JPS62220183A - Culture device for fine alga - Google Patents
Culture device for fine algaInfo
- Publication number
- JPS62220183A JPS62220183A JP6302186A JP6302186A JPS62220183A JP S62220183 A JPS62220183 A JP S62220183A JP 6302186 A JP6302186 A JP 6302186A JP 6302186 A JP6302186 A JP 6302186A JP S62220183 A JPS62220183 A JP S62220183A
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- gas
- pipe
- waterway
- air lift
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 226
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 56
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 239000001569 carbon dioxide Substances 0.000 claims description 111
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 111
- 238000002347 injection Methods 0.000 claims description 22
- 239000007924 injection Substances 0.000 claims description 22
- 238000011144 upstream manufacturing Methods 0.000 claims description 17
- 238000012258 culturing Methods 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- 238000005192 partition Methods 0.000 claims description 8
- 238000009423 ventilation Methods 0.000 claims description 7
- 238000003756 stirring Methods 0.000 abstract description 4
- 241000195493 Cryptophyta Species 0.000 abstract description 2
- 235000011089 carbon dioxide Nutrition 0.000 abstract 4
- 101000927062 Haematobia irritans exigua Aquaporin Proteins 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 99
- 239000007788 liquid Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000005273 aeration Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 108010063955 thrombin receptor peptide (42-47) Proteins 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/18—Open ponds; Greenhouse type or underground installations
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/18—Flow directing inserts
- C12M27/20—Baffles; Ribs; Ribbons; Auger vanes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/06—Nozzles; Sprayers; Spargers; Diffusers
- C12M29/08—Air lift
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/24—Recirculation of gas
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Clinical Laboratory Science (AREA)
- Molecular Biology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は微細藻類を増殖させるための装置に関し、詳し
くは含炭酸ガス気体の圧入により無終端水路内を反復し
て循環する液体の流れを形成すると同時に炭酸ガスを効
率的に培養液に溶解せしめ得る装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for growing microalgae, and more specifically, the present invention relates to an apparatus for growing microalgae, and more specifically, it forms a flow of liquid that repeatedly circulates in an endless waterway by injecting carbon dioxide-containing gas, and at the same time efficiently generates carbon dioxide gas. This invention relates to a device that can be dissolved in a culture medium.
光と炭酸ガスを利用した微細藻類の培養においては、浅
くて広い培養槽を用いるので単に槽底から通気したので
は炭酸ガスの溶解効率及び攪拌効率が悪く、しかも従来
の曝気槽のように散気方式により気体の供給と槽内攪拌
を同時に達成することが困難であり、槽内攪拌には水車
及びポンプ等の機械的手段によって無終端水路内を循環
する培養液の流れを形成する方式が採用されている。炭
酸ガスの供給については、装置全体を光透過材質で覆い
この中に炭酸ガスを供給する方式等が考案されているが
、光透過材質面に水滴及び塵埃等が付着し光透過率が低
下する等の難点があり、炭素源として炭酸ガスを用いに
ククシている。このため炭酸ガスの利用はほとんど行な
われず、炭素源を酢酸等の高価な有機物に依存している
。In the cultivation of microalgae using light and carbon dioxide gas, a shallow and wide culture tank is used, so simply venting from the bottom of the tank would result in poor carbon dioxide dissolution efficiency and poor stirring efficiency. It is difficult to achieve gas supply and tank agitation at the same time using the gas method, and a method of creating a flow of culture solution circulating in an endless waterway using mechanical means such as water wheels and pumps is used for tank agitation. It has been adopted. Regarding the supply of carbon dioxide gas, methods have been devised such as covering the entire device with a light-transmitting material and supplying the carbon dioxide gas therein, but water droplets and dust adhere to the surface of the light-transmitting material, resulting in a decrease in light transmittance. However, there are some drawbacks, such as carbon dioxide gas being used as a carbon source. For this reason, carbon dioxide gas is hardly used, and carbon sources rely on expensive organic substances such as acetic acid.
本発明は前述のような欠点に鑑み成されたもので、炭素
源として炭酸ガスを効率的に用い得ると同時に槽内の攪
拌を効率的に行ない得る微細藻類の培養装置を提供し、
これによって微細藻類生産業の活性化を計ることを目的
とする。The present invention has been made in view of the above-mentioned drawbacks, and provides a microalgae culturing device that can efficiently use carbon dioxide gas as a carbon source and at the same time efficiently stir the tank.
The aim is to revitalize the microalgae production industry.
本発明は、光照射条件下、炭酸ガスを炭素源として微細
藻類の培養を行なうための装置において、該装置が(a
)槽内が光の照射を受け微細藻類が増殖する開水路及び
該開水路内の上流端部と下流端部を開水路で規定される
水面より下方を通り連。The present invention provides an apparatus for culturing microalgae under light irradiation conditions using carbon dioxide gas as a carbon source, the apparatus comprising (a
) An open channel in which the inside of the tank is irradiated with light and microalgae proliferate, and an upstream end and a downstream end of the open channel pass below the water surface defined by the open channel.
通する管水路よりなる無終端水路として構成された培養
槽であり、前記管水路の中で少なくとも一つの管水路の
一部が開水路で規定される水面より下方の位置であって
単位通気愚に対して充分な炭酸ガス溶解量及び揚水量を
得るに役立つ該位置から鉛直上方に立設されたエアリフ
ト部として構成され、このエアリフト部内に前記上流端
部に向う培養液の流れを形成しかつ炭酸ガスを培養液に
溶解させるための含炭酸ガス気体供給管が開口配備され
るとともに、開水路の太陽光の直射を受ける自由水面の
全面積を無終端水路内流路の全容積で割った値が0.7
m以下である該培養槽、(b)前記含炭酸ガス気体供給
管に連結され含炭酸ガス気体を送るための送風機、(c
)前記エアリフト部上方の水面から放出される気体を再
び送風機に導く気体流路であり、隔壁と水面で囲まれ送
風機に連絡する気体返送流路、(d>該気体返送流路内
に炭酸ガスを注入するための注入装置であり、気体返送
流路と炭酸ガス源とを連絡する炭酸ガス注入管、炭酸ガ
ス注入管中に設けられた流量制御弁、炭酸ガス注入管を
介して炭酸ガスを強制的に送る手段、及び炭酸ガス源を
格納する容器より成る該注入装置、及び(e)前記含炭
酸ガス気体供給管を介してエアリフト部に圧入する気体
の炭酸ガス濃度を炭酸ガス源の炭酸ガス濃度以下のおる
値に制御するための手段であり、前記注入装置に連結す
る該制御手段を具備することを特徴とする微細藻類培養
装置であり、水路内を培養液が反復して循環し得かつ充
分な受光面を有する無終端水路として水槽が構成され、
水路の一部がエアリフト部として構成され、エアリフト
部上方の水面から放出される炭酸ガスを循環利用するた
めの流路でおって水槽水面のごく一部を覆う流路が設け
られ、この流路内に炭酸ガスを補充するための注入装置
が設けられ、この注入量をエアリフト部に送られる炭酸
ガス量をおる値に保つよう制御する装置が設けられてい
る点に特色を有する。A culture tank configured as an endless waterway consisting of pipes passing through the tank, in which at least one part of the pipes is located below the water level defined by the open channel and has a unit aeration tank. It is configured as an air lift section installed vertically above the position to help obtain a sufficient amount of carbon dioxide gas dissolved and water pumped, and forms a flow of the culture solution toward the upstream end within the air lift section. A carbon dioxide-containing gas supply pipe for dissolving carbon dioxide in the culture solution was installed in an open manner, and the total area of the free water surface that received direct sunlight in the open channel was divided by the total volume of the channel in the endless channel. value is 0.7
m or less, (b) a blower connected to the carbon dioxide-containing gas supply pipe for sending the carbon dioxide-containing gas, (c
) A gas return channel that guides the gas released from the water surface above the air lift part back to the blower, and is surrounded by the partition wall and the water surface and communicates with the blower; This is an injection device for injecting carbon dioxide through a carbon dioxide gas injection pipe that connects the gas return flow path and a carbon dioxide source, a flow control valve installed in the carbon dioxide gas injection pipe, and a carbon dioxide gas injection pipe. (e) the injection device comprises means for forcibly feeding the carbon dioxide gas source, and a container for storing the carbon dioxide gas source; A microalgae culturing device characterized by comprising a means for controlling the gas concentration to a value equal to or lower than the gas concentration, and the control means is connected to the injection device, and the culture solution is repeatedly circulated in the water channel. The aquarium is configured as an endless waterway with a large and sufficient light-receiving surface.
A part of the waterway is configured as an air lift section, and a flow channel is provided that covers a small part of the water surface of the aquarium and is a channel for circulating and utilizing carbon dioxide released from the water surface above the air lift section. It is characterized in that an injection device for replenishing carbon dioxide gas is provided inside the air lift section, and a device is provided for controlling the injection amount so as to maintain the amount of carbon dioxide gas sent to the air lift section at a value below.
以下、本発明を実施例により説明する。The present invention will be explained below using examples.
第1図及び第2図は本発明の一実施例を示す説明図であ
る。第1図は平面図、第2図はX−X縦断面図を示す。FIGS. 1 and 2 are explanatory diagrams showing one embodiment of the present invention. FIG. 1 is a plan view, and FIG. 2 is a longitudinal sectional view taken along line X-X.
装置は、屈曲してほぼ元の位置に戻る開水路1とその両
端間を連通ずる管水路2からなる無終端水路として構成
され、管水路2の一部は鉛直上方に立設されその内部に
含炭酸ガス気体供給管3が開口配備されたエアリフト部
aとして構成され、エアリフト部a上端が直接上流端部
すに水面下底部で連結されている。上流端部すの水面上
を覆う隔壁4、管5及び管5中のガストラップ6により
気体返送流路dが構成されている。The device is constructed as an endless waterway consisting of an open waterway 1 that bends and returns to almost its original position, and a pipe waterway 2 that communicates between its two ends. The carbon dioxide-containing gas supply pipe 3 is configured as an open air lift section a, and the upper end of the air lift section a is directly connected to the upstream end at the bottom below the water surface. A gas return channel d is constituted by the partition wall 4 covering the water surface at the upstream end, the pipe 5, and the gas trap 6 in the pipe 5.
送風機7は含炭酸ガス気体供給管3及び管5に連結され
ている。高圧下液化炭酸ガスが格納されたガスボンベ8
及び気体返送流路dとガスボンベ8内を連絡する炭酸ガ
ス注入管9が設けられ、炭酸ガス注入管9中には流量制
御弁10が設けられ炭酸ガス注入装置が構成されている
。気体返送流路dと炭酸ガス分析器11を連絡する管1
2中には除湿器13及びポンプ14が設けられている。The blower 7 is connected to the carbon dioxide-containing gas supply pipe 3 and the pipe 5. Gas cylinder 8 containing liquefied carbon dioxide under high pressure
A carbon dioxide gas injection pipe 9 is provided which communicates the gas return flow path d with the inside of the gas cylinder 8. A flow rate control valve 10 is provided in the carbon dioxide gas injection pipe 9 to constitute a carbon dioxide gas injection device. Pipe 1 connecting gas return flow path d and carbon dioxide analyzer 11
2, a dehumidifier 13 and a pump 14 are provided.
炭酸ガス分析器11は記録制御器15を経て流量制御弁
10に連結されている。The carbon dioxide analyzer 11 is connected to the flow rate control valve 10 via a recording controller 15.
炭酸ガス分析器11、記録制御器15及び流量制御弁1
0からなる流量制御弁10の操作回路において炭酸ガス
分析器11はポンプ14によりガストラップ6内から引
き扱かれた気体中の炭酸ガスを連続的に測定分析する。Carbon dioxide analyzer 11, recording controller 15 and flow control valve 1
In the operation circuit of the flow rate control valve 10 consisting of 0, a carbon dioxide gas analyzer 11 continuously measures and analyzes carbon dioxide in the gas drawn from inside the gas trap 6 by the pump 14.
炭酸ガス分析器11は例えば赤外線炭酸ガス分析計であ
り、これは応答が速くオンラインでの接続が可能である
。−例では赤外線炭酸ガス分析計は連続的に試料気体を
通過させる分析試料室及び窒素ガスが封入されている分
析比較室からなり、両室には赤外線が均等に発射される
。The carbon dioxide gas analyzer 11 is, for example, an infrared carbon dioxide gas analyzer, which has a quick response and can be connected online. - In an example, an infrared carbon dioxide gas analyzer consists of an analysis sample chamber through which a sample gas passes continuously and an analysis comparison chamber filled with nitrogen gas, and infrared rays are emitted equally into both chambers.
試料室を通過する赤外線は試料中の炭酸ガスに吸収され
炭酸ガス濃度に応じてその透過量は減少し、比較室には
炭酸ガスが存在しないので透過量は減少しない。この各
室を通過した赤外線のエネルギー差が電流として検出さ
れ、これが標準制御器に対して適当な標準信号範囲に増
幅される。記録制御器15は記録計と結合された上記の
制御器からなり、連続的に炭酸ガス濃度を指示し記録す
る。The infrared rays passing through the sample chamber are absorbed by carbon dioxide gas in the sample, and the amount of infrared light transmitted therethrough decreases depending on the concentration of carbon dioxide gas.Since no carbon dioxide gas is present in the comparison chamber, the amount of transmission does not decrease. The energy difference of the infrared rays passing through each chamber is detected as an electric current, which is amplified to a standard signal range suitable for a standard controller. The recording controller 15 consists of the above controller combined with a recorder, and continuously indicates and records the carbon dioxide concentration.
記録制御器15中の制御器はあらかじめ決定された設定
値と入力信号とを比較し、炭酸ガス濃度が設定値より低
いならば流量制御弁10に開栓の信号を送り、その逆も
又同様である。The controller in the recording controller 15 compares the input signal with a predetermined set value, and if the carbon dioxide concentration is lower than the set value, it sends a signal to the flow rate control valve 10 to open, and vice versa. It is.
第1図及び第2図においては、一つの管水路2と一つの
開水路1が連結され、管水路2の一部にはエアリフト部
atfi設けられている。開水路1及び管水路2は一つ
に限定されず、全流路長が長くなる場合等必要に応じて
複数個を交互に連結してもよい。この場合、それぞれの
気体返送流路dをたがいに連通させ一つの制御系で炭酸
ガス注入団を制御すればよく、複数の無終端水路を用い
る場合も同様にして一つの制御系で炭酸ガス注入量を制
御すればよい。管水路2の両端は水面下底部に開口され
、エアリフト部aは揚程がほとんどない揚水量の多いエ
アリフトポンプの機能を果す。第3図及び第4図は管水
路2と開水路1内上流嫡部すとの連結の別の態様を示す
縦断面説明図である。In FIGS. 1 and 2, one pipe channel 2 and one open channel 1 are connected, and a part of the pipe channel 2 is provided with an air lift section atfi. The number of open channels 1 and pipe channels 2 is not limited to one, and a plurality of them may be alternately connected as necessary, such as when the total channel length becomes long. In this case, it is sufficient to communicate the respective gas return channels d with each other and control the carbon dioxide gas injection group with one control system.If multiple endless channels are used, carbon dioxide gas injection can be performed with one control system in the same way. Just control the amount. Both ends of the pipe channel 2 are opened at the bottom below the water surface, and the air lift section a functions as an air lift pump that has almost no lifting head and can lift a large amount of water. FIGS. 3 and 4 are explanatory longitudinal cross-sectional views showing another aspect of the connection between the pipe waterway 2 and the upstream end of the open waterway 1. FIG.
第3図においては管水路2が開水路1の底部と水面の間
に開口されている。第4図においては管水路2が開水路
1側壁を介して一部水面下に開口しているが、この場合
管水路2の水平な部分はその内部に開水路1の水面と連
続した自由水面を有するので、本発明では開水路とみな
す。他の連結部分についても同様の扱いとする。したが
って第3図と第4図に示した態様は実質的に同様のもの
であり、管水路2の両端は水面下に開口されている。In FIG. 3, a pipe channel 2 is opened between the bottom of the open channel 1 and the water surface. In Fig. 4, the pipe channel 2 is partially opened below the water surface through the side wall of the open channel 1, but in this case, the horizontal part of the pipe channel 2 has a free water surface that is continuous with the water surface of the open channel 1. Therefore, in the present invention, it is regarded as an open channel. The same applies to other connected parts. Therefore, the embodiments shown in FIGS. 3 and 4 are substantially the same, and both ends of the pipe channel 2 are opened below the water surface.
第2図、第3図及び第4図において含炭酸ガス気体供給
管3のエアリフト部aにおける開口部から開水路1で規
定される水面を含む平面までの距離が同じであれば、本
発明の範囲内でそれぞれの揚水量はほぼ同等である。な
ぜならば、第2図においてもエアリフト部aK1直上方
の開水路部分にも気液混合系が形成されかつ開水路1の
下方の管水路2内に含炭酸ガス気体供給管3が開水路1
内と隔離された形で設けられ管水路1から上流端部すへ
の流れが確保され、揚水効果を提供するからである。こ
の含炭酸ガス気体供給管3のエアリフト部aにおける開
口部から開水路1で規定される水面を含む平面までの距
離は開水路1内の流動攪拌のために必要な単位通気動力
量当りの揚水量及び単位通気動力量当りの炭酸ガス溶解
量を増加せしめる観点から決定され、実用上1m以上が
必要とされる。含炭酸ガス気体供給管3のエアリフト部
Cにおける開口部から開水路1で規定される水面を含む
平面までの距離は前記条件の範囲内で可能な限り長いこ
とが望ましい。通常エアリフトポンプでは浸水深さ1〜
5mで揚程はぼOの条件下で揚水量は通気量の20〜4
0倍の範囲にある。気体は微細な気泡として圧入するこ
とが望ましい。If the distance from the opening in the airlift part a of the carbon dioxide gas supply pipe 3 to the plane containing the water surface defined by the open channel 1 is the same in FIGS. 2, 3, and 4, the present invention The amount of water pumped is almost the same within the range. This is because, in FIG. 2, a gas-liquid mixing system is also formed in the open channel section directly above the air lift section aK1, and the carbon dioxide gas supply pipe 3 is connected to the open channel 1 in the pipe channel 2 below the open channel 1.
This is because the pipe is provided in a manner that is isolated from the inside, ensuring flow from the pipe waterway 1 to the upstream end, and providing a pumping effect. The distance from the opening in the air lift section a of the carbon dioxide gas supply pipe 3 to the plane defined by the open channel 1 that includes the water surface is the amount of water pumped per unit aeration power required for fluid agitation in the open channel 1. It is determined from the viewpoint of increasing the amount of carbon dioxide gas dissolved per unit amount of aeration power, and in practical terms, a length of 1 m or more is required. It is desirable that the distance from the opening in the air lift section C of the carbon dioxide-containing gas supply pipe 3 to the plane defined by the open channel 1 including the water surface be as long as possible within the range of the above conditions. Normally, air lift pumps have a immersion depth of 1~
Under conditions of 5 m and a lifting head of 0, the amount of water pumped is 20 to 4 times the airflow rate.
It is in the range of 0 times. It is desirable that the gas be injected as fine bubbles.
エアリフト部aの設けられている管水路2の流水断面積
は、開水路1から管水路2への流路の流水断面の急縮変
化をなくすため、開水路1の平均流水断面積以上が必要
とされる。上流端部C以外で開口する管水路2の端部は
開水路1底部又はそのやや上方で開口させ開水路1がら
管水路2への充分な流量を確保する必要がある。エアリ
フト部の設けられていない管水路は必要ないが、施工上
の理由等によりこれを設ける場合は、エアリフト部の設
けられていない管水路2の流水断面積は開水路1の平均
流水断面積の0.8〜1.2倍とし管水路2の管路抵抗
を小さくしかつ開水路1と管水路2の連結部における流
水断面の急縮変化を軽減するよう考慮すべきである。こ
れらによって開水路1における流速が通気量に依存する
状態が確保される。The flow cross-sectional area of the pipe channel 2 in which the air lift section a is provided must be greater than or equal to the average flow cross-sectional area of the open channel 1 in order to eliminate sudden changes in the flow cross section of the flow channel from the open channel 1 to the pipe channel 2. It is said that The end of the pipe channel 2 that opens at a point other than the upstream end C must be opened at the bottom of the open channel 1 or slightly above it to ensure a sufficient flow rate from the open channel 1 to the pipe channel 2. A pipe without an air lift section is not necessary, but if one is provided for construction reasons, the water flow cross-sectional area of the pipe channel 2 without an air lift section is equal to the average flow cross-sectional area of the open channel 1. Consideration should be given to increasing the resistance by 0.8 to 1.2 times to reduce the pipe resistance of the pipe waterway 2 and to reduce sudden changes in the flow cross section at the joint between the open waterway 1 and the pipe waterway 2. These ensure that the flow velocity in the open channel 1 depends on the amount of ventilation.
微細藻類の増殖量はある一定の藻体濃度に達すると受光
量及び受光面積に依存するので開水路1の太陽光の直射
を受ける自由水面の全面積を無終端水路内流路の全容積
で割った値は0.7m以下でよく、0.1〜0.2mが
好適である。The amount of growth of microalgae depends on the amount of light received and the light receiving area once a certain algae concentration is reached, so the total area of the free water surface that receives direct sunlight in open channel 1 is the total volume of the channel in the endless channel. The divided value may be 0.7 m or less, and preferably 0.1 to 0.2 m.
炭酸ガス源としては、ボイラー排ガス、醗酵排ガスある
いは液化炭酸ガス等が利用できる。炭酸ガス源が酸素、
窒素ガス等の水に溶解しにくい気体を含むと、この炭酸
ガス源の注入により酸素及び窒素ガス等が気体返送流路
d内に加圧上蓄積されこれは結局気体返送流路d外大気
中へ放出され、この際に炭酸ガス源の炭酸ガスの不必要
な損失が生じる。炭素源として液化炭酸ガスを用いれば
、液化炭酸ガスは水に難溶の気体を含まないのでこの損
失はほとんどない。As the carbon dioxide source, boiler exhaust gas, fermentation exhaust gas, liquefied carbon dioxide, etc. can be used. Carbon dioxide source is oxygen,
If gases such as nitrogen gas that are difficult to dissolve in water are included, oxygen and nitrogen gas, etc. will be accumulated under pressure in the gas return channel d due to the injection of this carbon dioxide gas source, and this will eventually be released into the atmosphere outside the gas return channel d. In this case, unnecessary loss of carbon dioxide from the carbon dioxide source occurs. If liquefied carbon dioxide gas is used as a carbon source, this loss will be minimal because liquefied carbon dioxide gas does not contain gases that are poorly soluble in water.
泡は光を散乱させる等の悪効果を有するので、開水路水
面に泡が移動していくことは好ましくない。隔壁4は気
体返送流路dを提供するとともに泡の移動を阻止する。Since bubbles have negative effects such as scattering light, it is undesirable for bubbles to move to the water surface of the open channel. The partition wall 4 provides a gas return flow path d and prevents the movement of bubbles.
この泡は隔壁4の高さを充分とれば、自然に消滅するが
、撒水装置等で消泡してもよい。隔壁4の下端は液面下
1〜2cmに設ければよい。This foam will disappear naturally if the partition wall 4 is sufficiently high, but it may be eliminated using a water spray device or the like. The lower end of the partition wall 4 may be provided 1 to 2 cm below the liquid level.
含炭酸ガス気体供給管3の開口を介して気体を圧入する
とエアリフト部a内に気液混合系が形成され内部の密度
が小さくなる。この密度の減少と気泡の上昇力により管
水路2内に下流端部Cから上流端部すに向う培養液の流
れが生じ、これにより開水路1内に上流端部すから下流
端部Cに向う培養液の流れが形成され水路内は攪拌され
る。開水路1内を培養液が微細藻類を伴って通過する際
に微細藻類は光の照射を受け増殖しエアリフト部aを通
過する際に炭酸ガスの供給をうける。圧入された気体は
隔壁4と水面で形成された密閉空間内に放出され、これ
は管5により送風はに導かれ再び含炭酸ガス気体供給管
3の開口を介してエアリフト部a内に循環して圧入され
る。この隔壁4及び管5で形成された気体返送流路d内
に流量制御弁10により制御された流量でガスボンベ8
内の液化炭酸ガスが炭酸ガス注入管9を介して注入され
、この気体の一部がガストラップ6においてポンプ14
により管12を経て、除湿器13で除湿され、炭酸ガス
分析器11に連続的に送られ、その炭酸ガス濃度が分析
される。炭酸ガス分析器11からの信号が記録制御器1
2に送られ、記録制御器12はその炭酸ガス濃度を記録
し、流量制御弁10を調節する。When gas is pressurized through the opening of the carbon dioxide-containing gas supply pipe 3, a gas-liquid mixed system is formed within the air lift section a, and the internal density is reduced. Due to this decrease in density and the rising force of the bubbles, a flow of the culture solution occurs in the pipe channel 2 from the downstream end C to the upstream end, and this causes the culture solution to flow from the upstream end to the downstream end C in the open channel 1. A flow of culture solution is formed in the opposite direction, and the inside of the water channel is agitated. When the culture solution passes through the open channel 1 with microalgae, the microalgae are irradiated with light and proliferate, and when passing through the air lift section a, the microalgae are supplied with carbon dioxide gas. The pressurized gas is released into a closed space formed by the partition wall 4 and the water surface, and is guided by the pipe 5 to the air lift section a through the opening of the carbon dioxide-containing gas supply pipe 3. It is press-fitted. A gas cylinder 8 is fed into the gas return channel d formed by the partition wall 4 and the pipe 5 at a flow rate controlled by the flow rate control valve 10.
The liquefied carbon dioxide gas inside is injected through the carbon dioxide gas injection pipe 9, and a part of this gas is pumped into the gas trap 6 by the pump 14.
The water passes through a pipe 12, is dehumidified by a dehumidifier 13, and is continuously sent to a carbon dioxide gas analyzer 11, where its carbon dioxide concentration is analyzed. The signal from the carbon dioxide gas analyzer 11 is recorded by the controller 1.
2, the recording controller 12 records the carbon dioxide concentration and adjusts the flow rate control valve 10.
炭酸ガス濃度が設定値よりも低いならば流量制御弁10
は更に開き、炭酸ガス濃度が設定値よりも高いならば流
量制御弁10は更に閉じ、エアリフト部−d内に圧入す
る炭酸ガス量が調節される。If the carbon dioxide concentration is lower than the set value, the flow rate control valve 10
is further opened, and if the carbon dioxide concentration is higher than the set value, the flow rate control valve 10 is further closed, and the amount of carbon dioxide gas pressurized into the air lift section -d is regulated.
記録制御器15の設定値は必要に応じて変更できる。設
定値は通気量、含炭酸ガス気体供給管3のエアリフト部
aにおける開口部から開水路1で規定される水面を含む
平面までの距離、受光面積及び気象条件等を考慮して決
定するが、通常、炭酸ガス濃度は体積百分率で0.2〜
2%の範囲内に設定すればよい。Setting values of the recording controller 15 can be changed as necessary. The set value is determined by considering the ventilation amount, the distance from the opening in the airlift part a of the carbon dioxide gas supply pipe 3 to the plane defined by the open channel 1 that includes the water surface, the light receiving area, weather conditions, etc. Usually, the carbon dioxide concentration is 0.2 to 0.2 in volume percentage.
It may be set within a range of 2%.
本発明の装置は前述のように構成されているので従来の
ものと比較して下記のような利点を有する。(ア)構造
が簡単である。(イ)散気方式により槽内の攪拌と炭酸
ガスの供給を同時にしかも効率的に行なえる。(つ)深
い部位から通気するので気液接触時間が永く単位通気量
当りの炭酸ガス溶解量が多くしかも安定しており、安定
した炭酸ガス供給量の制御が行なえる。(1)炭酸ガス
の循環的再利用を行なうので供給した炭酸ガスの−はと
んど全てを溶解させることができ損失が少ない。(オ)
装置全体を透明材質で覆う必要がなく、太陽光を充分に
利用できる。(力)泡による光の散乱がほとんどない。Since the apparatus of the present invention is constructed as described above, it has the following advantages compared to the conventional apparatus. (a) The structure is simple. (a) The aeration method allows stirring inside the tank and supplying carbon dioxide gas at the same time and efficiently. (1) Since ventilation is conducted from a deep region, the gas-liquid contact time is long, and the amount of carbon dioxide gas dissolved per unit amount of ventilation is large and stable, allowing for stable control of the amount of carbon dioxide gas supplied. (1) Since the carbon dioxide gas is cyclically reused, almost all of the supplied carbon dioxide gas can be dissolved, resulting in little loss. (e)
There is no need to cover the entire device with transparent material, allowing full use of sunlight. (Power) There is almost no scattering of light by the bubbles.
第5図は別の実施例の縦断面を示す説明図であり、第2
図とほぼ同様のものである。第2図のものとは、エアリ
フト部aが設けられた管水路2の上流端部す側の端部が
開水路1で規定される水面より上方で開口されている点
が異なる。本実施例の装置では単位通気m当りの揚水量
は第1図及び第2図の装置より少なくなるが、エフ9フ
1〜部a内の気液接触面積が多くなり、圧入する気体の
炭酸ガス濃度を低く設定することができ、前述のボイラ
ー排ガス又は醗酵排ガス等を用いた場合の気体返送流路
d外大気中への余剰気体の放出の際の炭酸ガスの損失が
軽減される利点がある。実用上は、ニアリフ1一部aの
開水路1で規定される水面下の部分の長さが前記水面よ
り上方の開口部から水面までの距離すなわち揚程の10
倍以上であればよい。通常エアリフトポンプでは浸水深
さ1〜5rr+t”揚程がその0.1倍の条件下で揚水
量は通気量の6〜8倍の範囲にある。FIG. 5 is an explanatory view showing a longitudinal section of another embodiment, and the second
It is almost the same as the figure. It differs from the one in FIG. 2 in that the upstream end side end of the pipe waterway 2 provided with the air lift section a is opened above the water surface defined by the open waterway 1. In the apparatus of this embodiment, the amount of water pumped per unit meter of ventilation is smaller than in the apparatuses shown in Figs. The advantage is that the gas concentration can be set low, and the loss of carbon dioxide gas when excess gas is released into the atmosphere outside the gas return channel d when using the aforementioned boiler exhaust gas or fermentation exhaust gas is reduced. be. In practice, the length of the part of the near rift 1 part a defined by the open channel 1 below the water surface is 10 times the distance from the opening above the water surface to the water surface, that is, the lift height.
It is sufficient if it is twice or more. Normally, with an air lift pump, the pumping amount is in the range of 6 to 8 times the ventilation amount under the condition that the immersion depth is 1 to 5 rr + the lifting head is 0.1 times that amount.
以上本発明の装置によれば安価な炭酸ガスを利用して微
細藻類の大量生産が可能となる。尚本発明の装置は高率
酸化池法等の微細藻類生産と廃水浄化を目的とした廃水
処理にも利用できる。As described above, according to the apparatus of the present invention, it is possible to mass-produce microalgae using inexpensive carbon dioxide gas. The apparatus of the present invention can also be used in wastewater treatment for the purpose of microalgae production and wastewater purification, such as the high-rate oxidation pond method.
第1図は平面図、第2図は第1図のX−X縦断面図、第
3図及び第4図は連結部分の第2図と異なる別の態様を
示す縦断面図、第5図は第2図と別の実施例を示す縦断
面図である。
1は開水路、2は管水路、3は含炭酸ガス気体供給管、
4は隔壁、5は管、6はガストラップ、7は送風機、8
はガスボンベ、9は炭酸ガス注入管、10は流量制御弁
、11は炭酸ガス分析器、12は管、13は除湿器、1
4はポンプ、15は記録制御器、aはエアリフト部、b
−は上流端部、Cは、下流端部である。矢印は流れの方
向を示す。FIG. 1 is a plan view, FIG. 2 is a longitudinal cross-sectional view taken along the line X-X in FIG. FIG. 2 is a longitudinal cross-sectional view showing another embodiment of the present invention. 1 is an open channel, 2 is a pipe channel, 3 is a carbon dioxide gas supply pipe,
4 is a bulkhead, 5 is a pipe, 6 is a gas trap, 7 is a blower, 8
1 is a gas cylinder, 9 is a carbon dioxide gas injection pipe, 10 is a flow rate control valve, 11 is a carbon dioxide gas analyzer, 12 is a pipe, 13 is a dehumidifier, 1
4 is a pump, 15 is a recording controller, a is an air lift part, b
- is the upstream end, and C is the downstream end. Arrows indicate the direction of flow.
Claims (1)
培養を行なうための装置において、該装置が(a)槽内
が光の照射を受け微細藻類が増殖する開水路及び該開水
路内の上流端部と下流端部を開水路で規定される水面よ
り下方を通り連通する管水路よりなる無終端水路として
構成された培養槽であり、前記管水路の中で少なくとも
一つの管水路の一部は開水路で規定される水面より下方
の位置であって単位通気量に対して充分な炭酸ガス溶解
量及び揚水量を得るに役立つ該位置から鉛直上方に立設
されたエアリフト部として構成され、このエアリフト部
内に前記上流端部に向う培養液の流れを形成しかつ炭酸
ガスを培養液に溶解させるための含炭酸ガス気体供給管
が開口配備されるとともに、開水路の太陽光の直射を受
ける自由水面の全面積を無終端水路内流路の全容積で割
った値が0.7m以下である該培養槽、(b)前記含炭
酸ガス気体供給管に連結され含炭酸ガス気体を送るため
の送風機、(c)前記エアリフト部上方の水面から放出
される気体を再び送風機に導く気体流路であり、隔壁と
水面で囲まれ送風機に連絡する気体返送流路、(d)該
気体返送流路内に炭酸ガスを注入するための注入装置で
あり、気体返送流路と炭酸ガス源とを連絡する炭酸ガス
注入管、炭酸ガス注入管中に設けられた流量制御弁、炭
酸ガス注入管を介して炭酸ガスを強制的に送る手段、及
び炭酸ガス源を格納する容器より成る該注入装置、及び
(e)前記含炭酸ガス気体供給管を介してエアリフト部
に圧入する気体の炭酸ガス濃度を炭酸ガス源の炭酸ガス
濃度より低いある値に制御するための手段であり、前記
注入装置に連結する該制御手段を具備することを特徴と
する微細藻類培養装置。 2、前記含炭酸ガス気体供給管を介してエアリフト部に
圧入する気体の炭酸ガス濃度を炭酸ガス源の炭酸ガス濃
度より低いある値に制御するための手段が、前記気体返
送流路内の気体を連続的に引き抜く手段を備え気体中の
炭酸ガスを測定及び分析するのに有効な炭酸ガス分析器
から成り、該炭酸ガス分析器が炭酸ガス分析器からの信
号に応じて気体返送流路内への炭酸ガスの注入流量を制
御するための制御器に連結され、該制御器が前記流量制
御弁に連結されている特許請求の範囲第1項記載の微細
藻類培養装置。 3、前記炭酸ガス源が液化炭酸ガスであり、該液化炭酸
ガスが耐圧容器内に格納されている特許請求の範囲第1
項又は第2項記載の微細藻類培養装置。 4、エアリフト部が直接開水路上流端部に連結され、含
炭酸ガス気体供給管のエアリフト部における開口部から
開水路で規定される水面を含む平面までの距離が1m以
上である特許請求の範囲第1項又は第2項又は第3項記
載の微細藻類培養槽。 5、前記エアリフト部の設けられている管水路の流水断
面積が開水路の平均流水断面積以上である特許請求の範
囲第1項又は第2項又は第3項又は第4項記載の微細藻
類培養装置。 6、前記管水路のそれぞれの端部が開水路で規定される
水面より下方で開口され、かつエアリフト部の設けられ
た管水路の上流端部側の端部以外の端部は開水路底部又
はそのやや上方で開口され、無終端水路内流路各部が連
通されている特許請求の範囲第1項又は第2項又は第3
項又は第4項又は第5項記載の微細藻類培養装置。 7、前記エアリフト部の設けられた管水路の上流端部側
の端部が開水路で規定される水面又は該水面より上方で
開口され、他の端部は開水路で規定される水面より下方
かつ開水路底部又はそのやや上方で開口され、気体圧入
時に無終端水路内流路各部が連通されている特許請求の
範囲第1項又は第2項又は第3項又は第4項又は第5項
記載の微細藻類培養装置。 8、前記エアリフト部の設けられた管水路の前記上流端
部側の端部が開水路で規定される水面又は該水面より上
方で開口され、エアリフト部の開水路で規定される水面
下の部分の長さが該開口部から水面までの距離すなわち
揚程の10倍以上である特許請求の範囲第7項記載の微
細藻類培養装置。[Scope of Claims] 1. An apparatus for culturing microalgae under light irradiation conditions using carbon dioxide gas as a carbon source, which apparatus includes: It is a culture tank configured as an endless waterway consisting of a waterway and a pipe waterway in which the upstream end and downstream end of the open waterway pass below the water surface defined by the open waterway and communicate with each other, and in the pipe waterway, A portion of at least one pipe channel is located below the water level defined by the open channel, and is erected vertically above the location to help obtain a sufficient amount of carbon dioxide gas dissolved and water pumped for a unit ventilation amount. A carbon dioxide-containing gas supply pipe for forming a flow of the culture solution toward the upstream end and dissolving carbon dioxide in the culture solution is provided in the air lift section, A culture tank in which the value obtained by dividing the total area of the free water surface that receives direct sunlight in the waterway by the total volume of the flow path in the endless waterway is 0.7 m or less, (b) connected to the carbon dioxide-containing gas supply pipe. (c) a gas flow path that guides the gas released from the water surface above the airlift portion back to the blower; a gas return flow path that is surrounded by a partition wall and the water surface and communicates with the blower; , (d) An injection device for injecting carbon dioxide into the gas return flow path, a carbon dioxide gas injection pipe that connects the gas return flow path and the carbon dioxide source, and a flow rate provided in the carbon dioxide gas injection pipe. said injection device comprising a control valve, a means for forcibly sending carbon dioxide gas through a carbon dioxide gas injection pipe, and a container for storing a carbon dioxide gas source; and (e) an air lift section via said carbon dioxide gas supply pipe. A microalgae culturing device, characterized in that it is a means for controlling the carbon dioxide concentration of the gas to be pressurized to a certain value lower than the carbon dioxide concentration of the carbon dioxide source, and the control means is connected to the injection device. 2. The means for controlling the carbon dioxide concentration of the gas pressurized into the air lift section via the carbon dioxide-containing gas supply pipe to a certain value lower than the carbon dioxide concentration of the carbon dioxide source is configured to control the gas in the gas return flow path. The carbon dioxide analyzer is equipped with means for continuously drawing out carbon dioxide gas and is effective for measuring and analyzing carbon dioxide gas in the gas, and the carbon dioxide gas analyzer The microalgae culturing device according to claim 1, wherein the microalgae culturing device is connected to a controller for controlling the flow rate of carbon dioxide gas injected into the microalgae, and the controller is connected to the flow rate control valve. 3. Claim 1, wherein the carbon dioxide source is liquefied carbon dioxide, and the liquefied carbon dioxide is stored in a pressure-resistant container.
The microalgae culturing device according to item 1 or 2. 4. A claim in which the air lift section is directly connected to the upstream end of the open channel, and the distance from the opening in the air lift section of the carbon-containing gas supply pipe to the plane defined by the open channel that includes the water surface is 1 m or more. The microalgae culture tank according to item 1, item 2, or item 3. 5. The microalgae according to claim 1 or 2 or 3 or 4, wherein the water flow cross-sectional area of the pipe waterway in which the air lift portion is provided is greater than or equal to the average flow water cross-sectional area of an open channel. Culture device. 6. Each end of the pipe channel is opened below the water level defined by the open channel, and the ends other than the end on the upstream end side of the pipe channel where the air lift part is provided are at the bottom of the open channel or Claim 1, 2, or 3 opens slightly above the endless waterway, and the various parts of the endless waterway are communicated with each other.
5. The microalgae culturing device according to item 4 or 5. 7. The upstream end of the pipe waterway where the airlift part is provided is opened at or above the water level defined by the open channel, and the other end is below the water level defined by the open channel. and the open channel is opened at the bottom of the open channel or slightly above it, and each part of the endless channel is communicated with each other when gas is pressurized. The microalgae culture device described. 8. A portion where the upstream end side end of the pipe waterway in which the air lift section is provided is opened at or above the water surface defined by an open channel, and is below the water surface defined by the open channel of the air lift section. 8. The microalgae culturing device according to claim 7, wherein the length is at least 10 times the distance from the opening to the water surface, that is, the lifting height.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6302186A JPS62220183A (en) | 1986-03-20 | 1986-03-20 | Culture device for fine alga |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6302186A JPS62220183A (en) | 1986-03-20 | 1986-03-20 | Culture device for fine alga |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62220183A true JPS62220183A (en) | 1987-09-28 |
Family
ID=13217251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6302186A Pending JPS62220183A (en) | 1986-03-20 | 1986-03-20 | Culture device for fine alga |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62220183A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998029531A1 (en) * | 1996-12-30 | 1998-07-09 | Toshirou Sekine | Microalgae culture apparatus |
JP2005261341A (en) * | 2004-03-19 | 2005-09-29 | Yanmar Co Ltd | Plankton culture system |
WO2010038912A3 (en) * | 2008-10-03 | 2010-06-17 | Sekine Toshirou | Microalgae culture method and device |
US20100330652A1 (en) * | 2008-01-31 | 2010-12-30 | Ecoduna Og | Method and device for photochemical process |
US7910361B2 (en) | 2006-08-10 | 2011-03-22 | Barnes Allen C | Portable biological testing device and method |
WO2012068650A1 (en) * | 2010-11-25 | 2012-05-31 | Petróleo Brasileiro S.A. - Petrobras | Fluidodynamic elbow used in horizontal-circuit bioreactors with bubble impulsion |
CN102766567A (en) * | 2012-07-23 | 2012-11-07 | 三峡大学 | Overwater unpowered microalgae culture method and floating island system |
EP2712917A1 (en) * | 2012-09-26 | 2014-04-02 | Hidrotec Tecnologia del Agua, S.L. | Carbonation system for cultivating microalgae in open reactors |
US9260689B2 (en) | 2009-03-12 | 2016-02-16 | Ecoduna Ag | Device for a photochemical process |
WO2018210790A1 (en) * | 2017-05-15 | 2018-11-22 | Sustainwater S.À.R.L. | Module for regulating and/or treating flows of liquid in a channel in which said liquid circulates, installation comprising such a module and implementation method |
-
1986
- 1986-03-20 JP JP6302186A patent/JPS62220183A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6037170A (en) * | 1996-12-30 | 2000-03-14 | Sekine; Toshirou | Apparatus for culturing microalgae |
WO1998029531A1 (en) * | 1996-12-30 | 1998-07-09 | Toshirou Sekine | Microalgae culture apparatus |
JP2005261341A (en) * | 2004-03-19 | 2005-09-29 | Yanmar Co Ltd | Plankton culture system |
US7910361B2 (en) | 2006-08-10 | 2011-03-22 | Barnes Allen C | Portable biological testing device and method |
US8518637B2 (en) | 2006-08-10 | 2013-08-27 | Allen C. Barnes | Method of providing portable biological testing capabilities |
US8895289B2 (en) * | 2008-01-31 | 2014-11-25 | Ecoduna Ag | Method and device for photochemical process |
US20100330652A1 (en) * | 2008-01-31 | 2010-12-30 | Ecoduna Og | Method and device for photochemical process |
WO2010038912A3 (en) * | 2008-10-03 | 2010-06-17 | Sekine Toshirou | Microalgae culture method and device |
US9260689B2 (en) | 2009-03-12 | 2016-02-16 | Ecoduna Ag | Device for a photochemical process |
WO2012068650A1 (en) * | 2010-11-25 | 2012-05-31 | Petróleo Brasileiro S.A. - Petrobras | Fluidodynamic elbow used in horizontal-circuit bioreactors with bubble impulsion |
CN102766567A (en) * | 2012-07-23 | 2012-11-07 | 三峡大学 | Overwater unpowered microalgae culture method and floating island system |
EP2712917A1 (en) * | 2012-09-26 | 2014-04-02 | Hidrotec Tecnologia del Agua, S.L. | Carbonation system for cultivating microalgae in open reactors |
WO2018210790A1 (en) * | 2017-05-15 | 2018-11-22 | Sustainwater S.À.R.L. | Module for regulating and/or treating flows of liquid in a channel in which said liquid circulates, installation comprising such a module and implementation method |
LU100201B1 (en) * | 2017-05-15 | 2018-11-26 | Sustainwater S A R L | Module for regulating and / or treating liquid flows in a circulation channel of said liquid, installation incorporating such a module and method of implementation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4043771A (en) | Method of and apparatus for the dissolution of gases in liquids | |
EP2242834B1 (en) | Photobioreactor | |
KR101282625B1 (en) | Photo-bioreactor for culturing micro algae using hollow fiber membrane | |
EP0244954A1 (en) | Method and system for enriching oxygen content of water | |
US5344557A (en) | Incubator for biological cleaning of fluids | |
CN102575221A (en) | Systems, methods, and media for circulating fluid in an algae cultivation pond | |
JPS62220183A (en) | Culture device for fine alga | |
JP2007061086A (en) | Photosynthesis reactor for plant algae/microorganism | |
US5741443A (en) | Oxygenation of stratified water | |
EP4164369A1 (en) | Systems and methods for algae cultivation using direct air capture | |
EP0306466A2 (en) | Method and means for the production of a micro-organism cell mass | |
CN102643741B (en) | Trap type carbon replenishing device for culturing microalgae of opened pool and carbon replenishing method thereof | |
AU627449B2 (en) | A culturing apparatus | |
US4959322A (en) | Culturing apparatus | |
AU2016285489B2 (en) | Microalgae production process and equipment | |
JPH04190782A (en) | Bioreactor | |
EP2712917B1 (en) | Carbonation system for cultivating microalgae in open reactors | |
JPH0779654A (en) | Microalgae culture device | |
JPS63123375A (en) | Cultivation apparatus for microalgae | |
JP2615394B2 (en) | Culture stirring method and culture apparatus | |
CN215161927U (en) | Microalgae photobioreactor for treating biogas slurry in pig farm | |
JPH05244930A (en) | Photo-cultivation reaction tank and cultivation process | |
KR20080020080A (en) | Culture solution processing device and hydroponic cultivation device using the same | |
US20250098648A1 (en) | Sub-surface multi-stage oxygenation system supporting net pen aquaculture | |
OA21078A (en) | Systems and methods for algae cultivation using direct air capture. |