[go: up one dir, main page]

JPS62216320A - Laser annealing equipment - Google Patents

Laser annealing equipment

Info

Publication number
JPS62216320A
JPS62216320A JP6028986A JP6028986A JPS62216320A JP S62216320 A JPS62216320 A JP S62216320A JP 6028986 A JP6028986 A JP 6028986A JP 6028986 A JP6028986 A JP 6028986A JP S62216320 A JPS62216320 A JP S62216320A
Authority
JP
Japan
Prior art keywords
trestle
laser
wafer
movable
pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6028986A
Other languages
Japanese (ja)
Other versions
JPH0763055B2 (en
Inventor
Nobuo Sasaki
伸夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6028986A priority Critical patent/JPH0763055B2/en
Publication of JPS62216320A publication Critical patent/JPS62216320A/en
Publication of JPH0763055B2 publication Critical patent/JPH0763055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent the output of a laser unit from decreasing due to an impact by mounting the laser unit on a stationary trestle, mounting X, Y stages and a heater on an X direction movable trestle, providing a portion parallel to the X direction on a laser beam passage, mounting a laser unit side optical system on the stationary trestle and a wafer side optical system on the movable trestle. CONSTITUTION:A laser unit 10 is secured to a trestle 32, a trestle 28 is movable, and both ends are suppressed by the projecting members 34a, 34b of the trestle 32 through springs 36a, 36b. Thus, the trestle 28 is movable between the projecting members, and the moving direction is matched to X direction. A laser beam from the unit 10 passes U-shaped optical path of mirrors 12, 14, 16. When a horizontal unit, i.e., between the mirrors 14 and 16 is selected to the X direction, laser unit side optical systems 12, 14 of the horizontal unit are supported by the trestle 32, and stage side optical systems 16, 18 are supported by the trestle 28. Then, even if the trestle 28 is moved to the X direction due to an impact, the length of the horizontal unit is altered, but no influence is exerted on the laser beam emission to a wafer 20.

Description

【発明の詳細な説明】 〔概 要〕 レーザ装置の架台とX、 Yステージの架台を分離し、
後者の架台をバネにより抑えて前者の架台に対して所定
範囲内で可動にし、該ステージの往復動に伴なう衝撃を
吸収するようにしたレーザアニール装置。
[Detailed Description of the Invention] [Summary] The mount of the laser device and the mounts of the X and Y stages are separated,
A laser annealing device in which the latter pedestal is held down by a spring and movable within a predetermined range relative to the former pedestal, thereby absorbing shocks caused by the reciprocating movement of the stage.

〔産業上の利用分野〕[Industrial application field]

本発明は、レーザアニールによりウェーハ上の多結晶シ
リコンを単結晶にする装置に関する。
The present invention relates to an apparatus for converting polycrystalline silicon on a wafer into a single crystal by laser annealing.

〔従来の技術〕[Conventional technology]

レーザ再結晶法は、S OI  (Silicon O
n In5ul−ator)構造のMOS FETを製
造するのに有力な方法である。SO■構造のM(is 
FIETを利用するとs。
The laser recrystallization method uses SOI (Silicon O
This is an effective method for manufacturing MOS FETs with a nIn5ul-ator structure. SO■ structure M(is
When using FIET, s.

l−ICや3次元ICのような高速かつ高集積度のIC
(集積回路)を作ることができるので、レーザ再結晶法
には近年多くの研究開発が進められている。
High-speed and highly integrated ICs such as l-ICs and 3D ICs
(Integrated circuits) can be made, so much research and development has been carried out on the laser recrystallization method in recent years.

レーザ再結晶装置は概略第3図に示す構成を有する。1
0はガスレーザ装置、12,14.16はミラー、18
はフォーカシングレンズ、20はシリコンウェーハで加
熱装置(ホットチャック)22により保持される。26
はXステージ(X方向移動機構)で、この上にYステー
ジ(Y方向移動機構)24が取付けられ、加熱装置22
はYステージに乗る。
The laser recrystallization apparatus has a configuration schematically shown in FIG. 1
0 is a gas laser device, 12, 14.16 is a mirror, 18
2 is a focusing lens, and 20 is a silicon wafer, which is held by a heating device (hot chuck) 22. 26
is an X stage (X direction moving mechanism), on which a Y stage (Y direction moving mechanism) 24 is attached, and a heating device 22
rides the Y stage.

ウェーハ20は第4図(alに示すように例えば400
μmの厚さのシリコン基板St、その表面を熱酸化して
形成させた1、0μm程度の厚さの二酸化シリコンSi
O2、その上にCVD法により形成した多結晶シリコン
poli−3tからなる。レーザ装W10はアルゴンガ
スレーザで、第4図(blに示すように発振管10aと
、その両端の発振用ミラー10b、lOcを備える。
The wafer 20 is, for example, a
A silicon substrate St with a thickness of μm, and silicon dioxide Si with a thickness of about 1.0 μm formed by thermally oxidizing its surface.
It consists of O2 and polycrystalline silicon poli-3t formed thereon by CVD method. The laser device W10 is an argon gas laser, and as shown in FIG. 4 (bl), it is equipped with an oscillation tube 10a and oscillation mirrors 10b and 1Oc at both ends of the oscillation tube 10a.

レーザ装置10より出たレーザ光30は径2鶴程度で、
ミラー12.14.16により図示の如く導かれ、レン
ズ18で径20〜100μmに絞られ、ウェーハ20に
投射される。ウェーハにレーザ光が投射されると、加熱
装置22により既に500℃程度に加熱されているウェ
ーハの最上層の多結晶シリコンは直ちに溶融し、X、Y
ステージ26.24によるX、 Y方向移動で多結晶シ
リコン層は第4図(C)に示すように全面的に溶融、凝
固が行なわれ、これにより単結晶化される。この第4図
fclで1,2.・・・・・・は1回目、2回目、・・
・・・・のX方向移動で溶融、凝固される領域を示しく
但しこれは説明上のもの)、これらはレーザ光の径には
y等しい幅を持つ細幅帯状領域である。全面塗りつぶし
的な処理であるからこれらの帯状領域は若干型ならせで
ある。矢印は移動方向を示す。
The laser beam 30 emitted from the laser device 10 has a diameter of about 2 cranes,
The light is guided by mirrors 12, 14, and 16 as shown in the figure, focused by a lens 18 to a diameter of 20 to 100 μm, and projected onto a wafer 20. When the laser beam is projected onto the wafer, the polycrystalline silicon in the top layer of the wafer, which has already been heated to about 500°C by the heating device 22, immediately melts, and the X, Y
As the stages 26 and 24 move in the X and Y directions, the polycrystalline silicon layer is completely melted and solidified as shown in FIG. 4(C), thereby becoming a single crystal. 1, 2 in this Fig. 4 fcl.・・・・・・ is the first time, second time, etc.
. . . shows the regions melted and solidified by movement in the X direction (this is for illustration purposes only). These are narrow belt-like regions having a width equal to y to the diameter of the laser beam. Since this is a full-surface filling process, these band-shaped areas are slightly irregular in shape. Arrows indicate the direction of movement.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

レーザアニールでは20μmという様な細いレーザ光を
照射しく照射位置は固定)、ウェーハをX方向に移動し
、次に微小長Y方向に移動したのち同じX方向ではある
が逆方向に移動し、か\るジグザグ状移動でウェーハを
全面的に溶融、凝固して行く。上記Y方向微小長は熔融
凝固帯が重なるようにするので本例では20μm以下で
あり、これでウェーハ全面を溶融、凝固するには移動速
度を高速にしないと処理に長時間を要することになる。
In laser annealing, the wafer is irradiated with a narrow laser beam of 20 μm (the irradiation position is fixed), then the wafer is moved in the X direction, then moved in the Y direction by a minute length, and then moved in the same X direction but in the opposite direction. The wafer is completely melted and solidified in a zigzag motion. The above-mentioned micro length in the Y direction is 20 μm or less in this example because the melting and solidifying zones overlap, and in order to melt and solidify the entire wafer, the processing will require a long time unless the moving speed is high. .

そこでスループット向上のため走査速度は30Q mm
 / s程度の値が採用されており、往復運動であるの
で加速度は1〜10m/s2  になる。ところで、ウ
ェーハ自体は軽量であり、高速、高加速度に何ら支障は
ないが、加熱装置22が重量物で、高加速に難がある。
Therefore, to improve throughput, the scanning speed was set to 30Q mm.
/s is adopted, and since it is a reciprocating motion, the acceleration is 1 to 10 m/s2. By the way, although the wafer itself is lightweight and has no problem with high speed and high acceleration, the heating device 22 is heavy and has difficulty in high acceleration.

加熱装置22は第4図(d)(e)に示すようにウェー
ハを真空吸着するための吸排気機構、加熱するためのヒ
ーター、X、Yステージを加熱しないための水冷機構か
らなり、6“ φウェーハ用で18h以上になる。この
ような重量物が高速運動を行なうと、例えば加速度を5
m/s2、Yステージ重量を2.0 KgとしてXステ
ージの加速度運動中の衝撃は20Kg・5m/s2 =
100Nとなり、レーザ装置のミラーや光学系の位置ず
れを生じたり、振動を与えたりして、精密な位置決めや
、長期間の安定したレーザ照射を困難にする。
As shown in FIGS. 4(d) and 4(e), the heating device 22 consists of an intake/exhaust mechanism for vacuum suctioning the wafer, a heater for heating, and a water cooling mechanism for not heating the X and Y stages. For φ wafers, it will take more than 18 hours.When such a heavy object moves at high speed, for example, the acceleration will be 5 hours or more.
m/s2, and the weight of the Y stage is 2.0 Kg, and the impact during the acceleration movement of the X stage is 20 Kg・5 m/s2 =
100N, causing positional deviation or vibration in the mirror and optical system of the laser device, making precise positioning and stable laser irradiation for a long period of time difficult.

レーザ装置10は第3図(b)に示したように発振チュ
ーブの両端に発振用のミラー10b、10cが置かれ、
ミラーはバネで抑え、反対側からマイクロメータで押し
て所望位置にセットする構成になっているので、光軸方
向に可動である。そこで上記衝撃がレーザ装置の光軸方
向に加わるとミラー位置が変動し、パワー値が変る。
As shown in FIG. 3(b), the laser device 10 includes mirrors 10b and 10c for oscillation placed at both ends of an oscillation tube.
The mirror is held in place by a spring and pushed from the opposite side with a micrometer to set it in the desired position, so it is movable in the optical axis direction. Therefore, when the above-mentioned impact is applied in the optical axis direction of the laser device, the mirror position changes and the power value changes.

往復動型のレーザ走査をする限り衝撃発生は避けられな
いが、レーザ装置の出力低下などがあって均一なレーザ
アニールが出来ないのは問題である。そこで本発明はこ
の衝撃を可及的に無害化しようとするものである。
Although impact generation is unavoidable as long as reciprocating laser scanning is used, it is a problem that uniform laser annealing cannot be achieved due to a decrease in the output of the laser device. Therefore, the present invention aims to make this impact as harmless as possible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、レーザ装置(10)と、x、 Xステージ(
26,24)にのせられウェーハ(20)を保持、加熱
する装置(22)と、レーザ装置からのレーザ光をウェ
ーハに投射する光学系(12,14,’16.18)を
備え、レーザ光を投射しながらX、Yステージによりウ
ェーハをX方向に高速往復動、Y方向に精密移動させて
該ウェーハ表面の多結晶シリコン層を単結晶化するレー
ザアニール装置において、前記レーザ装置は固定架台(
32)に取付け、前記X、Yステージおよび加熱装置は
、バネを介して抑えられ所定範囲内でX方向に可動な架
台(28)に取付け、前記光学系のレーザ光通路にはX
方向と平行な部分を持たせて該通路のレーザ装置側光学
系は固定架台に、そして該通路のウェーハ側光学系は可
動架台に取付けてなることを特徴とするものである。
The present invention includes a laser device (10), an x, an X stage (
26, 24) for holding and heating the wafer (20), and an optical system (12, 14, '16.18) for projecting laser light from a laser device onto the wafer. In a laser annealing apparatus, a wafer is reciprocated at high speed in the X direction and precisely moved in the Y direction by an X and Y stage while projecting a wafer to make a polycrystalline silicon layer on the wafer surface into a single crystal.
32), and the X, Y stage and heating device are mounted on a pedestal (28) which is held down via a spring and movable in the X direction within a predetermined range, and the laser beam path of the optical system is
The optical system on the laser device side of the passage is attached to a fixed pedestal, and the optical system on the wafer side of the passage is attached to a movable pedestal, with a portion parallel to the direction.

〔作用〕[Effect]

レーザアニールでは、レーザビーム位置は固定とし、X
、YステージによりウェーハをX方向に高速往復動、Y
方向に微小長スキップさせ、このためX方向に強い衝撃
力が発生する。そこで第1図に示すようにレーザ装置の
架台とステージの架台を分離し、高速往復動による衝撃
がレーザ装置には加わらないようにする。
In laser annealing, the laser beam position is fixed and
, high-speed reciprocation of the wafer in the X direction by the Y stage, Y
This causes a slight skip in the X direction, which generates a strong impact force in the X direction. Therefore, as shown in FIG. 1, the pedestal of the laser device and the pedestal of the stage are separated to prevent shocks from high-speed reciprocating motion from being applied to the laser device.

この第1図で32は固定架台で、レーザ装置10は該架
台32に固定する。架台28は可動とし、両端はバネ3
6a、36bを介して固定架台32の突出部材34a、
34bにより抑える。従って可動架台28はこれらの突
出部材間で可動である。
In FIG. 1, reference numeral 32 denotes a fixed pedestal, and the laser device 10 is fixed to the pedestal 32. The pedestal 28 is movable and has springs 3 at both ends.
The protruding member 34a of the fixed frame 32 via 6a and 36b,
34b. Therefore, the movable pedestal 28 is movable between these projecting members.

この可動方向はX方向に合せる。Xステージの高速往復
動で発生する衝撃はX方向であるから、該衝撃で架台2
8は移動し、一方のバネを圧縮、他方のバネを伸長し、
衝撃解除で該バネの力により復帰し、こうして衝撃は吸
収される。振動性にならないように、架台28に適当な
走行抵抗を与えておくとよい。
This movable direction is aligned with the X direction. Since the impact generated by the high-speed reciprocation of the X stage is in the X direction, the impact causes the mount 2 to
8 moves, compressing one spring and stretching the other spring,
When the impact is released, the spring returns to its original position, and the impact is thus absorbed. It is advisable to provide suitable running resistance to the pedestal 28 to prevent it from vibrating.

レーザ装置10からのレーザ光は、図示のようにミラー
12.14.16によるコ字状光路を通るが、その水平
部つまりミラー14.16間をX方向に選んでおき、そ
の水平部のレーザ装置側光学系12.14は固定架台3
2より支持し、ステージ側光学系16.18は可動架台
28より支持するようにすると、前記衝撃で可動架台2
8がX方向に移動しても、上記水平部の長さが変るだけ
で、ウェーハ20へのレーザ光投射に何ら影響がない。
The laser beam from the laser device 10 passes through a U-shaped optical path formed by mirrors 12, 14, and 16 as shown in the figure. The device side optical system 12.14 is mounted on the fixed mount 3
If the stage-side optical system 16.18 is supported from the movable pedestal 28, the impact will cause the movable pedestal 2 to move.
Even if 8 moves in the X direction, it only changes the length of the horizontal portion and has no effect on the laser beam projection onto the wafer 20.

光学系は全て固定架台32に支持させることも考えられ
るが、この場合はレーザ光の投射位置は変らないのであ
るから、可動架台28の移動だけ投射位置がずれてしま
い、ウェーハ上のX方同走査始、終端がバラバラになる
。この点用1図の支持方法によれば、ミラー16及びレ
ンズ18は可動架台28と共に移動するので、ウェーハ
上のレーザ光投射位置は変らず、X方向走査始、終端が
ギザギザになるようなことはない。なお第4図fQlに
示したようにウェーハ20を全面的にX、Y方向走査し
てレーザアニールする場合は、Y方向は高精度でなけれ
ばならない(低精度では重なり代が負になる、即ち開い
て未処理部分が発生する恐れがある)が、X方向はそれ
埋置精度であることを要しない(少し多口に走査幅をと
っておけばよい)。しかしウェーハ内での局部的な処理
の場合は、X方向でも大きな過不足があるのは好ましく
ない。
It is possible to support all the optical systems on the fixed pedestal 32, but in this case, since the projection position of the laser beam does not change, the projection position will be shifted by the movement of the movable pedestal 28, and the X direction on the wafer will be the same. The start and end of the scan are separated. In this regard, according to the support method shown in FIG. 1, the mirror 16 and lens 18 move together with the movable pedestal 28, so the laser beam projection position on the wafer does not change, and the start and end of scanning in the X direction are not jagged. There isn't. Note that when laser annealing is performed by scanning the entire wafer 20 in the X and Y directions as shown in FIG. However, the X direction does not require high embedding precision (it is sufficient to have a slightly larger scanning width). However, in the case of local processing within a wafer, it is not preferable that there is a large excess or deficiency in the X direction as well.

〔実施例〕〔Example〕

可動架台28はX方向には可動であるが、Y方向には固
定であるのがよい。第2図はこのようにした実施例を示
し、固定架台32に取付けたローラ38 a、  38
 b、・・・・・・により可動架台28の側面を抑えて
、該架台28のY方向の移動を抑止する。
The movable frame 28 is movable in the X direction, but preferably fixed in the Y direction. FIG. 2 shows such an embodiment, in which rollers 38 a, 38 are attached to a fixed frame 32.
b, . . . suppress the side surface of the movable pedestal 28 to prevent movement of the pedestal 28 in the Y direction.

可動架台28と固定架台32との間にはローラ、車輪、
又は摺動軸受を設けておく。前述のように加熱装置22
は例えば18Kgもあり、Yステージ24は2Kg、X
ステージ26は4Kgであり、これに可動架台28の重
量を加えると全体では相当な重量になるので、単なる接
触、摺動ではなく、上記のようにしておくのがよい。
Between the movable pedestal 28 and the fixed pedestal 32, there are rollers, wheels,
Or provide a sliding bearing. The heating device 22 as described above
For example, the weight is 18Kg, the Y stage 24 is 2Kg, and the
The stage 26 weighs 4 kg, and if the weight of the movable pedestal 28 is added to this, the total weight becomes considerable, so it is better to use the above method rather than just contact or sliding.

(発明の効果) 以上説明したように本発明によれば、ステージの高速往
復動により発生する衝撃によるレーザ装置の光軸のずれ
、出力低下などを防止し、レーザアニール装置の寿命の
向上、特性の安定化などを図ることができ、有効である
(Effects of the Invention) As explained above, according to the present invention, it is possible to prevent the optical axis of the laser device from shifting and the output to decrease due to the impact caused by the high-speed reciprocating motion of the stage, and to improve the lifespan and characteristics of the laser annealing device. It is effective because it can stabilize the situation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の説明図、 第2図は実施例を示す概略斜視図、 第3図は従来装置の説明図、 第4図は第3図の各部の説明図である。 第1図で10はレーザ装置、24はYステージ、26は
Xステージ、20はウェーハ、22は加熱装置、12,
14,16.18は光学系、32は固定架台、28は可
動架台、36a、36bはバネ、14〜16はX方向に
平行な部分である。
1 is an explanatory diagram of the present invention, FIG. 2 is a schematic perspective view showing an embodiment, FIG. 3 is an explanatory diagram of a conventional device, and FIG. 4 is an explanatory diagram of each part of FIG. 3. In FIG. 1, 10 is a laser device, 24 is a Y stage, 26 is an X stage, 20 is a wafer, 22 is a heating device, 12,
14, 16, 18 are optical systems, 32 is a fixed pedestal, 28 is a movable pedestal, 36a, 36b are springs, and 14 to 16 are parts parallel to the X direction.

Claims (1)

【特許請求の範囲】 レーザ装置(10)と、X、Yステージ(26、24)
にのせられウェーハ(20)を保持、加熱する装置(2
2)と、レーザ装置からのレーザ光をウェーハに投射す
る光学系(12、14、16、18)を備え、レーザ光
を投射しながらX、YステージによりウェーハをX方向
に高速往復動、Y方向に精密移動させて該ウェーハ表面
の多結晶シリコン層を単結晶化するレーザアニール装置
において、 前記レーザ装置は固定架台(32)に取付け、前記X、
Yステージおよび加熱装置は、バネを介して抑えられ所
定範囲内でX方向に可動な架台(28)に取付け、 前記光学系のレーザ光通路にはX方向と平行な部分を持
たせて該通路のレーザ装置側光学系は固定架台に、そし
て該通路のウェーハ側光学系は可動架台に取付けてなる
ことを特徴とするレーザアニール装置。
[Claims] Laser device (10) and X, Y stages (26, 24)
A device (2) for holding and heating the wafer (20) placed on the
2) and an optical system (12, 14, 16, 18) that projects the laser beam from the laser device onto the wafer, and while projecting the laser beam, the wafer is reciprocated at high speed in the In a laser annealing device that single-crystallizes a polycrystalline silicon layer on the surface of a wafer by precisely moving it in a direction, the laser device is attached to a fixed pedestal (32),
The Y stage and the heating device are mounted on a pedestal (28) that is held down by a spring and movable in the X direction within a predetermined range, and the laser beam path of the optical system has a portion parallel to the X direction to extend the path. A laser annealing apparatus characterized in that an optical system on the laser device side of the passage is attached to a fixed pedestal, and an optical system on the wafer side of the passage is attached to a movable pedestal.
JP6028986A 1986-03-18 1986-03-18 Laser annealing device Expired - Lifetime JPH0763055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6028986A JPH0763055B2 (en) 1986-03-18 1986-03-18 Laser annealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6028986A JPH0763055B2 (en) 1986-03-18 1986-03-18 Laser annealing device

Publications (2)

Publication Number Publication Date
JPS62216320A true JPS62216320A (en) 1987-09-22
JPH0763055B2 JPH0763055B2 (en) 1995-07-05

Family

ID=13137848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6028986A Expired - Lifetime JPH0763055B2 (en) 1986-03-18 1986-03-18 Laser annealing device

Country Status (1)

Country Link
JP (1) JPH0763055B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085353A (en) * 2000-08-10 2001-03-30 Semiconductor Energy Lab Co Ltd Laser process method
JP2003509845A (en) * 1999-09-03 2003-03-11 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク System and method for producing monocrystalline or polycrystalline silicon film at low temperature using sequential lateral solidification method
JP2003133254A (en) * 2001-08-10 2003-05-09 Semiconductor Energy Lab Co Ltd Laser annealing device and manufacturing method of thin film transistor using the same
US7179726B2 (en) 1992-11-06 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and laser processing process
US7300516B2 (en) 2001-10-30 2007-11-27 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
JP2009164637A (en) * 2001-08-10 2009-07-23 Semiconductor Energy Lab Co Ltd Semiconductor device manufacturing method and laser irradiation device
US7622374B2 (en) 2005-12-29 2009-11-24 Infineon Technologies Ag Method of fabricating an integrated circuit
US7902052B2 (en) 2003-02-19 2011-03-08 The Trustees Of Columbia University In The City Of New York System and process for processing a plurality of semiconductor thin films which are crystallized using sequential lateral solidification techniques
US7906414B2 (en) 2002-08-19 2011-03-15 The Trustees Of Columbia University In The City Of New York Single-shot semiconductor processing system and method having various irradiation patterns
US8278659B2 (en) 1996-05-28 2012-10-02 The Trustees Of Columbia University In The City Of New York Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
US8411713B2 (en) 2002-08-19 2013-04-02 The Trustees Of Columbia University In The City Of New York Process and system for laser crystallization processing of film regions on a substrate to minimize edge areas, and structure of such film regions
US8463116B2 (en) 2008-07-01 2013-06-11 Tap Development Limited Liability Company Systems for curing deposited material using feedback control
JP2013149924A (en) * 2012-01-23 2013-08-01 Japan Display Central Co Ltd Laser annealing apparatus
US8796159B2 (en) 2003-09-16 2014-08-05 The Trustees Of Columbia University In The City Of New York Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
US8871022B2 (en) 2007-11-21 2014-10-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparation of epitaxially textured thick films
US8889569B2 (en) 2009-11-24 2014-11-18 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral soldification
US9012309B2 (en) 2007-09-21 2015-04-21 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179726B2 (en) 1992-11-06 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and laser processing process
US8680427B2 (en) 1996-05-28 2014-03-25 The Trustees Of Columbia University In The City Of New York Uniform large-grained and gain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
US8859436B2 (en) 1996-05-28 2014-10-14 The Trustees Of Columbia University In The City Of New York Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
US8278659B2 (en) 1996-05-28 2012-10-02 The Trustees Of Columbia University In The City Of New York Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
JP2003509845A (en) * 1999-09-03 2003-03-11 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク System and method for producing monocrystalline or polycrystalline silicon film at low temperature using sequential lateral solidification method
JP2001085353A (en) * 2000-08-10 2001-03-30 Semiconductor Energy Lab Co Ltd Laser process method
JP2009164637A (en) * 2001-08-10 2009-07-23 Semiconductor Energy Lab Co Ltd Semiconductor device manufacturing method and laser irradiation device
US7863541B2 (en) 2001-08-10 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Laser annealing apparatus and semiconductor device manufacturing method
JP2003133254A (en) * 2001-08-10 2003-05-09 Semiconductor Energy Lab Co Ltd Laser annealing device and manufacturing method of thin film transistor using the same
US7300516B2 (en) 2001-10-30 2007-11-27 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus, and method for fabricating semiconductor device
US8883656B2 (en) 2002-08-19 2014-11-11 The Trustees Of Columbia University In The City Of New York Single-shot semiconductor processing system and method having various irradiation patterns
US7906414B2 (en) 2002-08-19 2011-03-15 The Trustees Of Columbia University In The City Of New York Single-shot semiconductor processing system and method having various irradiation patterns
US8411713B2 (en) 2002-08-19 2013-04-02 The Trustees Of Columbia University In The City Of New York Process and system for laser crystallization processing of film regions on a substrate to minimize edge areas, and structure of such film regions
US8479681B2 (en) 2002-08-19 2013-07-09 The Trustees Of Columbia University In The City Of New York Single-shot semiconductor processing system and method having various irradiation patterns
US7902052B2 (en) 2003-02-19 2011-03-08 The Trustees Of Columbia University In The City Of New York System and process for processing a plurality of semiconductor thin films which are crystallized using sequential lateral solidification techniques
US8796159B2 (en) 2003-09-16 2014-08-05 The Trustees Of Columbia University In The City Of New York Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
US9466402B2 (en) 2003-09-16 2016-10-11 The Trustees Of Columbia University In The City Of New York Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
US7622374B2 (en) 2005-12-29 2009-11-24 Infineon Technologies Ag Method of fabricating an integrated circuit
US9012309B2 (en) 2007-09-21 2015-04-21 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
US8871022B2 (en) 2007-11-21 2014-10-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparation of epitaxially textured thick films
US8463116B2 (en) 2008-07-01 2013-06-11 Tap Development Limited Liability Company Systems for curing deposited material using feedback control
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films
US8889569B2 (en) 2009-11-24 2014-11-18 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral soldification
JP2013149924A (en) * 2012-01-23 2013-08-01 Japan Display Central Co Ltd Laser annealing apparatus

Also Published As

Publication number Publication date
JPH0763055B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JPS62216320A (en) Laser annealing equipment
TWI307526B (en) Supporting device and the mamufacturing method thereof, stage device and exposure device
JP3363662B2 (en) Scanning stage apparatus and exposure apparatus using the same
JP5139922B2 (en) Laser processing equipment
US20090213350A1 (en) Coherence-reduction devices and methods for pulsed lasers
WO2001027978A1 (en) Substrate, stage device, method of driving stage, exposure system and exposure method
JP2002043213A (en) Stage device and exposure system
JP2919145B2 (en) Laser light irradiation device
JPWO2003063212A1 (en) Stage apparatus and exposure apparatus
JPS62216318A (en) Laser annealing apparatus
JPH0795538B2 (en) Laser annealing device
JP2004134456A (en) Moving device, aligner, and method of manufacturing device
JP2002198285A (en) Stage device and its damping method and projection aligner
JP4122815B2 (en) Linear motor, stage apparatus, and linear motor control method
JPH11340160A (en) Apparatus and method for laser annealing
JPS6318621A (en) Laser annealing apparatus
JPH08111374A (en) Stage
JPH0763054B2 (en) Laser annealing device
JP2815025B2 (en) Laser annealing equipment
JP2001148336A (en) Table driver, aligner and method for manufacturing device
JPS62216321A (en) Laser annealing equipment
JP4011919B2 (en) Moving apparatus, exposure apparatus, and semiconductor device manufacturing method
JP2002198286A (en) Projection aligner
JP2000357655A (en) Stage apparatus and scanning type exposure apparatus
JP2004200218A (en) Supporting device and stage device, and exposure system

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term