[go: up one dir, main page]

JPS62215010A - Deodorizing fiber - Google Patents

Deodorizing fiber

Info

Publication number
JPS62215010A
JPS62215010A JP61057020A JP5702086A JPS62215010A JP S62215010 A JPS62215010 A JP S62215010A JP 61057020 A JP61057020 A JP 61057020A JP 5702086 A JP5702086 A JP 5702086A JP S62215010 A JPS62215010 A JP S62215010A
Authority
JP
Japan
Prior art keywords
fiber
deodorizing
inorganic solid
cross
solid fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61057020A
Other languages
Japanese (ja)
Inventor
Shingo Emi
江見 慎悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP61057020A priority Critical patent/JPS62215010A/en
Publication of JPS62215010A publication Critical patent/JPS62215010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the titled fiber having excellent deodorizing property, processability, durability and long-acting performance, by adsorbing and impregnating Fe<2+> and L-ascorbic acid in inorganic solid fine particles to obtain a deodorizing material and applying the material to a thermoplastic polymer fiber having a specific fineness. CONSTITUTION:A deodorizing material is produced by adsorbing and impregnating bivalent iron ion and L-ascorbic acid to inorganic solid fine particles (preferably having average particle size of 1-30mum) such as fine zeolite particles. The deodorizing material is applied at an amount of preferably 2-30wt% to a fiber made of a thermoplastic polymer (preferably polyethylene, etc.) and having an average filament fineness of 1-80 denier to obtain the objective fiber. Preferably, the fiber has noncircular cross-section, the noncircularity coefficient (D/d) of the fiber is >=1.1 and irregularly varying along the fiber axis and the cross-sectional area of the fiber perpendicular to the fiber axis irregularly varies along the fiber axis.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 生活につきものの悪臭は、直接的2間接的に人体に被害
を及ぼす感覚公害の代表である。
[Detailed Description of the Invention] <Industrial Application Field> The bad odor that is common in daily life is a representative sensory pollution that directly and indirectly damages the human body.

本発明の消臭性INは人体に悪影響を及ぼす種々の悪臭
の吸着に優れ、かつ加工性、耐久性に優れたものであり
、生理用ナブ・キン、紙オムツ関連等の衛生材料、各種
フィルター類、ふとん綿や中入綿、バット類、各種フェ
ルト類、カーペット関連、建物や自動車の内装材等の素
材として利用できるものである。
The deodorizing IN of the present invention is excellent in adsorbing various bad odors that have a negative impact on the human body, and has excellent processability and durability. It can be used as a material for things such as futon cotton, padded cotton, batting, various felts, carpets, interior materials for buildings and automobiles, etc.

〈従来技術〉 一般悪臭としてアンモニア、アミン類などの窒素化合物
、硫化水素、メルカプタン類などの硫黄化合物、アルデ
ヒド類、ケトン類、脂肪酸類、炭化水素類等があり、悪
臭防止法によりアンモニア。
<Prior art> General bad odors include ammonia, nitrogen compounds such as amines, hydrogen sulfide, sulfur compounds such as mercaptans, aldehydes, ketones, fatty acids, hydrocarbons, etc., and ammonia is removed by the bad odor prevention method.

メチルメルカプタン、硫化水素、硫化メチル、トリメチ
ルアミン、アセトアルデヒド、スチレン。
Methyl mercaptan, hydrogen sulfide, methyl sulfide, trimethylamine, acetaldehyde, styrene.

二硫化メチル等が特定悪臭物質として指定され、規制さ
れている。
Methyl disulfide and other substances are designated as specific malodorous substances and are regulated.

そこで従来これらの悪臭を除去する為に種々の吸着剤が
使用されている。例えば活性炭、シリカゲル、ゼオライ
ト、活性白土、モレキュラシーブ等の無機吸着剤やイオ
ン交換樹脂、ツバキ科植物の抽出物を主成分とする液状
吸着剤などがよく知られている。
Therefore, various adsorbents have been used to remove these bad odors. For example, inorganic adsorbents such as activated carbon, silica gel, zeolite, activated clay, and molecular sieve, ion exchange resins, and liquid adsorbents containing extracts of plants of the Camellia family as a main component are well known.

これらの消臭剤は単体で使用されるか又は液状物は繊維
にコーティング法あるいはスプレー法等で付着させて使
用されいてる。
These deodorants are used alone, or in liquid form they are applied to fibers by coating or spraying.

しかし、前述の消臭材は消臭性が不十分であったり又耐
久性(特に耐洗濯性)に劣る。耐久性向上を狙って無機
吸着剤を含有したIl維の検討もなされているが繊度が
100de以上のものは知られているがそれ以下ものは
まだ得られていないのが現状である。
However, the above-mentioned deodorizing materials have insufficient deodorizing properties and are inferior in durability (especially washing resistance). Il fibers containing inorganic adsorbents have been studied with the aim of improving durability, but while those with a fineness of 100 de or more are known, those with a fineness of less than that have not yet been obtained.

〈発明の目的〉 本発明の目的は種々の悪臭に対する消臭性に優れ、かつ
優れた加工性、耐久性、徐効性を有し平均単糸繊度が1
〜80デニールである消臭性繊維を提供することにある
<Objective of the Invention> The object of the present invention is to provide a fabric that has excellent deodorizing properties against various bad odors, has excellent processability, durability, and slow-release properties, and has an average single yarn fineness of 1.
An object of the present invention is to provide deodorizing fibers having a deniers of ~80 denier.

〈発明の構成〉 (1)  すなわち本発明は繊維に消臭材を付与してな
る消臭性iINにおいて、消臭材が二価の鉄イオンとL
−アスコルビン酸とを吸着含浸せしめた無機固体微粒子
であり繊維が熱可塑性高分子からなりその平均単糸繊度
が1〜80デニールであることを特徴とする消臭性繊維 (a 無機固体微粒子の80重量以上が平均粒度1〜5
0μmである特許請求の範囲第(1)項に記載の消臭性
繊維 (3)  繊維に対し1〜40重伍%の消臭材が付与さ
れた特許請求の範囲第(1)項または第(′2J項に記
載の消臭性繊維 (4)繊維の断面形状が非円形でありその異形係数(D
/d )が少くとも1.1であり、かつ該異形係数が繊
維軸方向に沿って不規則に変化しており、またその繊維
軸に垂直な断面の面積が繊維軸方向に沿って不規則に変
化している特許請求の範囲第(1)〜(3)項のいずれ
かに記載の消臭性繊維である。
<Configuration of the Invention> (1) That is, the present invention provides a deodorizing iIN in which a deodorizing material is added to fibers, in which the deodorizing material is composed of divalent iron ions and L
- A deodorizing fiber characterized by being inorganic solid fine particles adsorbed and impregnated with ascorbic acid, the fibers being made of a thermoplastic polymer and having an average single fiber fineness of 1 to 80 deniers (a) 80 deniers of inorganic solid fine particles. Weight or more is average particle size 1-5
Deodorizing fiber (3) according to claim 1, which has a particle size of 0 μm. Claim 1 or 3, in which 1 to 40% by weight of deodorizing material is added to the fiber. (Deodorizing fiber (4) described in section '2J) The cross-sectional shape of the fiber is non-circular and its irregularity coefficient (D
/d) is at least 1.1, the irregularity coefficient varies irregularly along the fiber axis direction, and the area of the cross section perpendicular to the fiber axis is irregular along the fiber axis direction. The deodorizing fiber according to any one of claims (1) to (3) is changed to:

本発明における熱可塑性高分子はL−アスコルビン酸が
熱分解しない温度で熱溶融できかつ繊維形成可能なもの
である。好ましくはポリオレフィン特に好ましくはポリ
プロピレン、ポリエチレンである。本発明の消臭性繊維
の平均単糸繊度は1〜80deである。80deを越え
ると織編物の成形が困難となり消臭性も低下するので用
途が限定される。
The thermoplastic polymer used in the present invention is one that can be thermally melted at a temperature at which L-ascorbic acid does not decompose and is capable of forming fibers. Preferred are polyolefins, particularly polypropylene and polyethylene. The average single fiber fineness of the deodorant fiber of the present invention is 1 to 80 de. If it exceeds 80 de, it will be difficult to mold the woven or knitted material and the deodorizing properties will be reduced, so that its uses will be limited.

1de未満では無機固体微粒子を含有せしめることが困
難となる。無機固体微粒子としては二価の鉄イオンとL
−アスコルビン酸とを吸着含浸できるものであればよい
。その平均粒度は1〜50μmの範囲が好ましい。特に
好ましくは、1〜30μmの範囲のものである。繊維に
対する無機固体微粒子の含有量は1〜40重母%好まし
くは2〜30重量%である。40重量%を越えると平均
単糸繊度が1〜80deの繊維を得ることが困難であり
、又1重量%未満では消臭効果が得られない。
If it is less than 1 de, it becomes difficult to contain inorganic solid fine particles. As inorganic solid particles, divalent iron ions and L
- Any material may be used as long as it can adsorb and impregnate ascorbic acid. The average particle size is preferably in the range of 1 to 50 μm. Particularly preferably, the thickness is in the range of 1 to 30 μm. The content of inorganic solid fine particles relative to the fiber is 1 to 40% by weight, preferably 2 to 30% by weight. If it exceeds 40% by weight, it is difficult to obtain fibers with an average single filament fineness of 1 to 80 de, and if it is less than 1% by weight, no deodorizing effect can be obtained.

本発明の消臭性m維はフィラメント状であってもよくま
たは短繊維状であってもよい。
The deodorizing m-fiber of the present invention may be in the form of filaments or short fibers.

短am状の場合その平均繊維長は10〜500履好まし
くは20〜400m更に好ましくは25〜150mであ
る。また本発明の消臭性IINは顔料1M燃剤。
In the case of a short am shape, the average fiber length is 10 to 500 m, preferably 20 to 400 m, and more preferably 25 to 150 m. Moreover, the deodorizing IIN of the present invention is a pigment 1M fuel.

安定剤、螢光増白剤あるいは無機固体微粒子の分散を向
上させるための分散剤などを含んでいても良い。
It may contain a stabilizer, a fluorescent whitening agent, a dispersant for improving the dispersion of inorganic solid fine particles, and the like.

本発明における消臭性mNを構成する繊維の形状はその
繊維軸方向に垂直な断面形状が円形であってもよいが非
円形として消臭性能を高める為に表面積を大きくとるこ
とが好ましく、その異形係数(D/d )が−少なくと
も1.1であり、且つ該異形係数が繊維軸方向に沿って
不規則に変化していることが好ましい。又該繊維はその
繊維軸に垂直な断面の面積が軸方向に沿って不規則な変
化を有していることが好ましい。
The shape of the fibers constituting the deodorizing mN in the present invention may be circular in cross section perpendicular to the fiber axis direction, but it is preferable that the fibers be non-circular and have a large surface area in order to improve the deodorizing performance. It is preferred that the profile coefficient (D/d) is -at least 1.1 and that the profile coefficient varies irregularly along the fiber axis direction. Further, it is preferable that the cross-sectional area of the fibers perpendicular to the fiber axis varies irregularly along the axial direction.

ここで断面形状の非円形の程度は、断面における外接2
平行線の最大間隔(D)と、その外接2平行線の最小間
隔(d >との比(D/d)として表される異形係数で
示すことができる。
Here, the degree of non-circularity of the cross-sectional shape is the circumference 2 of the cross-section.
It can be expressed by an irregularity coefficient expressed as the ratio (D/d) of the maximum distance between parallel lines (D) and the minimum distance between two circumscribed parallel lines (d>).

かかる形状の繊維の製造法は本発明者等が先に提案した
特開昭58−91804号公報の明1書に記載された方
法によって容易に製造できる。つまり熱可塑性合成重合
体の溶融液を多数の細隙を有する紡糸口金から押出して
フィラメント状繊維集束体を製造するに当って、紡糸口
金の該溶融液の吐出側の隣接する細隙間に非連続的凸部
が設けられており、該凸部間に存在する凹部区域を通じ
て成る細隙から押出される該溶融液がそれに隣接する他
の細隙から押出される溶融液と互いに往来し得るような
紡糸口金から該溶融液を押出し、この際該紡糸口金の該
溶融液の吐出面及びその近傍に冷却流体を供給して冷却
しながら該細隙を通じて押出される溶融液を引取って該
溶融液を多数の分離された1!紺状細流に変換し、固化
することにより繊維状物を得る方法である。かくして得
られるmaは断面が非円形でありその異形係数(D/d
 )が少な(とも1.1であり且つ、該異形係数が繊維
軸方向に沿って不規則に変化しており、又その繊維軸に
垂直な断面の面積が軸方向に沿って不規則な変化を有し
ている。該紡糸口金としては金網あるいはフォトエツチ
ングにより形成されたメツシュ状多孔板等を用いるのが
好適である。金網の目開きはmiの太さなどによって決
められる。
Fibers having such a shape can be easily produced by the method described in Mei 1 of JP-A-58-91804, which was previously proposed by the present inventors. In other words, when producing a filamentary fiber bundle by extruding a thermoplastic synthetic polymer melt through a spinneret having many slits, there is discontinuity between adjacent slits on the discharge side of the melt from the spinneret. Target protrusions are provided such that the melt extruded from the slit formed through the concave area between the protrusions can come and go with the melt extruded from other adjacent slits. The melt is extruded from the spinneret, and at this time, a cooling fluid is supplied to the melt discharge surface of the spinneret and its vicinity, and while cooling the melt, the melt extruded through the slits is withdrawn. A large number of separated 1! This is a method to obtain a fibrous material by converting it into a dark blue rivulet and solidifying it. The thus obtained ma has a non-circular cross section and its irregularity coefficient (D/d
) is small (both are 1.1, the irregularity coefficient varies irregularly along the fiber axis direction, and the area of the cross section perpendicular to the fiber axis varies irregularly along the axial direction) As the spinneret, it is preferable to use a wire mesh or a mesh-like perforated plate formed by photo-etching.The opening of the wire mesh is determined by the thickness of mi and the like.

更に前記紡糸の際、口金の少なくとも吐出表面は加熱さ
れているのが好ましい。この口金の吐出側表面を加熱す
るためには、該口金表面にエネルギーを供給する必要が
ある。その方法は種々存在するが、該口金表面を自己発
熱せしめる場合、伝熱により加熱する場合、両者を併用
する場合がある。
Furthermore, during the spinning, at least the discharge surface of the die is preferably heated. In order to heat the discharge side surface of this die, it is necessary to supply energy to the die surface. There are various methods for this, including cases where the surface of the die is made to generate heat by itself, cases where it is heated by heat transfer, and cases where both are used in combination.

該口金表面を自己発熱せしめる手段としては、該口金表
面を導電体で構成し、直流又は交流電源とし接続して通
電せしめて、該口金表面に発生するジュール熱を利用す
る方法(以下通電加熱法と呼ぶ)、該口金表面を導電体
で構成しそれに好適な周波数の誘導磁界を印加し、うず
電流を生成せしめ発熱せしめる所謂誘導加熱を利用する
方法。
As a means for causing the surface of the cap to self-heat, the surface of the cap is made of a conductive material, connected to a DC or AC power source, and energized to utilize the Joule heat generated on the surface of the cap (hereinafter referred to as energization heating method). A method that utilizes so-called induction heating, in which the surface of the cap is made of a conductor and an induced magnetic field of a suitable frequency is applied to it to generate eddy current and generate heat.

該口金表面を誘電体で構成し、それに好適な周波°数の
電界を印加し、誘電体損失を生じせしめ発熱せしめる所
謂誘電加熱を利用する方法等がある。
There is a method that utilizes so-called dielectric heating, in which the surface of the cap is made of a dielectric material, and an electric field of a suitable frequency is applied thereto to cause dielectric loss and heat generation.

該口金表面を伝熱により加熱する手段としては、該口金
表面自身又はその近傍を細管で構成された組織体となし
、該細管の中に熱媒体を流して該口金表面を加熱する方
法(以下熱流体加熱法と呼ぶ)該口金表面に赤外線等の
該口金表面の物質が吸収し得る波長を含む光を投射して
輻射により該口金表面を加熱する方法(以下輻射加熱法
と呼ぶ)等がある。
As a means for heating the surface of the mouthpiece by heat transfer, the surface of the mouthpiece itself or its vicinity is formed into an organization composed of thin tubes, and a heating medium is flowed through the thin tubes to heat the surface of the mouthpiece (hereinafter referred to as a method). A method of heating the surface of the cap by radiation by projecting light containing a wavelength that can be absorbed by a material on the surface of the cap, such as infrared rays, onto the surface of the cap (hereinafter referred to as a radiation heating method), etc. be.

以上の説明から明らかなように[吐出側表面の口金を加
熱する]ことは、口金表面近傍の温度は、一般的に、該
近傍を囲むある範囲の領域の温度よりも高くなる。
As is clear from the above description, when heating the nozzle on the discharge side surface, the temperature near the nozzle surface generally becomes higher than the temperature of a certain range surrounding the vicinity.

通電加熱法及び誘電加熱法に使用可能な材料としては白
金、金、銀、チタン、バナジウム、タングステン、イリ
ジウム、モリブデン、パラジウム。
Materials that can be used in the electrical heating method and dielectric heating method include platinum, gold, silver, titanium, vanadium, tungsten, iridium, molybdenum, and palladium.

鉄、ニッケル、クローム、コバルト、鉛、亜鉛。Iron, nickel, chromium, cobalt, lead, zinc.

ビスマス、スズ、アルミニウム等の全屈単体、ステンレ
ススチール、ニクロム、タンタル、しんちゅう、りん青
鉄、ジュラルミン等の合金、黒鉛。
Fully flexible elements such as bismuth, tin, and aluminum, alloys such as stainless steel, nichrome, tantalum, brass, phosphorous iron, and duralumin, and graphite.

シリコーン、ゲルマニウム、セレン、酸化スズ。silicone, germanium, selenium, tin oxide.

酸化インジュウム、FI化鉄、酸化ニッケル等の主とし
て半導体の性質を呈する無機化合物、ポリアセチレン、
ポリフェニレン等の半導体の性質を呈する有機化合物等
、10−7〜109Ωctx程度の比抵抗を有する物質
を上記紡糸態様の口金に形成したものが有利に使用され
る。
Inorganic compounds mainly exhibiting semiconductor properties such as indium oxide, iron oxide, nickel oxide, polyacetylene,
It is advantageous to use a material having a specific resistance of about 10<-7> to 10<9 >[Omega]ctx, such as an organic compound exhibiting semiconductor properties such as polyphenylene, formed in the spinneret of the above-mentioned spinning mode.

前述の口金はいずれも導電性であり本発明の目的にかな
ったものである。その他、ガラス球ビーズ表面を銀でコ
ーティングして加圧接触せしめ導電性とした構造、アル
ミナ、ジルコニア等のセラミックファイバーにアルミニ
ウム等の金属を蒸着せしめ、加圧成形した導電性口金構
造多孔質セラミック板を黒鉛粒子分散体に浸漬し沈着せ
しめた導電性口金構造等が挙げられ、その他可能な構造
体を種々改良し、実施することが出来る。
All of the caps described above are electrically conductive and serve the purpose of the present invention. Other examples include a structure in which the surface of a glass sphere bead is coated with silver and brought into contact with pressure to make it conductive, and a porous ceramic plate with a conductive base structure in which metals such as aluminum are vapor-deposited onto ceramic fibers such as alumina and zirconia and then pressure-formed. Examples include a conductive cap structure in which a graphite particle dispersion is immersed and deposited, and other possible structures can be modified and implemented in various ways.

通電加熱法の導電性口金は押出し機吐出口に取付けられ
るが、導電性口金に所望の電流が流れるように取付ける
べきである。
The conductive nozzle for the current heating method is attached to the extruder outlet, and should be installed so that the desired current flows through the conductive nozzle.

押出し機と導電性口金を導通せしめて押出し機に流れる
電流と導電性口金に流れる電流を好適に配分して目的の
性能を得ることも可能である。
It is also possible to achieve the desired performance by making the extruder and the conductive die conductive and appropriately distributing the current flowing through the extruder and the conductive die.

口金としては、通電により発熱する物質より形成された
網(金網)を用いるのが好適である。
As the cap, it is preferable to use a mesh (wire mesh) made of a substance that generates heat when energized.

本発明の消臭性繊維の使用態様としてはそのまま袋詰ま
たは包納して用いてもよく不織布または編織物として使
用してもよい。又コツトンやウール、麻等の天然繊維や
ポリエステル、ナイロン等の合成繊維と混繊し織編物や
詰綿、不織布等の構造体として使用することもできる。
The deodorizing fiber of the present invention may be used as it is in bags or packaged, or as a non-woven fabric or a knitted fabric. It can also be mixed with natural fibers such as cotton, wool, and linen, and synthetic fibers such as polyester and nylon, and used as structures such as woven and knitted fabrics, stuffed cotton, and nonwoven fabrics.

〈発明の効果〉 本発明の消臭性繊維は種々の悪臭発生物質たとえば腐卵
臭の硫化水素、腐敗したタマネギ臭のメルカプタン類、
腐魚臭のトリメチルアミン、刺激臭のアンモニヤ類、汗
臭のロー絡酸類等に対して、優れた消臭効果を有する。
<Effects of the Invention> The deodorizing fiber of the present invention can be used to eliminate various odor-producing substances, such as hydrogen sulfide with a rotten egg odor, mercaptans with a rotten onion odor,
It has an excellent deodorizing effect on trimethylamine, which has a rotten fish odor, ammonia, which has a pungent odor, rhofluoric acid, which has a sweat odor, etc.

又従来の消臭材にくらべ消臭効果が長時間にわたって維
持される徐効性に優れ長時間の使用が可能であり、又耐
洗濯性等の耐久性に優れ更に種々の形状に容易に加工が
できるという優れた効果を有する。
In addition, compared to conventional deodorant materials, it has excellent slow-acting properties that maintain its deodorizing effect for a long time, and can be used for a long time.It also has excellent durability such as washing resistance, and can be easily processed into various shapes. It has the excellent effect of being able to

〈実施例〉 以下実施例をあげて本発明を詳述する。<Example> The present invention will be explained in detail with reference to Examples below.

尚消臭性の評価法としては以下の方法により消臭率を求
めた。
As a method for evaluating deodorizing properties, the deodorizing rate was determined by the following method.

消臭率 10gの繊維状サンプルを4旦デシケータに入れアスピ
レータで減圧したのら測定ガス(又は液体)をデシケー
タに一定吊注入する。その後デシケータ内を大気圧に戻
し、その時のガス濃度を初期ガス濃度とする。初期濃度
としては2t)O〜300ppmになる様調節づる。更
に3時間後のデシケータ内のガス濃度を測定し初期濃度
と比較し、下記式により消臭率を算出した。
A fibrous sample with a deodorizing rate of 10 g is placed in a desiccator four times, the pressure is reduced with an aspirator, and then a measuring gas (or liquid) is injected into the desiccator under constant suspension. Thereafter, the inside of the desiccator is returned to atmospheric pressure, and the gas concentration at that time is set as the initial gas concentration. The initial concentration is adjusted to 2t)O to 300ppm. Furthermore, the gas concentration in the desiccator after 3 hours was measured and compared with the initial concentration, and the deodorization rate was calculated using the following formula.

消臭率− 実施例1 第1図の如き装置により、硫酸第1鉄とL−アスコルビ
ン酸とを含浸した平均粒径10μ風のゼオライト微粒子
(■アニコ製)をポリマーに対し6重量%の割合で、ポ
リエチレンワックスを分散剤として、ポリプロピレン(
S−1)5M:宇部興産■製)に混合したチップを用い
溶融紡糸してI維集束体を得た。
Deodorization rate - Example 1 Using an apparatus as shown in Figure 1, fine zeolite particles with an average particle size of 10 μm impregnated with ferrous sulfate and L-ascorbic acid (■manufactured by Anico) were added at a ratio of 6% by weight to the polymer. Then, using polyethylene wax as a dispersant, polypropylene (
S-1) 5M (manufactured by Ube Industries, Ltd.) was mixed and melt-spun to obtain an I fiber bundle.

即ち25φ押出機から上記チップを20g/分ずつ定m
的に溶融押出した。押出温度は押出機が190〜210
℃でありダイ部は200℃であった。
That is, the above chips are fed from a 25φ extruder at a constant rate of 20g/min.
melt extruded. The extrusion temperature of the extruder is 190-210
℃, and the temperature of the die part was 200℃.

凹凸口金としてステンレス製60メツシユ平綴金網を用
い冷却風を吹きつけながら4.9m/分の速度で引取っ
た。この際口金には約60アンペアの電流を流してジュ
ール熱を発生させ、口金部を加熱した。更に延伸’lA
6120℃で2.3倍に延伸した。
A stainless steel 60-mesh flat-stitch wire mesh was used as a concave-convex mouthpiece, and it was pulled at a speed of 4.9 m/min while blowing cooling air. At this time, a current of about 60 amperes was passed through the cap to generate Joule heat, thereby heating the cap. Further stretching
It was stretched 2.3 times at 6120°C.

得られた繊維の物性は以下のとおりであった。The physical properties of the obtained fiber were as follows.

平均単糸繊度:  6,5de 強  度     :  2.597de伸  度  
    :  45% 異形係数  :  1,34 このm維の消臭率は表1のとおりであった。
Average single yarn fineness: 6.5de Strength: 2.597de elongation
: 45% Deformation coefficient: 1.34 The deodorization rate of this m-fiber was as shown in Table 1.

実施例2 硫酸第1鉄とし一アスコルビン酸とを含浸した平均粒度
10μmのゼオライト微粒子(lアニコ)をポリマーに
対し6重口%の割合でポリエチレンワックスを分散剤と
して、ポリエチレン(ツバチックLL  MK−40:
三菱化成■製)に混合したチップを用い実施例1に用い
た装置により実施例1と同様に実施して繊維集束体を得
た(延伸温度は90℃延伸倍率は1,5)。
Example 2 Fine zeolite particles (l Aniko) impregnated with ferrous sulfate and monoascorbic acid and having an average particle size of 10 μm were mixed with polyethylene wax (Tubatic LL MK-40) at a ratio of 6% by weight to the polymer as a dispersant. :
A fiber bundle was obtained in the same manner as in Example 1 using the same apparatus as in Example 1, using chips mixed with the fibers (manufactured by Mitsubishi Kasei ■) (stretching temperature: 90° C., stretching ratio: 1.5).

得られたmMの物性は以下のとおりであった。The physical properties of the obtained mM were as follows.

平均単糸1)度: 12de 強  度      : 1 g/de伸  度   
   : 34% 異形係数  :  1.45 この繊維の消臭率はアンモニアで80%であった。
Average single yarn 1) Degree: 12 de Strength: 1 g/de elongation
: 34% Deformation coefficient: 1.45 The deodorization rate of this fiber was 80% with ammonia.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1で用いた装置の全体図である。 1 ホッパー    2 フィーダー 3 エクストルーダー4 ギアポンプ 5 印加電流用コード61型ダイ ア 口金      8 印加電流用プレート9 トラ
ンス    10  スライダック1)  空気ノズル
   12  引取ローラー13  m維束     
14(a−d)延伸バー15  延伸ローラー
FIG. 1 is an overall view of the apparatus used in Example 1. 1 Hopper 2 Feeder 3 Extruder 4 Gear pump 5 Cord for applied current 61 type dia Base 8 Plate for applied current 9 Transformer 10 Slide duck 1) Air nozzle 12 Take-up roller 13 m fiber bundle
14(a-d) Stretching bar 15 Stretching roller

Claims (4)

【特許請求の範囲】[Claims] (1)繊維に消臭材を付与してなる消臭性繊維において
、消臭材が二価の鉄イオンとL−アルコルビン酸とを吸
着含浸せしめた無機固体微粒子であり繊維が熱可塑性高
分子からなりその平均単糸繊度が1〜80デニールであ
ることを特徴とする消臭性繊維。
(1) In a deodorizing fiber made by adding a deodorizing agent to the fiber, the deodorant is an inorganic solid fine particle adsorbed and impregnated with divalent iron ions and L-alcorbic acid, and the fiber is a thermoplastic polymer. A deodorizing fiber comprising: a deodorizing fiber having an average single filament fineness of 1 to 80 deniers.
(2)無機固体微粒子の80重量以上が平均粒度1〜5
0μmである特許請求の範囲第(1)項に記載の消臭性
繊維
(2) 80 weight or more of the inorganic solid fine particles have an average particle size of 1 to 5
The deodorizing fiber according to claim (1), which has a particle size of 0 μm.
(3)繊維に対し1〜40重量%の消臭材が付与された
特許請求の範囲第(1)項または第(2)項に記載の消
臭性繊維
(3) The deodorizing fiber according to claim 1 or 2, to which 1 to 40% by weight of deodorant is added to the fiber.
(4)繊維の断面形状が非円形でありその異形係数(D
/d)が少くとも1.1であり、かつ該異形係数が繊維
軸方向に沿って不規則に変化しており、またその繊維軸
に垂直な断面の面積が繊維軸方向に沿って不規則に変化
している特許請求の範囲第(1)〜(3)項のいずれか
に記載の消臭性繊維
(4) The cross-sectional shape of the fiber is non-circular and its irregularity coefficient (D
/d) is at least 1.1, the irregularity coefficient varies irregularly along the fiber axis direction, and the area of the cross section perpendicular to the fiber axis is irregular along the fiber axis direction. The deodorizing fiber according to any one of claims (1) to (3), which has changed to
JP61057020A 1986-03-17 1986-03-17 Deodorizing fiber Pending JPS62215010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61057020A JPS62215010A (en) 1986-03-17 1986-03-17 Deodorizing fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61057020A JPS62215010A (en) 1986-03-17 1986-03-17 Deodorizing fiber

Publications (1)

Publication Number Publication Date
JPS62215010A true JPS62215010A (en) 1987-09-21

Family

ID=13043748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61057020A Pending JPS62215010A (en) 1986-03-17 1986-03-17 Deodorizing fiber

Country Status (1)

Country Link
JP (1) JPS62215010A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291209A (en) * 1988-09-28 1990-03-30 Kuraray Co Ltd Synthetic fiber with deodorizing properties
JPH03206110A (en) * 1989-10-10 1991-09-09 Wm Wrigley Jr Co Release system for sequential release of active agent and method for manufacturing same
US5202052A (en) * 1990-09-12 1993-04-13 Aquanautics Corporation Amino polycarboxylic acid compounds as oxygen scavengers
US5364555A (en) * 1991-04-30 1994-11-15 Advanced Oxygen Technologies, Inc. Polymer compositions containing salicylic acid chelates as oxygen scavengers
WO1998023358A1 (en) * 1996-11-27 1998-06-04 Alliedsignal Inc. A filter having hollow fibers impregnated with solid adsorbent particles
US6709724B1 (en) 1990-05-02 2004-03-23 W. R. Grace & Co.-Conn. Metal catalyzed ascorbate compounds as oxygen scavengers
EP1640408A1 (en) 2004-09-27 2006-03-29 Futura Polyesters Limited Oxygen scavenging composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954013A (en) * 1982-09-20 1984-03-28 Sanyo Electric Co Ltd Reproduction level control method of digital recording and reproduction
JPS59132937A (en) * 1983-01-20 1984-07-31 Agency Of Ind Science & Technol Deodorant
JPS6066753A (en) * 1983-09-24 1985-04-16 工業技術院長 Composition containing ferric compound
JPS61296111A (en) * 1985-06-21 1986-12-26 Daicel Chem Ind Ltd Deodorizing yarn

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954013A (en) * 1982-09-20 1984-03-28 Sanyo Electric Co Ltd Reproduction level control method of digital recording and reproduction
JPS59132937A (en) * 1983-01-20 1984-07-31 Agency Of Ind Science & Technol Deodorant
JPS6066753A (en) * 1983-09-24 1985-04-16 工業技術院長 Composition containing ferric compound
JPS61296111A (en) * 1985-06-21 1986-12-26 Daicel Chem Ind Ltd Deodorizing yarn

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291209A (en) * 1988-09-28 1990-03-30 Kuraray Co Ltd Synthetic fiber with deodorizing properties
JPH03206110A (en) * 1989-10-10 1991-09-09 Wm Wrigley Jr Co Release system for sequential release of active agent and method for manufacturing same
US5364627A (en) * 1989-10-10 1994-11-15 Wm. Wrigley Jr. Company Gradual release structures made from fiber spinning techniques
US6709724B1 (en) 1990-05-02 2004-03-23 W. R. Grace & Co.-Conn. Metal catalyzed ascorbate compounds as oxygen scavengers
US5202052A (en) * 1990-09-12 1993-04-13 Aquanautics Corporation Amino polycarboxylic acid compounds as oxygen scavengers
US5364555A (en) * 1991-04-30 1994-11-15 Advanced Oxygen Technologies, Inc. Polymer compositions containing salicylic acid chelates as oxygen scavengers
WO1998023358A1 (en) * 1996-11-27 1998-06-04 Alliedsignal Inc. A filter having hollow fibers impregnated with solid adsorbent particles
EP1640408A1 (en) 2004-09-27 2006-03-29 Futura Polyesters Limited Oxygen scavenging composition

Similar Documents

Publication Publication Date Title
US3998988A (en) Conjugate fiber, fibrous material and fibrous article made therefrom and process for production thereof
US6235388B1 (en) Fibrous materials of fluororesins and deodorant and antibacterial fabrics made by using the same
JP5520826B2 (en) Functional fiber, method for producing the same, and fabric made from the fiber
EP1050608B1 (en) Heat-meltable fluororesin fibers
US5897673A (en) Fine metallic particles-containing fibers and method for producing the same
DE69717704T2 (en) Absorbent and dust collecting device
EP0260941A2 (en) Anti-fungus, deodorant fiber material
JP5339191B2 (en) Negative ion generating material and method for producing the same
DE2320714B2 (en) Process for bonding metal compounds to products made from synthetic polymers
CN105080300B (en) Self inhaling type toroidal cryogenic plasma air circulating purifying device
JPS62215010A (en) Deodorizing fiber
JP2000042126A (en) Face mask
KR102473426B1 (en) Mask comprising metal nanowire
JPS62179464A (en) Fibrous deodorizing material
JP2010119970A (en) Deodorizing fiber and manufacturing method therefor
KR101647966B1 (en) Method of making composite fiber filter for degasing and elemination of dilute hamful gas
JPH05163681A (en) Deodorant fabric
KR20220122091A (en) Multi-layered composite filter media
JP3979545B2 (en) Functional fiber and production method thereof
JP2010031403A (en) Photocatalyst-containing shath-core conjugate fiber and method for producing the same
JP3657438B2 (en) Manufacturing method of air purification filter
JP3157040B2 (en) Deodorizing filter and manufacturing method thereof
KR102446374B1 (en) Electrostatic filter module
JP3658463B2 (en) Deodorant fiber product and its manufacturing method
KR20010089865A (en) Air filter media