、ガラス、単結晶薄膜などを挙げることが
できる。Examples of the substrate on which the electrode thin film of the present invention is provided include commonly used ceramics, glass, single crystal thin films, and the like.
電極r4膜はその作成条件あるいは基板との関係により
アモルファス状態にすることの他に、<111>配向結
晶膜、(100)配向結晶膜にすることも可能であるた
め、配向性薄膜作成に特に有用となる。The electrode r4 film can be made into an amorphous state depending on the production conditions or the relationship with the substrate, and it can also be made into a <111> oriented crystal film or a (100) oriented crystal film, so it is especially suitable for creating oriented thin films. Become useful.
本発明で開示さnた耐熱性’tel極薄膜の作成法とし
ては直流ス・母ツター法、高周波スフ9ツター法、高周
波マグネトロンスパッター法、真空蒸着法。Methods for producing the ultra-thin heat-resistant 'tel film disclosed in the present invention include a DC sputtering method, a high-frequency sputtering method, a high-frequency magnetron sputtering method, and a vacuum evaporation method.
電子ビーム蒸着法、 CVD法等の薄膜形成法がある。There are thin film forming methods such as electron beam evaporation and CVD.
スパッター法の場合、蒸発源であるターゲット材料とし
ては各々の金属を用いる。スパッターガスとしては放電
できるガスであるならばどのようなものでもかまわない
。通常アルゴン(Ar )を用いるが、酸素のような酸
化性ガスを含んでいても問題ない。更に、本発明の電極
薄膜は蒸着法、CVD法などの薄膜形成法を用い通常の
条件にもとづいて作成することができる。In the case of the sputtering method, each metal is used as the target material which is the evaporation source. Any sputtering gas may be used as long as it can generate a discharge. Argon (Ar) is usually used, but there is no problem even if it contains an oxidizing gas such as oxygen. Furthermore, the electrode thin film of the present invention can be created under normal conditions using a thin film forming method such as a vapor deposition method or a CVD method.
本発明の電極薄膜は高温で使用されたり、あるいは高温
熱処理を経るプロセスで作成される電気、電子部品、デ
バイスの電極として有用である。さらに本発明のML鶴
薄膜は印刷法でつくられる貢金属厚膜と比べてその使用
量が着るしく少なくてすむため経済的に有利であり、ま
た!極薄膜をつける基板を平滑にすれば平滑性の良好な
t′@となり、薄膜型の電気、電子部品、デ・々イスの
電極として好適である。The electrode thin film of the present invention is useful as an electrode for electrical or electronic parts or devices that are used at high temperatures or are created through a process that involves high-temperature heat treatment. Furthermore, the ML Tsuru thin film of the present invention is economically advantageous because the amount used is considerably less than the thick metal film produced by the printing method. If the substrate on which the ultra-thin film is applied is made smooth, it will have good smoothness, making it suitable for use as electrodes for thin-film electric and electronic parts and devices.
本発明で使用される[?薄膜材料はイリジウム、白金、
)やラジウム、ルテニウム、ロジウム等、好ましくはイ
リジウム、パラジウム、ルテニウム、ロジウム等単独で
用いる外に21以上組合わせて用いてもよい。2種以上
の組合せとしては、例えば白金−イリジウム、白金−パ
ラ・ゾウム、イリジウム−ルテニウム、白金−イリジウ
ム−ロジウム等を挙げることができる。[? Thin film materials include iridium, platinum,
), radium, ruthenium, rhodium, etc., preferably iridium, palladium, ruthenium, rhodium, etc. may be used alone or in combination of 21 or more. Examples of the combination of two or more types include platinum-iridium, platinum-parazoum, iridium-ruthenium, platinum-iridium-rhodium, and the like.
実施例1
鏡面仕上げした7937100面基板上に高周波マグネ
トロンスパッター法でイリジウム薄膜を形成した。スパ
ンター粂件は、基板温度300℃。Example 1 An iridium thin film was formed on a mirror-finished 7937100-sided substrate by high-frequency magnetron sputtering. The board temperature for the spanter is 300℃.
スパッターガスをアルがン2xlOTorr+スパッタ
ー人カパワー1〜5W/α2とした。イリジウム膜厚0
.25μmを作成した。そのX線回折図を添付図面に示
しているが、(111)配向結晶膜である。The sputtering gas was set to 2xlOTorr of aluminum + sputtering power of 1 to 5W/α2. Iridium film thickness 0
.. A thickness of 25 μm was prepared. The X-ray diffraction diagram is shown in the attached drawing, and it is a (111) oriented crystal film.
このイリジウム薄膜の導電性は良好で抵抗率10−50
・α以下であった。The conductivity of this iridium thin film is good, with a resistivity of 10-50.
・It was less than α.
このイリジウム薄膜がついた試料を10−2Torrの
減圧下、600℃に加熱しながら3時間保持した後、室
温まで冷却し大気中にとり出したがイリジウム薄膜の膜
厚、抵抗率はまったく変化していなかった。The sample with this iridium thin film was heated to 600°C under a reduced pressure of 10-2 Torr and held for 3 hours, then cooled to room temperature and taken out into the atmosphere, but the thickness and resistivity of the iridium thin film did not change at all. There wasn't.
実施例2
実施例1と同様な方法で作成されたイリジウム薄膜がつ
いた試料を空気中で7oo℃に3時間保持した。室温ま
で冷却したがイリジウム薄膜の膜厚結晶構造ともまった
く変らず、抵抗率も1o−50・1以下であった。Example 2 A sample with an iridium thin film prepared in the same manner as in Example 1 was held at 70°C in air for 3 hours. Although it was cooled to room temperature, the film thickness and crystal structure of the iridium thin film did not change at all, and the resistivity was 1o-50.1 or less.
実施例3
実施例1と同様な方法でシリコン100基板上にイリジ
ウム薄膜を形成した。次にその上にチタンvジルコン酸
ランタン鉛(PLZT )薄膜を形成した。Example 3 An iridium thin film was formed on a silicon 100 substrate in the same manner as in Example 1. Next, a titanium v lead lanthanum zirconate (PLZT) thin film was formed thereon.
PLZT薄膜の形成法は、スパッター法でPLZTをタ
ーグツトとし、基板温度300℃とし、アルゴンと酸素
の混合ガスをスパッターガスとし約2μmの厚さに堆積
させた。その後、空気中で700℃3時間保持しベロプ
スカイ11のPLZT薄模とした。このようにイリジウ
ム薄膜上でPLZTのスパッター、熱処理を行ったにも
拘らず、イリジウム4jlの膜厚、抵抗率はもとの状態
と同様であり、電極薄膜としての機能を保持していた。The PLZT thin film was formed by a sputtering method using PLZT as a target, a substrate temperature of 300° C., and a mixed gas of argon and oxygen as a sputtering gas to deposit it to a thickness of about 2 μm. Thereafter, it was held at 700° C. for 3 hours in air to form a PLZT thin model of Velopsky 11. Even though PLZT sputtering and heat treatment were performed on the iridium thin film in this way, the film thickness and resistivity of iridium 4jl were the same as in the original state, and the function as an electrode thin film was maintained.
実施例4
サファイア基板上に白金薄膜をスパッター法で形成した
。スフ2ツター条件は基板温反500℃、ターyットを
白金とし、アルゴンと酸素の混合ガスをスパッターガス
とし高周彼マグネトロンスパッター法で約0.4μの厚
さの白金薄膜を形成した。Example 4 A thin platinum film was formed on a sapphire substrate by sputtering. The following conditions were that the substrate temperature was 500° C., the temperature was platinum, and a mixed gas of argon and oxygen was used as the sputtering gas to form a platinum thin film with a thickness of about 0.4 μm by high-frequency magnetron sputtering.
このスパッター後の室温での白金薄膜は(111>配向
結晶膜で、抵抗率は10−50・α以下であった。The platinum thin film at room temperature after sputtering was a (111> oriented crystal film, and the resistivity was 10-50·α or less.
この試料を1O−2Torrの減圧下、700℃に3時
間保持した。室温まで冷却して大気中にとシ出したとこ
ろ膜厚は約0.05μmとなっていた。また抵抗率は約
10−40・信であった。This sample was held at 700°C for 3 hours under a reduced pressure of 10-2 Torr. When the film was cooled to room temperature and discharged into the atmosphere, the film thickness was approximately 0.05 μm. Further, the resistivity was about 10-40·cm.
実施例5
実施例1のイリジウムを79ラジウムにかえたほかは、
実施例1と同様な方法により、鏡面シリコン100面基
板上に・平ラジウム薄膜を形成した。Example 5 Except for changing the iridium in Example 1 to 79 radium,
A flat radium thin film was formed on a 100-sided mirror silicon substrate by the same method as in Example 1.
パラジウム薄膜の膜厚は0.1μmで、抵抗率は10−
50・αであった。形成されたパラジウム薄膜の試料を
10 Torrの減圧下、600℃に加熱しながら3
時間保持した後、減圧下、室温まで冷却し、大気中にと
シ出したが、パラジウム薄膜の膜厚変化はほとんどなく
、抵抗率は変化していなかった。The thickness of the palladium thin film is 0.1 μm, and the resistivity is 10-
It was 50.α. The formed palladium thin film sample was heated to 600°C under a reduced pressure of 10 Torr for 3
After holding for a certain period of time, the palladium thin film was cooled to room temperature under reduced pressure and discharged into the atmosphere, but there was almost no change in the thickness of the palladium thin film and no change in resistivity.
実施例6
実施例1のイリジウムをルテニウムにかえたほかは、実
施例1と同様な方法により、鏡面シリコン100面基板
上にルテニウム薄膜を形成した。Example 6 A ruthenium thin film was formed on a 100-sided mirror silicon substrate by the same method as in Example 1, except that iridium in Example 1 was replaced with ruthenium.
ルテニウム薄膜の膜厚は0.5μmで、抵抗率は10−
5Ω・1以下であった。形成されたルテニウム薄膜の試
料を10 Torrの減圧下、600℃に加熱しなが
ら3時間保持した後、減圧下、室温まで冷却し、大気中
にとり出したが、膜厚にはほとんど変化がなく、ルテニ
ウム薄膜の抵抗率にも変化は認められなかった。The thickness of the ruthenium thin film is 0.5 μm, and the resistivity is 10-
It was less than 5Ω·1. The formed ruthenium thin film sample was heated to 600°C under a reduced pressure of 10 Torr and held for 3 hours, then cooled to room temperature under reduced pressure and taken out into the atmosphere, but there was almost no change in the film thickness. No change was observed in the resistivity of the ruthenium thin film.
実施例7
実施例1のイリジウムをロジウムにかえたほかは、実施
例1と同様な方法により、シリコン100面基板上にロ
ジウム薄膜を形成した(膜厚0.2μm、抵抗率10
Ω・1以下)。次いで実施例3と同様な方法によシ、そ
の上に、チタン酸ジルコン改ランタン鉛″4@を形成し
たが、ロジウム薄模との化学的反応による組成変化や強
誘電体としての特性の劣化は認められず、電極としての
十分な機能を保持していることがわかった。Example 7 A rhodium thin film was formed on a 100-sided silicon substrate by the same method as in Example 1, except that iridium in Example 1 was replaced with rhodium (film thickness 0.2 μm, resistivity 10).
Ω・1 or less). Next, zircon titanate modified lanthanum lead "4@" was formed thereon in the same manner as in Example 3, but the composition changed due to the chemical reaction with the rhodium thin film and the properties as a ferroelectric material deteriorated. was not observed, indicating that it retained sufficient functionality as an electrode.
比較例1
鏡面仕上げされたシリコン100面基板上に真空蒸着法
で約0.5μmの厚さの金(Au)の1博嗅を形成した
。この状態の金薄膜の導電性は良好で抵抗率は10 Ω
・α以下であった。しかしながら金薄膜がついた試料を
10 Torrの減圧下、600℃に加熱しながら3
時間保持した後、室温まで冷却し大気中にとり出したと
ころ金薄膜の厚さは0.01μm以下になっていた。抵
抗率は10Ω・α以上となっていて、もはや電極薄膜と
しては使えない状態であった。Comparative Example 1 A gold (Au) layer with a thickness of about 0.5 μm was formed on a mirror-finished 100-sided silicon substrate by vacuum evaporation. The conductivity of the gold thin film in this state is good, with a resistivity of 10 Ω.
・It was less than α. However, while heating the sample with the gold thin film to 600°C under a reduced pressure of 10 Torr,
After being held for a period of time, it was cooled to room temperature and taken out into the atmosphere, and the thickness of the gold thin film was 0.01 μm or less. The resistivity was 10Ω·α or more, and it was no longer usable as an electrode thin film.
比較例2
サファイア基板上にTi薄膜を電子ビーム蒸着法で約0
.2μmの厚さに堆積させた。抵抗率は約10−5Ωφ
1以下であった。この試料を10−2Torrの減圧下
、600℃で3時間保持した。室温まで冷却後、大気圧
にとり出したところ抵抗率は10Ω・α以上でめった。Comparative Example 2 A thin Ti film was deposited on a sapphire substrate using an electron beam evaporation method.
.. A thickness of 2 μm was deposited. Resistivity is approximately 10-5Ωφ
It was 1 or less. This sample was held at 600° C. for 3 hours under a reduced pressure of 10 −2 Torr. After cooling to room temperature, it was taken out to atmospheric pressure, and the resistivity was found to be 10Ω·α or more.
図面は本発明の実施例1のイリジウム薄膜のX線回折図
である。The drawing is an X-ray diffraction diagram of the iridium thin film of Example 1 of the present invention.
Claims (3)
ウム、ロジウムあるいはこれら2種以上の薄膜をスパッ
ター法、蒸着法、CVD法などの薄膜形成法により形成
せしめてなる電極薄膜。(1) An electrode thin film formed by forming a thin film of iridium, platinum, palladium, ruthenium, rhodium, or two or more of these on a substrate by a thin film forming method such as sputtering, vapor deposition, or CVD.
範囲第1項記載の電極薄膜。(2) The electrode thin film according to claim 1, wherein the thin film has a thickness in the range of 0.01 to 5 μm.
範囲第1項記載の電極薄膜。(3) The electrode thin film according to claim 1, wherein the thin film has a thickness in the range of 0.05 to 1 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6487886A JPS62222616A (en) | 1986-03-25 | 1986-03-25 | Heat-resistant electrode thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6487886A JPS62222616A (en) | 1986-03-25 | 1986-03-25 | Heat-resistant electrode thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62222616A true JPS62222616A (en) | 1987-09-30 |
Family
ID=13270817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6487886A Pending JPS62222616A (en) | 1986-03-25 | 1986-03-25 | Heat-resistant electrode thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62222616A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0387055A (en) * | 1989-08-30 | 1991-04-11 | Nec Corp | Thin film capacitor and manufacture thereof |
JPH03253065A (en) * | 1990-03-01 | 1991-11-12 | Nec Corp | Thin-film capacitor and its manufacture |
JPH03257857A (en) * | 1990-03-07 | 1991-11-18 | Nec Corp | Thin film capacitor and manufacture thereof |
JPH03257858A (en) * | 1990-03-07 | 1991-11-18 | Nec Corp | Thin film capacitor |
US6091099A (en) * | 1996-11-14 | 2000-07-18 | Kabushiki Kaisha Toshiba | Semiconductor device with tantalum and ruthenium |
JP2002134710A (en) * | 1994-01-13 | 2002-05-10 | Rohm Co Ltd | Dielectric capacitor |
JP2002261252A (en) * | 1994-01-13 | 2002-09-13 | Rohm Co Ltd | Ferroelectric capacitor |
US6460243B1 (en) | 1999-11-22 | 2002-10-08 | International Business Machines Corporation | Method of making low stress and low resistance rhodium (RH) leads |
JP2006319357A (en) * | 1994-01-13 | 2006-11-24 | Rohm Co Ltd | Process for fabricating dielectric capacitor |
JP2006319358A (en) * | 1994-01-13 | 2006-11-24 | Rohm Co Ltd | Ferroelectric capacitor and its fabrication process |
-
1986
- 1986-03-25 JP JP6487886A patent/JPS62222616A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0387055A (en) * | 1989-08-30 | 1991-04-11 | Nec Corp | Thin film capacitor and manufacture thereof |
JPH03253065A (en) * | 1990-03-01 | 1991-11-12 | Nec Corp | Thin-film capacitor and its manufacture |
JPH03257857A (en) * | 1990-03-07 | 1991-11-18 | Nec Corp | Thin film capacitor and manufacture thereof |
JPH03257858A (en) * | 1990-03-07 | 1991-11-18 | Nec Corp | Thin film capacitor |
JP2002134710A (en) * | 1994-01-13 | 2002-05-10 | Rohm Co Ltd | Dielectric capacitor |
JP2002261252A (en) * | 1994-01-13 | 2002-09-13 | Rohm Co Ltd | Ferroelectric capacitor |
JP2006319357A (en) * | 1994-01-13 | 2006-11-24 | Rohm Co Ltd | Process for fabricating dielectric capacitor |
JP2006319358A (en) * | 1994-01-13 | 2006-11-24 | Rohm Co Ltd | Ferroelectric capacitor and its fabrication process |
US6091099A (en) * | 1996-11-14 | 2000-07-18 | Kabushiki Kaisha Toshiba | Semiconductor device with tantalum and ruthenium |
US6326316B1 (en) | 1996-11-14 | 2001-12-04 | Kabushiki Kaisha Toshiba | Method of manufacturing semiconductor devices |
US6460243B1 (en) | 1999-11-22 | 2002-10-08 | International Business Machines Corporation | Method of making low stress and low resistance rhodium (RH) leads |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05507115A (en) | Method and structure for forming alpha Ta in thin film form | |
JPS62216352A (en) | Manufacture of semiconductor device | |
JPS62222616A (en) | Heat-resistant electrode thin film | |
JPH01118760A (en) | Sensor | |
US4690872A (en) | Ceramic heater | |
JP3304541B2 (en) | Method of forming ohmic electrode | |
JP4362586B2 (en) | High heat-resistant conductive thin film manufacturing method, high heat-resistant conductive thin film obtained by the manufacturing method, laminated film, and device including the laminated film | |
JP2646246B2 (en) | Method for producing gas-sensitive membrane element | |
JPH05175157A (en) | Method for forming titanium compound film | |
KR960002673A (en) | Metal thin film formation method of a semiconductor device | |
JPH0417667A (en) | Method for forming thin films on ceramic substrates | |
JP2843982B2 (en) | Thermal head | |
JP3282700B2 (en) | Coating film formation method | |
JPS6120358A (en) | Substrate for mounting semiconductor elements | |
JPH0845651A (en) | Multi-layer ceramic heater | |
JPH03131001A (en) | Resistance temperature sensor | |
JPH01321615A (en) | Electrode | |
JPH0882613A (en) | Manufacture for electrode film for sensor | |
JPS62241301A (en) | Temperature sensitive resistance element and manufacture of the same | |
JPS5837988A (en) | Electric insulating board | |
JP2001240984A (en) | Conductive film, composition for forming conductive film, method for forming conductive film, and circuit board | |
JPH03165009A (en) | Manufacture of temperature sensitive element | |
JPS6040682B2 (en) | Manufacturing method of thin film resistor | |
JPH0757903A (en) | Electrode film for sensor | |
JPH04337276A (en) | Multilayer ceramic heater |