[go: up one dir, main page]

JPS62221856A - Spherical motor - Google Patents

Spherical motor

Info

Publication number
JPS62221856A
JPS62221856A JP6438786A JP6438786A JPS62221856A JP S62221856 A JPS62221856 A JP S62221856A JP 6438786 A JP6438786 A JP 6438786A JP 6438786 A JP6438786 A JP 6438786A JP S62221856 A JPS62221856 A JP S62221856A
Authority
JP
Japan
Prior art keywords
spherical
rotor
permanent magnet
winding
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6438786A
Other languages
Japanese (ja)
Other versions
JPH0714269B2 (en
Inventor
Kazumasa Kaneko
和政 金子
Ichiro Yamada
一郎 山田
Kiyoshi Itao
清 板生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61064387A priority Critical patent/JPH0714269B2/en
Publication of JPS62221856A publication Critical patent/JPS62221856A/en
Publication of JPH0714269B2 publication Critical patent/JPH0714269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To miniaturize and lighten a multi-degree-of-freedom actuator by arranging plural sets of windings on a spherical surface and controlling an electric current of each winding. CONSTITUTION:A spherical motor is composed of a rotor 3 having spherical magnetic poles on the outer periphery by the use of a permanent magnet 1 and a yoke 2, a stator 8 having slots provided with winding groups 4-7 and a spherical bearing 11 rotatably supporting an output shaft 10 united in an integral body with the rotor 3 at three degrees of freedom. In this manner, a torque T about three axes X, Y, Z can freely be controlled by adjustment of an electric current of four windings according to the inclinations theta, phi of the output shaft 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマニピュレータなどの多自由度運動機構に用い
られる多自由度アクチュエータに係り、特に小形にして
簡素な構造により3自由度の運動を実現する球面モータ
の構成に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a multi-degree-of-freedom actuator used in a multi-degree-of-freedom movement mechanism such as a manipulator, and in particular realizes movement in three degrees of freedom with a small and simple structure. This invention relates to the configuration of a spherical motor.

〔従来の技術〕[Conventional technology]

多自由度機構を構成する場合、一般には、一つの自由度
に対して一つのアクチュエータを配置し。
When configuring a multi-degree-of-freedom mechanism, one actuator is generally arranged for one degree of freedom.

複雑な伝達機構を用いて多自由度の運動を実現している
。このため、伝達機構の弾性変形やガタの影響で機械的
な位置決め精度が劣化したり、機構全体が大型で重くな
るという問題が生じている。
Motion with multiple degrees of freedom is achieved using a complex transmission mechanism. For this reason, problems arise in that the mechanical positioning accuracy deteriorates due to the influence of elastic deformation and play in the transmission mechanism, and that the entire mechanism becomes large and heavy.

また、先端のアクチュエータの重斌が根元のアクチュエ
ータの負荷となり、実際の負荷に対して必要以上に大型
のアクチュエータを用いなければならないことも多い。
Further, the weight of the actuator at the tip becomes a load on the actuator at the base, and it is often necessary to use an actuator that is larger than necessary for the actual load.

これに対し、アクチュエータ自体が多自由度できれば、
これらの問題点は解決し、機構の簡素化、小形・軽量化
が可能となる。
On the other hand, if the actuator itself can have multiple degrees of freedom,
These problems can be solved, and the mechanism can be simplified, made smaller, and lighter.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

現在、一般に市販されているモータの大多数は回転また
は直進の1自由度形のものである。従来の多自由度アク
チュエータの代表的な例としては、Sa%tyerの原
理に基づ<XY形の平面ステップモータがあり、これは
XYNETIC8社が開発した自動製図機に実際に用い
られている。また、2方向搬送用リニアモータ誘導モー
タや直進と回転の2方向に駆動する円筒形ステップモー
タ等の研究も進められているが、これらに関しては、ま
た、実用化されていない。一方、3自由度形のものにつ
いては、これまでにも、回転様界を利用した3次元モー
タや形状記憶合金や電歪素子などの機能材料を用いた球
面アクチュエータなどが提案されているが、いずれもア
イデア階段で、まだ具体化されていない現状である。
Currently, the majority of motors on the market are of the one-degree-of-freedom type, either rotating or linear. A typical example of a conventional multi-degree-of-freedom actuator is an XY-shaped planar step motor based on the Sa%tyer principle, which is actually used in an automatic drafting machine developed by XYNETIC8. Further, research is progressing on linear motor induction motors for two-way conveyance, cylindrical step motors that drive in two directions (straight motion and rotation), etc., but these have not yet been put to practical use. On the other hand, for three-degree-of-freedom types, three-dimensional motors that utilize rotational fields and spherical actuators that use functional materials such as shape memory alloys and electrostrictive elements have been proposed. All of these ideas are still on the idea ladder and have not yet been materialized.

本発明の目的は、多自由度機構の簡素化、小形・軽量化
に必要な多自由度アクチュエータを実現すべく、小形か
つ簡素な構造で、直交する3軸まわりに回転可能な3自
由度の球面モータを提供することにある。
The purpose of the present invention is to realize a multi-degree-of-freedom actuator that is necessary for simplifying the multi-degree-of-freedom mechanism and reducing its size and weight. The purpose is to provide a spherical motor.

〔問題点を解決するための手段及び作用〕本発明による
球面モータは、複数組の巻線を球面上に配置し、各巻線
の電流を制御することにより、直交する3軸まわりのト
ルクにロータを自在に生じさせる構造としたことを特徴
としている。
[Means and effects for solving the problem] The spherical motor according to the present invention has multiple sets of windings arranged on a spherical surface and controls the current of each winding, thereby adjusting the rotor to torque around three orthogonal axes. It is characterized by a structure that allows it to occur freely.

〔実施例〕〔Example〕

以下、本発明の一実施例について図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の球面モータの一実施例を示す構造断面
図であり、第2図は第1図のA−A’断面図である。図
中、1は永久磁石、2は継鉄であり、永久磁石1および
継鉄2によって外周に球面状の磁極を有するロータ3を
構成する。4〜7は巻線群であり、これらの巻線群は複
数組の巻線から成っている。1組の巻線は、半球面を4
分割する形状の4個の巻線から成っており、第2図にお
いては、a ” dの4組の巻線を示している。8は巻
線4〜7を設けたスロットを有するステータで一3= あり、ロータ3と\もに図中の点線9のような磁路を形
成する。10はロータ3と一体になった出力軸であり、
その一端は球面軸受11を介して回転自在に支持されて
いる。第3図は第2図の巻線4〜7の構造を示す図であ
り、4〜7の巻線群を構成する4組の巻線a ” dが
少しづつずれて配置されている。
FIG. 1 is a structural sectional view showing one embodiment of the spherical motor of the present invention, and FIG. 2 is a sectional view taken along the line AA' in FIG. In the figure, 1 is a permanent magnet, and 2 is a yoke. The permanent magnet 1 and the yoke 2 constitute a rotor 3 having spherical magnetic poles on the outer periphery. 4 to 7 are winding groups, and these winding groups are made up of multiple sets of windings. One set of windings covers 4 hemispheres.
It consists of four divided windings, and in Fig. 2, four sets of windings a" and d are shown. 8 is a stator having slots in which windings 4 to 7 are installed. 3 = Yes, the rotor 3 and \ form a magnetic path as indicated by the dotted line 9 in the figure. 10 is the output shaft integrated with the rotor 3,
One end thereof is rotatably supported via a spherical bearing 11. FIG. 3 is a diagram showing the structure of the windings 4 to 7 in FIG. 2, in which four sets of windings a'' d constituting the winding groups 4 to 7 are arranged slightly offset from each other.

第4図は本発明の球面モータの動作を説明するための図
であり、第5図はロータとステータとの位置関係を示す
ものである。
FIG. 4 is a diagram for explaining the operation of the spherical motor of the present invention, and FIG. 5 shows the positional relationship between the rotor and the stator.

次に、第4図にしたがって本球面モータの動作を説明す
る。同図において、4a〜7aは第3図に示す1組の巻
線である。また、点線12はロータ3の外周部分を示し
ており、磁界が作用する位置を示している。このとき、
点線12と巻線4a〜7aの交点13a〜13dが力の
作用点となる。
Next, the operation of the present spherical motor will be explained according to FIG. In the figure, 4a to 7a are a set of windings shown in FIG. Further, a dotted line 12 indicates the outer peripheral portion of the rotor 3, and indicates a position where the magnetic field acts. At this time,
Intersections 13a to 13d between the dotted line 12 and the windings 4a to 7a are points of application of force.

そこで1巻線が形成する球面の中心0を原点として、ス
テータに固定した直角座標系xYzをとり、その座標系
での力の作用点13a〜13dの位置ベクトルをr1〜
r 4 +また、各作用点に作用する力ベクトルをf□
〜f4とすると、XYZ3軸まわりのトルクTは、第1
式で与えられる。
Therefore, we take a rectangular coordinate system xYz fixed to the stator with the center 0 of the spherical surface formed by one winding as the origin, and the position vectors of the force application points 13a to 13d in that coordinate system are expressed as r1 to
r 4 + Also, the force vector acting on each point of application is f□
~ f4, the torque T around the three axes of XYZ is the first
It is given by Eq.

たゾし、τ8.τ9.τ2はそれぞれトルクTのX軸、
Y軸、2軸まわりのトルク成分を示す。
Tazoshi, τ8. τ9. τ2 is the X axis of torque T,
It shows the torque components around the Y-axis and two axes.

このとき各作用点に生じる力f□〜f4の大きさは、各
点の磁束密度Bと、その点で磁界を横切る電流i□〜i
4の大きさによって決まることは公知の事実であり、例
えば第2式で与えられる。
At this time, the magnitude of the force f□~f4 generated at each point of application is determined by the magnetic flux density B at each point and the current i□~i that crosses the magnetic field at that point.
It is a well-known fact that it is determined by the size of 4, and is given by, for example, the second equation.

Ifll=NβB (i□−12)      (2)
だゾし、Nは巻線の本数、Qは巻線が磁界を横切る長さ
である。したがって、4つの巻線電流i工〜i4の値に
よって、f1〜f4の値を任意に調整することができる
Ifll=NβB (i□-12) (2)
where N is the number of windings and Q is the length that the windings cross the magnetic field. Therefore, the values of f1 to f4 can be arbitrarily adjusted by the values of the four winding currents i to i4.

また、r1〜r4は出力軸の傾き角(例えばオイラー角
等)を用いて幾何学的に求めることができる。例えば、
第5図に示すZ PI軸を出力軸10とし、この2”軸
の傾き角をX軸まわりの回転角θと、この回転をしたあ
とのx’ y’ z’座標系のY′軸まわりの回転角φ
で表すと、r工〜r4は、第3式のようにOとφの関数
h□で表される。
Further, r1 to r4 can be determined geometrically using the inclination angle (for example, Euler angle) of the output shaft. for example,
The Z PI axis shown in Figure 5 is the output shaft 10, the inclination angle of this 2'' axis is the rotation angle θ around the X axis, and the rotation angle around the Y' axis of the x'y'z' coordinate system after this rotation. rotation angle φ
Then, r-r4 is expressed as a function h□ of O and φ, as shown in the third equation.

たゾし、Xi、yj+  Zjは、位置ベクトルr、の
XYZ成分を示す。
In addition, Xi,yj+Zj indicates the XYZ components of the position vector r.

上記第1式から第3式を用いると、τ8は、第4式のよ
うになる。
Using the first to third equations above, τ8 becomes as shown in the fourth equation.

τ8=Z2f2−24f4 =NnB(zz”bz  13)  Z4’(14xx
))  (4)同様に、τ9.τ2については第5式お
よび第6式のようになる。
τ8=Z2f2-24f4 =NnB(zz"bz 13) Z4'(14xx
)) (4) Similarly, τ9. Regarding τ2, the fifth and sixth equations are obtained.

ry=NQB (za−(i4−ia)−Zl・(i2
−il))  (5)τZ=NQB (X4”(14i
t)  Xi”(121a))十Nl1B (yt・(
1211)  3’a・(j+−1a))  (6)先
に説明したように、Xjs yjy Zjはθとφの関
数として与えられる。したがって出力軸の傾き角0.φ
に応じて4つの巻線電流10〜i4を調節すれば、XY
Z3軸まわりのトルクTを自在に制御することが可能と
なる。
ry=NQB (za-(i4-ia)-Zl・(i2
-il)) (5)τZ=NQB (X4”(14i
t) Xi” (121a)) 10Nl1B (yt・(
1211) 3'a·(j+-1a)) (6) As explained earlier, Xjs yjy Zj is given as a function of θ and φ. Therefore, the inclination angle of the output shaft is 0. φ
By adjusting the four winding currents 10 to i4 according to
It becomes possible to freely control the torque T around the Z3 axis.

いないが、第3図に示したように、このような巻線を複
数組(4a〜7 a 、 4 b〜7 b、 4 c〜
7c、4d〜7d)設け、Z軸まわりの変位に基づいて
励磁する巻線を切り替えることにより、2軸まわりに滑
らかにかつ無限に回転させることが可能である。
However, as shown in Fig. 3, multiple sets of such windings (4a to 7a, 4b to 7b, 4c to
7c, 4d to 7d), and by switching the exciting winding based on the displacement around the Z axis, it is possible to rotate smoothly and infinitely around the two axes.

なお、上記の動作は、ロータ側に巻線を設け、ステータ
側に永久磁石もしくは永久磁石と継鉄からなる球面状の
磁極を設けた構成としても、全く同様であることはもち
ろんである。
It goes without saying that the above operation is exactly the same even if the winding is provided on the rotor side and the permanent magnet or spherical magnetic pole made of a permanent magnet and a yoke is provided on the stator side.

第6図はロータとステータの相対位置検出手段を設けた
本発明の球面モータの他の実施例を示す。
FIG. 6 shows another embodiment of the spherical motor of the present invention, which is provided with means for detecting the relative position of the rotor and stator.

図中、14は球面滑り軸受、15は回転軸受、16は支
持部材、17は回転検出用の光学式エンコーダ、18は
出力軸10の傾きを検出するための表面に歪みゲージを
貼った板バネである。この板バネ18はステータ8と支
持材16の間に球面滑り軸受14を介して設けられてお
り、また、光学式エンコーダ17は支持材16と出力軸
10との一/− 間に回転軸15を介して設けられている。このような2
重構造とすることによって、出力軸の傾き角O2φと出
力軸の回転とを分離して検出することができ、さらには
、出力軸の傾き角θ、φに応じて各巻線の電流を制御す
ることにより、出力軸の傾きによる駆動トルクの変動を
補償することが可能となる。
In the figure, 14 is a spherical sliding bearing, 15 is a rotating bearing, 16 is a support member, 17 is an optical encoder for detecting rotation, and 18 is a leaf spring with a strain gauge attached to the surface for detecting the inclination of the output shaft 10. It is. This leaf spring 18 is provided between the stator 8 and the support member 16 via a spherical sliding bearing 14, and the optical encoder 17 is provided between the support member 16 and the output shaft 10 with a rotary shaft 15 between the support member 16 and the output shaft 10. provided through. 2 like this
By having a multilayer structure, the tilt angle O2φ of the output shaft and the rotation of the output shaft can be detected separately, and furthermore, the current in each winding can be controlled according to the tilt angles θ and φ of the output shaft. This makes it possible to compensate for fluctuations in drive torque due to the inclination of the output shaft.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明に係る構造の球面
モータによれば、比較的簡素な構造で容易に3自由度の
球面モータを実現することができ、例えば、マニピュレ
ータの関節などに応用できる。
As described in detail above, according to the spherical motor having the structure according to the present invention, it is possible to easily realize a spherical motor with three degrees of freedom with a relatively simple structure. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の球面モータの実施例を示す図、第2図
は第1図のA−A’断面図、第3図は第1図の球面モー
タにおける巻線の構造図、第4図は本発明の球面モータ
の動作を説明するための動作原理図、第5図は出力軸の
傾きを定義する説明図、第6図は本発明の球面モータの
他の実施例の一部断面図である。 1・・・永久磁石、 2・・・継鉄、 3・・・ロータ
、4a〜7d・・・球面状巻線、 8・・・ステータ、
9・・・磁路、  10・・・出力軸、  11・・・
球面軸受、]、 3 a〜13d・・・力の作用点、 
 14・・・球面滑り軸受、 15・・・回転軸受、 
 16・・・支持部材、17・・・ロータリエンコーダ
、18・・・板バネ。 第  1  図 第  2  図 9    5g 4i − 87+、 71.4c /               ゛     1 永
久・a(6s”  ”   、、4.− N215、−3 Sa“ 61    0    く a ぺ 弧  b X村
Fig. 1 is a diagram showing an embodiment of the spherical motor of the present invention, Fig. 2 is a sectional view taken along the line AA' in Fig. 1, Fig. 3 is a structural diagram of the windings in the spherical motor shown in Fig. The figure is an operating principle diagram for explaining the operation of the spherical motor of the present invention, Figure 5 is an explanatory diagram defining the inclination of the output shaft, and Figure 6 is a partial cross section of another embodiment of the spherical motor of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1... Permanent magnet, 2... Yoke, 3... Rotor, 4a-7d... Spherical winding, 8... Stator,
9... Magnetic path, 10... Output shaft, 11...
Spherical bearing, ], 3 a to 13 d... point of force application,
14... Spherical sliding bearing, 15... Rotating bearing,
16... Support member, 17... Rotary encoder, 18... Leaf spring. Fig. 1 Fig. 2 Fig. 9 5g 4i - 87+, 71.4c / ゛ 1 permanent a (6s"", 4. - N215, -3 Sa" 61 0 Kua Perak b X Village

Claims (3)

【特許請求の範囲】[Claims] (1)球面上に該球面を複数に分割する形状に配置され
た複数の巻線を持つステータと、永久磁石もしくは永久
磁石と継鉄からなる球面状の磁極を有するロータと、該
ロータを上記ステータと微小空隙を介して回転自在に支
持する球面軸受とを有し、上記ロータの永久磁石から生
じる磁界中で上記ステータの各巻線に流れる電流を制御
することにより、上記ロータに任意の方向の駆動トルク
を生じさせることを特徴とする球面モータ。
(1) A stator having a plurality of windings arranged on a spherical surface in a shape that divides the spherical surface into a plurality of parts, a rotor having spherical magnetic poles made of a permanent magnet or a permanent magnet and a yoke, and the rotor as described above. It has a stator and a spherical bearing rotatably supported through a microgap, and by controlling the current flowing through each winding of the stator in the magnetic field generated from the permanent magnet of the rotor, the rotor can be rotated in any direction. A spherical motor characterized by generating driving torque.
(2)特許請求の範囲第1項記載の球面モータについて
、ロータ側に巻線を設け、ステータ側に永久磁石もしく
は永久磁石と継鉄からなる球面状の磁極を設けたことを
特徴とする球面モータ。
(2) A spherical motor according to claim 1, characterized in that a winding is provided on the rotor side and a spherical magnetic pole made of a permanent magnet or a permanent magnet and a yoke is provided on the stator side. motor.
(3)特許請求の範囲第1項もしくは第2項の球面モー
タにおいて、ロータの3次元的な位置信号を検出する手
段を設け、各巻線に供給する電流を該位置信号に応じて
切り替ることを特徴とする球面モータ。
(3) In the spherical motor according to claim 1 or 2, a means for detecting a three-dimensional position signal of the rotor is provided, and the current supplied to each winding is switched in accordance with the position signal. A spherical motor featuring
JP61064387A 1986-03-22 1986-03-22 Spherical motor Expired - Fee Related JPH0714269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61064387A JPH0714269B2 (en) 1986-03-22 1986-03-22 Spherical motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61064387A JPH0714269B2 (en) 1986-03-22 1986-03-22 Spherical motor

Publications (2)

Publication Number Publication Date
JPS62221856A true JPS62221856A (en) 1987-09-29
JPH0714269B2 JPH0714269B2 (en) 1995-02-15

Family

ID=13256856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61064387A Expired - Fee Related JPH0714269B2 (en) 1986-03-22 1986-03-22 Spherical motor

Country Status (1)

Country Link
JP (1) JPH0714269B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526774A2 (en) * 1991-07-31 1993-02-10 Mitsubishi Jukogyo Kabushiki Kaisha Electric motor having a spherical rotor and its application apparatus
FR2786311A1 (en) * 1998-11-20 2000-05-26 Moving Magnet Tech Bi-directional actuator for positioning working organ in direction along two degrees of freedom has stator that defines first and second gap to provide displacement of the magnet in two independent axes
WO2004011824A1 (en) 2002-07-25 2004-02-05 Ecchandes Inc. Rotation system with three degree of freedom and application of the same
US6909205B2 (en) * 1999-12-22 2005-06-21 Engineering Matters, Inc. Motor assembly allowing output in multiple degrees of freedom
JP2007097267A (en) * 2005-09-27 2007-04-12 Sumitomo Heavy Ind Ltd Multi-freedom actuator
JP2008212912A (en) * 2007-03-02 2008-09-18 Takahito Imagawa Two-dimensional resonance vibration motor
JP2009130957A (en) * 2007-11-20 2009-06-11 Osaka Univ Multi-degree-of-freedom electromagnetic actuator
JP2010057226A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Actuator
JP2010207065A (en) * 2009-03-06 2010-09-16 Sinfonia Technology Co Ltd Electromagnetic actuator, drive device for the electromagnetic actuator, drive method thereof and device mounted with the electromagnetic actuator
US20110273052A1 (en) * 2009-11-06 2011-11-10 Electric Gorilla, LLC Dynamoelectric device
JP2015189272A (en) * 2014-03-27 2015-11-02 株式会社ミツバ wiper system control method and wiper system
JP2015189273A (en) * 2014-03-27 2015-11-02 株式会社ミツバ wiper system
CN107911060A (en) * 2017-12-19 2018-04-13 天津大学 A kind of permanent magnetism spherical motor stator coil motivational techniques
JP2019005852A (en) * 2017-06-26 2019-01-17 日本信号株式会社 Robot mechanism and communication robot
CN109802513A (en) * 2019-01-31 2019-05-24 河北科技大学 P-m rotor drive-type multifreedom motion motor
WO2021243515A1 (en) * 2020-06-01 2021-12-09 大连理工大学 Electromagnetic driving two-degrees of freedom spherical robot wrist and control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100953385B1 (en) * 2008-02-14 2010-04-20 한국과학기술연구원 Rigidity generator using combined application of permanent magnet and electromagnet and joint of robot manipulator
JP6467568B2 (en) * 2017-02-24 2019-02-20 岡部 豊 Magnetic balancer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204252A (en) * 1984-03-28 1985-10-15 Agency Of Ind Science & Technol Three-dimensional motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204252A (en) * 1984-03-28 1985-10-15 Agency Of Ind Science & Technol Three-dimensional motor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526774A2 (en) * 1991-07-31 1993-02-10 Mitsubishi Jukogyo Kabushiki Kaisha Electric motor having a spherical rotor and its application apparatus
FR2786311A1 (en) * 1998-11-20 2000-05-26 Moving Magnet Tech Bi-directional actuator for positioning working organ in direction along two degrees of freedom has stator that defines first and second gap to provide displacement of the magnet in two independent axes
WO2000031758A1 (en) * 1998-11-20 2000-06-02 Moving Magnet Technologies (S.A.) Bidirectional actuators
US6909205B2 (en) * 1999-12-22 2005-06-21 Engineering Matters, Inc. Motor assembly allowing output in multiple degrees of freedom
WO2004011824A1 (en) 2002-07-25 2004-02-05 Ecchandes Inc. Rotation system with three degree of freedom and application of the same
JP4641237B2 (en) * 2005-09-27 2011-03-02 住友重機械工業株式会社 Multi-degree-of-freedom actuator
JP2007097267A (en) * 2005-09-27 2007-04-12 Sumitomo Heavy Ind Ltd Multi-freedom actuator
JP2008212912A (en) * 2007-03-02 2008-09-18 Takahito Imagawa Two-dimensional resonance vibration motor
JP2009130957A (en) * 2007-11-20 2009-06-11 Osaka Univ Multi-degree-of-freedom electromagnetic actuator
JP2010057226A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Actuator
JP2010207065A (en) * 2009-03-06 2010-09-16 Sinfonia Technology Co Ltd Electromagnetic actuator, drive device for the electromagnetic actuator, drive method thereof and device mounted with the electromagnetic actuator
US20110273052A1 (en) * 2009-11-06 2011-11-10 Electric Gorilla, LLC Dynamoelectric device
US8816557B2 (en) * 2009-11-06 2014-08-26 Electric Gorilla, LLC Dynamoelectric device
JP2015189273A (en) * 2014-03-27 2015-11-02 株式会社ミツバ wiper system
JP2015189272A (en) * 2014-03-27 2015-11-02 株式会社ミツバ wiper system control method and wiper system
JP2019005852A (en) * 2017-06-26 2019-01-17 日本信号株式会社 Robot mechanism and communication robot
CN107911060A (en) * 2017-12-19 2018-04-13 天津大学 A kind of permanent magnetism spherical motor stator coil motivational techniques
CN107911060B (en) * 2017-12-19 2020-04-21 天津大学 A kind of permanent magnet spherical motor stator coil excitation method
CN109802513A (en) * 2019-01-31 2019-05-24 河北科技大学 P-m rotor drive-type multifreedom motion motor
CN109802513B (en) * 2019-01-31 2021-06-08 河北科技大学 Permanent magnet rotor driving type multi-degree-of-freedom motion motor
WO2021243515A1 (en) * 2020-06-01 2021-12-09 大连理工大学 Electromagnetic driving two-degrees of freedom spherical robot wrist and control method thereof
US11446814B2 (en) 2020-06-01 2022-09-20 Dalian University Of Technology Electromagnetic drive spherical robotic wrist with two degrees of freedom and control method therefor

Also Published As

Publication number Publication date
JPH0714269B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JPS62221856A (en) Spherical motor
KR100954772B1 (en) Spherical motor
US4683391A (en) Magnetically floating actuator having angular positioning function
US6003230A (en) Magnetic positioner having a single moving part
JPS6176239A (en) Xy table with linear motor
US4642539A (en) Torque motor with unlimited angular excursion
WO2004011824A1 (en) Rotation system with three degree of freedom and application of the same
US10447120B2 (en) Motor, gimbal and mechanical arm having same
JP3712073B2 (en) Spiral linear motor
JPH0685630B2 (en) Three-dimensional motor
CN109229424B (en) A multi-degree-of-freedom spherical electric magnetic levitation momentum wheel
CN109450218B (en) Spherical motor based on magnetic resistance minimum principle
US8803467B2 (en) Partial arc curvilinear direct drive servomotor
EP0278113B1 (en) Movable coil driving unit
JP5488131B2 (en) Electromagnetic actuator
US4556828A (en) Electric motor adapted to permit translational motion between field and armature
JPH0734639B2 (en) 3 degrees of freedom DC motor
JP2003116255A (en) Drive apparatus and lens drive mechanism
US20210006107A1 (en) Spherical electromagnetic machine with two degrees of unconstrained rotational freedom
JP2014093876A (en) Actuator
CN209105007U (en) Spherical motor based on magnetic resistance minimum principle
KR100401412B1 (en) Brushless DC motor with 3 Degrees of Freedom
JPS59162763A (en) Spherical motor
JPH0591710A (en) Linear motor for swing operation
WO2024069915A1 (en) Actuator and workpiece transfer robot comprising same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees